Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (217)

Search Parameters:
Keywords = X-ray refraction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 10488 KiB  
Article
Morphological and Functional Evolution of Amorphous AlN Thin Films Deposited by RF-Magnetron Sputtering
by Maria-Iulia Zai, Ioana Lalau, Marina Manica, Lucia Chiriacescu, Vlad-Andrei Antohe, Cristina C. Gheorghiu, Sorina Iftimie, Ovidiu Toma, Mirela Petruta Suchea and Ștefan Antohe
Surfaces 2025, 8(3), 51; https://doi.org/10.3390/surfaces8030051 - 17 Jul 2025
Viewed by 234
Abstract
Aluminum nitride (AlN) thin films were deposited on SiO2 substrates by RF-magnetron sputtering at varying powers (110–140 W) and subsequently subjected to thermal annealing at 450 °C under nitrogen atmosphere. A comprehensive multi-technique investigation—including X-ray reflectometry (XRR), X-ray diffraction (XRD), scanning electron [...] Read more.
Aluminum nitride (AlN) thin films were deposited on SiO2 substrates by RF-magnetron sputtering at varying powers (110–140 W) and subsequently subjected to thermal annealing at 450 °C under nitrogen atmosphere. A comprehensive multi-technique investigation—including X-ray reflectometry (XRR), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), optical profilometry, spectroscopic ellipsometry (SE), and electrical measurements—was performed to explore the physical structure, morphology, and optical and electrical properties of the films. The analysis of the film structure by XRR revealed that increasing sputtering power resulted in thicker, denser AlN layers, while thermal treatment promoted densification by reducing density gradients but also induced surface roughening and the formation of island-like morphologies. Optical studies confirmed excellent transparency (>80% transmittance in the near-infrared region) and demonstrated the tunability of the refractive index with sputtering power, critical for optoelectronic applications. The electrical characterization of Au/AlN/Al sandwich structures revealed a transition from Ohmic to trap-controlled space charge limited current (SCLC) behavior under forward bias—a transport mechanism frequently present in a material with very low mobility, such as AlN—while Schottky conduction dominated under reverse bias. The systematic correlation between deposition parameters, thermal treatment, and the resulting physical properties offers valuable pathways to engineer AlN thin films for next-generation optoelectronic and high-frequency device applications. Full article
(This article belongs to the Special Issue Surface Engineering of Thin Films)
Show Figures

Graphical abstract

13 pages, 2972 KiB  
Article
The Formation of the Heat-Wave Effect in Hessonite
by Tao Chen, Mengyuan Wang, Jinyu Zheng, Jinglin Tian, Lili Lou, Jingcheng Pei and Xing Xu
Minerals 2025, 15(6), 601; https://doi.org/10.3390/min15060601 - 3 Jun 2025
Viewed by 366
Abstract
Hessonite, a special variety of grossularite, is well-known for the heat-wave effect, which is a characteristic swirled or roiled interior appearance within the crystal. Although the heat-wave effect has been observed for a long time, it has not been studied in depth. In [...] Read more.
Hessonite, a special variety of grossularite, is well-known for the heat-wave effect, which is a characteristic swirled or roiled interior appearance within the crystal. Although the heat-wave effect has been observed for a long time, it has not been studied in depth. In this study, the gemological properties, mineral compositions, fabric characteristics, and grain sizes of hessonite samples were investigated using infrared spectroscopy, electron backscatter diffraction (EBSD), and energy-dispersive X-ray spectroscopy (EDS). Hessonite exhibits the heat-wave effect and is found to be polycrystal rather than single-crystal, composed of submillimeter-sized granules with random orientation and limited variations in Fe and Al contents. Abundant micropores exist among the granules, indicating imperfect contact among them. Due to these structural features, incident light is interrupted and undergoes changes in direction and speed as it passes through the hessonite granules, grain borders, and micropores. Light reflects off the granules’ surfaces and refracts within the granules, respectively, causing the incident light to swirl and roil within the hessonite and form the heat-wave effect. This study considers that the heat-wave effect is a special optical phenomenon not caused by impurity minerals or inclusions. Full article
Show Figures

