Numerical Simulation of Ship Wave Characteristics Under Different Navigation Conditions in the Restricted Waterway of the Pinglu Canal
Abstract
:1. Introduction
2. Study Site: The Pinglu Canal
3. Materials and Methods
3.1. Overview
3.2. Ship Waves
3.3. Numerical Model
3.3.1. Non-Hydrostatic Model
3.3.2. Ship Modeling
3.4. Field Observations and Model Validation
3.4.1. Field Observations
- A navigation administration boat (NAB) was arranged to pass the observation point at different pre-set speeds, each passing at a different offshore distance;
- The cargo ships (CSs) that passed randomly on the day of the field observation were observed, while we recorded the ship names and searched the relevant AIS data of the CSs via the website (https://www.shipxy.com/, accessed on 24 August 2024), including size, speed, draft, etc.
3.4.2. Numerical Simulation and Validation
3.5. Model Setup of the Pinglu Canal
4. Results and Discussion
4.1. Single-Ship Navigation
4.2. Two-Ship Navigation in Opposite Directions
4.3. Discussion on Secondary Wave Height
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SN | Single-ship navigation |
2NOD | Two-ship navigation in opposite directions |
NAB | Navigation administration boat |
CS | Cargo ship |
UAV | Unmanned aerial vehicle |
Obs. | Observation |
CFL | Courant–Friedrichs–Lewy number |
MAE | Mean absolute error |
RMSE | Root mean square error |
References
- Wang, L.; Guan, M.; Fang, K.; Liang, L.; Wang, P. Numerical Simulation of Ship-borne Waves by a Boussinesq-type Model. Mar. Sci. Bull. 2024, 1–9. Available online: https://link.cnki.net/urlid/12.1076.P.20240913.1406.002 (accessed on 15 June 2025).
- Wang, L.; Wang, J.; Xu, H.; Yang, Y. Research on the Calculation Method of Ship Wave Height in the Jianghuai Canal. J. Waterw. Harb. 2023, 44, 611–617. [Google Scholar]
- Yasir, M.; Jianhua, W.; Mingming, X.; Hui, S.; Zhe, Z.; Shanwei, L.; Colak, A.T.I.; Hossain, M.S. Ship detection based on deep learning using SAR imagery: A systematic literature review. Soft Comput. 2023, 27, 63–84. [Google Scholar] [CrossRef]
- Zhou, M.; Roelvink, D.; Verheij, H.J.; Ligteringen, H. Study of passing ship effects along a bank by Delft 3D-flow and XBeach. In Proceedings of the International Workshop on Nautical Traffic Models IWNTM13, Delft, The Netherlands, 5–7 June 2013; pp. 71–81. [Google Scholar]
- de Jong, M.; Roelvink, D.J.A.; Reijmerink, B.; Breederveld, C. Numerical modelling of passing-ship effects in complex geometries and on shallow water. In Proceedings of the Pianc Smart Rivers 2013, Maastricht, The Netherlands and Liège, Belgium, 23–27 September 2013; pp. 23–27. [Google Scholar] [CrossRef]
- Zhou, M.; Zou, Z.; Roelvink, D. Prediction of ship-ship interactions in ports by a non-hydrostatic model. J. Hydrodyn. 2015, 27, 824–834. [Google Scholar] [CrossRef]
- Almström, B.; Roelvink, D.; Larson, M. Predicting ship waves in sheltered waterways—An application of XBeach to the Stockholm Archipelago, Sweden. Coast. Eng. 2021, 170, 104026. [Google Scholar] [CrossRef]
- Bluteau, C.E.; Rooijen, A.v.; Matte, P.; Dumont, D. Impacts of Ship-Induced Waves along Shorelines during Flooding Events. J. Waterw. Port Coast. Ocean Eng. 2023, 149, 04023015. [Google Scholar] [CrossRef]
- Mao, L.; Li, X.; Chen, Y. Impacts of Ship Waves on Bed Morphology of a Trapezoidal Cross-Sectional Channel. J. Offshore Mech. Arct. Eng. 2022, 144, 051201. [Google Scholar] [CrossRef]
- Mao, L.; Chen, Y. Sediment movement in inland waterways under the influence of ship waves. J. Sediment Res. 2023, 48, 22–29. [Google Scholar] [CrossRef]