Figure 1

15 pages, 9567 KiB  
Article
Characterization of Zno:Al Nanolayers Produced by ALD for Clean Energy Applications
by Marek Szindler, Magdalena Szindler, Krzysztof Matus, Błażej Tomiczek and Barbara Hajduk
Energies 2025, 18(11), 2860; https://doi.org/10.3390/en18112860 - 30 May 2025
Viewed by 435
Abstract
The rising demand for sustainable energy solutions has spurred the development of advanced materials for photovoltaic devices. Among these, transparent conductive oxides (TCOs) play a pivotal role in enhancing device efficiency, particularly in silicon-based solar cells. However, the reliance on indium-based TCOs like [...] Read more.
The rising demand for sustainable energy solutions has spurred the development of advanced materials for photovoltaic devices. Among these, transparent conductive oxides (TCOs) play a pivotal role in enhancing device efficiency, particularly in silicon-based solar cells. However, the reliance on indium-based TCOs like ITO raises concerns over cost and material scarcity, prompting the search for more abundant and scalable alternatives. This study focuses on the fabrication and characterization of aluminum-doped zinc oxide (ZnO:Al, AZO) thin films deposited via Atomic Layer Deposition (ALD), targeting their application as transparent conductive oxides in silicon solar cells. The ZnO:Al thin films were synthesized by alternating supercycles of ZnO and Al2O3 depositions at 225 °C, allowing precise control of composition and thickness. Structural, optical, and electrical properties were assessed using Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Spectroscopy (EDS), Transmission Electron Microscopy (TEM), Raman spectroscopy, spectroscopic ellipsometry, and four-point probe measurements. The results confirmed the formation of uniform, crack-free ZnO:Al thin films with a spinel-type ZnAl2O4 crystalline structure. Optical analyses revealed high transparency (more than 80%) and tunable refractive indices (1.64 ÷ 1.74); the energy band gap was 2.6 ÷ 3.07 eV, while electrical measurements demonstrated low sheet resistance values, reaching 85 Ω/□ for thicker films. This combination of optical and electrical properties underscores the potential of ALD-grown AZO thin films to meet the stringent demands of next-generation photovoltaics. Integration of Zn:Al thin films into silicon solar cells led to an optimized photovoltaic performance, with the best cell achieving a short-circuit current density of 36.0 mA/cm2 and a power conversion efficiency of 15.3%. Overall, this work highlights the technological relevance of ZnO:Al thin films as a sustainable and cost-effective alternative to conventional TCOs, offering pathways toward more accessible and efficient solar energy solutions. Full article
Show Figures

Figure 1

17 pages, 2944 KiB  
Article
Gemological Characteristics and Coloration Mechanism of Vanadium-Bearing Beryl from Nigeria
by Yunlong Hong, Yu Zhang, Xinyi Shao, Yanyi Mu and Yuemiao Yu
Minerals 2025, 15(6), 557; https://doi.org/10.3390/min15060557 - 23 May 2025
Viewed by 523
Abstract
Vanadium-bearing beryl is a vanadium-bearing variety of green beryl (distinct from emerald) that exhibits an “electro-optical” green (blue-green) color, which has led to its commercial popularity. However, the underlying coloration mechanism remains unclear. The present study adopted standard gemological tests and non-destructive spectroscopic [...] Read more.
Vanadium-bearing beryl is a vanadium-bearing variety of green beryl (distinct from emerald) that exhibits an “electro-optical” green (blue-green) color, which has led to its commercial popularity. However, the underlying coloration mechanism remains unclear. The present study adopted standard gemological tests and non-destructive spectroscopic tests, such as X-ray fluorescence, UV-visible-near infrared (UV-Vis-NIR), infrared and Raman spectroscopy, to analyze the vanadium-bearing beryl from Nigeria. The results of these tests indicated the presence of Fe as the predominant chromogenic element of vanadium-bearing beryl, followed by V, at a level exceeding that of Cr. Furthermore, the samples displayed lower levels of alkali and magnesium when compared to other beryls, accompanied by lower refractive indices and specific gravities. Spectroscopic analysis indicates that the structural channels are dominated by type I H2O, with CO2, HDO, and D2O molecules also present. The inclusions observed in vanadium-bearing beryl bear a resemblance to those found in typical aquamarines, which are raindrop-shaped inclusions, and to those found in emeralds of various origins, which are irregular, jagged, gas–liquid two-phase/three-phase inclusions. The broad UV-Vis-NIR absorption bands at 427 and 610 nm are characteristic of V3+ (and a minor amount of Cr3+). Charge transfer between Fe2+ and Fe3+ may also contribute to the 610 nm band, which is superimposed on the absorption bands of V3+ and Cr3+. These factors primarily contribute to the blue-green coloration of beryl. The absorption induced by V3+ in the visible violet-blue region exhibits stronger intensity and a greater tendency towards the blue region compared to Cr3+. Consequently, the resultant vanadium-bearing beryl acquires the yellow-green hue (induced by V) overlaid with the light blue (induced by charge transfer between Fe2+-Fe3+ pairs), resulting in the so-called “electro-optical” green (blue-green) beryl. Full article
(This article belongs to the Special Issue Formation Study of Gem Deposits)
Show Figures

Figure 1

27 pages, 19227 KiB  
Article
Copper(II) Complex with a 3,3′-Dicarboxy-2,2′-Dihydroxydiphenylmethane-Based Carboxylic Ligand: Synthesis, Spectroscopic, Optical, Density Functional Theory, Cytotoxic, and Molecular Docking Approaches for a Potential Anti-Colon Cancer Control
by Ayman H. Ahmed, Ibrahim O. Althobaiti, Kamal A. Soliman, Yazeed M. Asiri, Ebtsam K. Alenezy, Saad Alrashdi and Ehab S. Gad
Inorganics 2025, 13(5), 151; https://doi.org/10.3390/inorganics13050151 - 6 May 2025
Viewed by 810
Abstract
The chemical interaction of salicylic acid, formaldehyde, and sulfuric acid produced a disalicylic ligand (3,3′-dicarboxy-2,2′-dihydroxydiphenylmethane, DCM), which was then allowed to coordinate with copper (II) ions. The solid compounds’ chemical structures were determined using elemental analysis, UV-Vis, FT-IR, MS, 1H-NMR, PXRD, SEM, [...] Read more.
The chemical interaction of salicylic acid, formaldehyde, and sulfuric acid produced a disalicylic ligand (3,3′-dicarboxy-2,2′-dihydroxydiphenylmethane, DCM), which was then allowed to coordinate with copper (II) ions. The solid compounds’ chemical structures were determined using elemental analysis, UV-Vis, FT-IR, MS, 1H-NMR, PXRD, SEM, TEM, magnetic studies, as well as molecular modeling based on DFT (density functional theory) calculations. It was proposed that the ligand coordinates in a tetradentate fashion with the copper ion to give a square-planar binuclear complex. A significant difference in the diffraction patterns between Cu(II)–DCM (amorphous) and DCM (crystalline) was displayed using an X-ray diffraction analysis. Spherical granules were identified throughout through morphology analysis using SEM and TEM. UV-Vis spectra were used to quantify the optical characteristics such as the energy gap, optical conductivity, refractive index, and penetration depth. The band gap values that lie within the semiconductor region suggested that the compounds could be used for electronic applications. The optimized structure of the synthesized Cu(II)–DCM complex was investigated using DFT and TD-DFT (time-dependent density functional theory) at the B3LYP/6-31G(d, p) level, with the LANL2DZ basis set for Cu in an ethanol solvent and the gas environment modeled by CPCM. The experimental data suggest a square-planar geometry of the Cu(II) binuclear complex. The theoretical calculations support the proposed structure of the compound. The cytotoxicity of the DCM against HCT–116 (human colon cancer) cells was tested, and the outcome exhibited good inhibitions of growth. A molecular docking (MD) examination was carried out to illustrate the binding mode/affinity of the prepared compounds (DCM and Cu(II)–DCM) in the active site of the receptor protein [CDK2 enzyme, PDB ID: 6GUE]. The compounds formed hydrogen bonds with the amino acid residues of the protein, increasing the binding affinity from −7.2 to −9.3 kcal/mol through the coordination process. The information from this current study, particularly the copper complex, is beneficial for exploring new compounds that have anticancer potential. Full article
(This article belongs to the Special Issue Applications and Future Trends for Novel Copper Complexes)
Show Figures