- Mao, L.; Chen, Y. Investigation of Ship-Induced Hydrodynamics and Sediment Suspension in a Heavy Shipping Traffic Waterway. J. Mar. Sci. Eng. 2020, 8, 424. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, L.; Sheng, X.; Du, W. Experimental study on the influence of ship waves on mooring ships. J. Wuhan Univ. Technol. (Transp. Sci. Eng.) 2021, 45, 1108–1112. [Google Scholar]
- Wang, M.; Deng, B.; Jiang, C.; Wu, Z. Numerical study on propagation characteristics of ship waves in a restricted channel. J. Water Resour. Water Eng. 2020, 31, 157–163. [Google Scholar]
- Ma, C.; Liu, Z.; Yang, Y.; Zhan, C.; Chen, X.; Feng, B.; Chang, H. The reverse prediction of the ship principal dimensions based on the Kelvin ship waves. Ocean Eng. 2023, 285, 115308. [Google Scholar] [CrossRef]
- Yang, Y.; Eloot, K.; Delefortrie, G.; el Moctar, O. Experimental and numerical investigations of ship–ship interaction during overtaking for benchmarking. Appl. Ocean Res. 2025, 154, 104325. [Google Scholar] [CrossRef]
- Wang, S. Research on Ship Traveling Waves (Part One). J. Waterw. Harb. 1980, 4, 21–37. Available online: https://kns.cnki.net/kcms2/article/abstract?v=7HNy6Ze5ODHpJQSTJgev1-XABW5LjFDtC7cP90-l_ujWrju5kZFNrfg5vZ6TrWqL-56sDjIFGno3EbziwrGBwv2I3U10L8dTlTrgPPDAu6wKDmt5i3eUCaGzyWMEcFuq4jmdA_4pCmhE50epV8n6zKrfJU4S6O74xEIKiMwwTAIHcQMTljo-c-FZno8sUmQg&uniplatform=NZKPT&language=CHS (accessed on 15 June 2025).
- Rankine, W.J.M. On waves which travel along with ships. Trans. Inst. Nav. Archit. 1868, 9, 275–281. [Google Scholar]
- Froude, W. Experiments upon the effect produced on the wave making resistance of ships by length of parallel middle body. In Transactions of the Institution of Naval Architects; Forgotten Books: London, UK, 1877; Volume 18. [Google Scholar]
- Kelvin, L. On the waves produced by a single impulse in water of any depth. Philos. Trans. R. Soc. Lond. 1887, 178, 269–271. [Google Scholar]
- Thomson, W. On ship waves. Proc. Inst. Mech. Eng. 1887, 38, 409–434. [Google Scholar] [CrossRef]
- Havelock, T.H. The propagation of groups of waves in dispersive media, with application to waves on water produced by a travelling disturbance. Proc. R. Soc. Lond. Ser. A-Contain. Pap. A Math. Phys. Character 1908, 81, 398–430. [Google Scholar] [CrossRef]
- Havelock, T.H. The calculation of wave resistance. Proc. R. Soc. Lond. Ser. A-Contain. Pap. A Math. Phys. Character 1934, 144, 0514–0537. [Google Scholar] [CrossRef]
- Hongner, E. A contribution to the theory of ship waves. Arkiv for Mate. Astron. Och Fys. 1923, 17, 2. Available online: https://9lib.org/document/ozl3oloz-a-contribution-to-the-theory-of-ship-waves.html (accessed on 15 June 2025).
- Li, S. The Theoretical Basis of Wave Resistance; People’s Communications Publishing House: Beijing, China, 1986; pp. 20–26. Available online: https://cadal.edu.cn/cx/reader/reader/book/reader.shtml?channel=4&code=61939c3491b9e0d2a6c41ca3f6d74eb6&epage=-1&ipinside=0&netuser=0&spage=1&ssno=58000159&userid=901476644&bookType=1&unit=openapi&backUrl=&cpage=248 (accessed on 15 June 2025).
- Wang, X. Ship waves. Acta Mech. Sin. 1975, 1, 55–56. Available online: https://kns.cnki.net/kcms2/article/abstract?v=7HNy6Ze5ODGTM8Gb6-pjadIPjP-1WzjQcSRHrv4vqAcDsxHcgU0BK2Nz0zGNRk36V2NYgm_ULRPXm_JSwgG0MBy1i3SL2ijOfId4LfAPQwIdQDwGNlcMEkJjICG35dSyaV92cNaQlBRsDl5N_MhVt1EmUt2ehP_WcxPIEAvL_g5JlFkRBLKHqmDK_lmNiDHP&uniplatform=NZKPT&language=CHS (accessed on 15 June 2025).
- MacFarlane, G.; Renilson, M. Wave Wake—A Rational Method for Assessment. In Proceedings of International Conference on Coastal Ships and Inland Waterways, London, UK, 17–18 February 1999; pp. 1–15. Available online: https://hdl.handle.net/102.100.100/526471 (accessed on 15 June 2025).
- Torsvik, T.; Soomere, T. Simulation of patterns of wakes from high-speed ferries in Tallinn Bay. Est. J. Eng. 2008, 14, 232–254. [Google Scholar] [CrossRef]
- Thomson, W. XXVII. On the waves produced by a single impulse in water of any depth, or in a dispersive medium. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1887, 23, 252–255. [Google Scholar] [CrossRef]
- Roelvink, D.; Reniers, A.; van Dongeren, A.; de Vries, J.V.; McCall, R.; Lescinski, J. Modelling storm impacts on beaches, dunes and barrier islands. Coast. Eng. 2009, 56, 1133–1152. [Google Scholar] [CrossRef]
- Smit, P.; Stelling, G.; Roelvink, D.J.A.; Thiel de Vries, J.; McCall, R.; van Dongeren, A.; Jacobs, R. XBeach: Non-Hydrostatic Model: Validation, Verification and Model Description; Delft University of Technology and Deltares report; Delft University of Technology: Delft, The Netherlands, 2010. [Google Scholar]
Ship Name | Length (m) | Width (m) | Draft (m) | Speed (m/s) | Distance to Obs. Point (m) | Course | Primary Wave Height (m) |
---|---|---|---|---|---|---|---|
SGHS251 | 15.6 | 4.8 | 1.4 | 3.6 | 23.2 | S-N | 0.16 |
22.6 | N-S | 0.20 | |||||
26.5 | S-N | 0.12 | |||||
25.4 | N-S | 0.14 | |||||
4.2 | 10.0 | S-N | 0.40 | ||||
11.1 | N-S | 0.38 | |||||
25.8 | S-N | 0.12 | |||||
29.9 | N-S | 0.18 | |||||
4.7 | 18.7 | S-N | 0.40 | ||||
16.9 | N-S | 0.50 | |||||
22.0 | S-N | 0.48 | |||||
31.8 | N-S | 0.28 | |||||
HHH8838 | 62 | 12 | 2.4 | 1.59 | 24.3 | N-S | 0.06 |
TY777 | 56 | 11 | 1.6 | 1.70 | 30.1 | N-S | 0.04 |
SXZH6073 | 50 | 9 | 2.6 | 1.54 | 29.9 | N-S | 0.03 |
SSYH0088 | 68 | 14 | 2.3 | 1.54 | 30.7 | N-S | 0.06 |
LZZH2589 | 63 | 12 | 2.5 | 1.49 | 31.0 | N-S | 0.04 |
Ship Type | Length (m) | Width (m) | Draft (m) | Speed (m/s) |
---|---|---|---|---|
NAB | 15.6 | 4.8 | 1.4 | 6 |
Fully loaded 2000-ton CS | 74 | 14 | 3.5 | 3 |
Fully loaded 5000-ton CS | 90 | 15.8 | 5.0 | 2.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Cheng, T.; Wu, S.; Pan, J.; You, J.; Xu, X.; Shi, J.; Xu, S.; Hao, J. Numerical Simulation of Ship Wave Characteristics Under Different Navigation Conditions in the Restricted Waterway of the Pinglu Canal. Water 2025, 17, 1822. https://doi.org/10.3390/w17121822
Zhang C, Cheng T, Wu S, Pan J, You J, Xu X, Shi J, Xu S, Hao J. Numerical Simulation of Ship Wave Characteristics Under Different Navigation Conditions in the Restricted Waterway of the Pinglu Canal. Water. 2025; 17(12):1822. https://doi.org/10.3390/w17121822
Chicago/Turabian StyleZhang, Chu, Tiejun Cheng, Shishuang Wu, Jian Pan, Jiacheng You, Xiangyu Xu, Jianan Shi, Sudong Xu, and Jianxin Hao. 2025. "Numerical Simulation of Ship Wave Characteristics Under Different Navigation Conditions in the Restricted Waterway of the Pinglu Canal" Water 17, no. 12: 1822. https://doi.org/10.3390/w17121822
APA StyleZhang, C., Cheng, T., Wu, S., Pan, J., You, J., Xu, X., Shi, J., Xu, S., & Hao, J. (2025). Numerical Simulation of Ship Wave Characteristics Under Different Navigation Conditions in the Restricted Waterway of the Pinglu Canal. Water, 17(12), 1822. https://doi.org/10.3390/w17121822