Figure 1

15 pages, 13117 KiB  
Article
Determination of Angle of Refraction in X-Ray Phase-Contrast Imaging Using Geometric Optics Method
by Jun Yang, Fangke Zong, Haoqi Tang, Yang Du and Rongchang Chen
Photonics 2025, 12(5), 442; https://doi.org/10.3390/photonics12050442 - 2 May 2025
Viewed by 433
Abstract
The accurate calculation of the angle of refraction of X-rays passing through an object is essential in X-ray phase-contrast imaging. While the wave optics-based method is commonly employed to calculate the angle of refraction, it presents several limitations. First, in cases where the [...] Read more.
The accurate calculation of the angle of refraction of X-rays passing through an object is essential in X-ray phase-contrast imaging. While the wave optics-based method is commonly employed to calculate the angle of refraction, it presents several limitations. First, in cases where the object induces significant phase variations, the angle of refraction becomes divergent. Second, the method fails to adequately account for point-source illumination conditions, particularly the influence of the finite X-ray source size on the angle of refraction. In this study, we demonstrate that a geometric optics-based method can effectively simulate propagation-based X-ray phase-contrast imaging with a low-brilliance X-ray source and compute the angle of refraction more accurately than the wave optics-based method. Our studies reveal that the geometric optics-based method can robustly determine the angle of refraction, even under conditions of substantial phase variations within the object. Furthermore, we show that reducing both the X-ray source size and the detector pixel size increases the angle of refraction in both simulations and experiments. Additionally, our results highlight that the angle of refraction is not invariant. Instead, it increases with the system’s total length and as the object moves closer to the light source. For systems with a Fresnel number of N ≥ 1, our method exhibits full compatibility with wave optics methods and can be extended to grating-based X-ray interferometry. The approach offers a robust alternative for calculating the angle of refraction under diverse imaging conditions. Full article
Show Figures

Figure 1

20 pages, 9535 KiB  
Article
Hydrothermal Retrogradation from Chlorite to Tosudite: Effect on the Optical Properties
by Zahra Ahmadi, Fernando Nieto, Farhad Khormali, Nicolás Velilla, Morteza Einali, Abbas Maghsoudi and Arash Amini
Minerals 2025, 15(3), 326; https://doi.org/10.3390/min15030326 - 20 Mar 2025
Viewed by 514
Abstract
In the argillic alteration zone of the SinAbad area of the Urumieh–Dokhtar magmatic belt (Iran), Mg-rich, Fe-poor chlorites, which crystallised at temperatures between 160 °C and 260 °C, were affected by extensive alteration to smectite mixed-layering at the micro- and nano-scales during the [...] Read more.
In the argillic alteration zone of the SinAbad area of the Urumieh–Dokhtar magmatic belt (Iran), Mg-rich, Fe-poor chlorites, which crystallised at temperatures between 160 °C and 260 °C, were affected by extensive alteration to smectite mixed-layering at the micro- and nano-scales during the retrograde evolution of the hydrothermal system. Chlorites retain their usual optical aspect and properties, except for the index of refraction perpendicular to the (001) layers, which becomes lower than those parallel to the layers, producing an increase in birefringence and change in the optic and elongation signs, in comparison to the ordinary ones for Mg chlorites. Scanning electron microscopy (SEM) maps and compositions, and electron microprobe (EMP) analyses indicate minor but ubiquitous Ca (and K) content. X-ray diffraction (XRD) of chloritic concentrates allowed the identification of chlorite and tosudite. High-resolution transmission electron microscopy (HRTEM) images show major 14 Å (chlorite), with the frequent presence of 24 Å (contracted tosudite) individual layers and small packets up to five layers thick. Lateral change from 14 Å to 24 Å individual layers has been visualised. High-resolution chemical maps obtained in high-angle annular dark-field (HAADF) mode confirm the existence of areas preferentially dominated by chlorite or tosudite. The overall chemical compositions obtained by SEM, EMP, and transmission electron microscopy (TEM) align from the chlorite to the tosudite end-members, whose pure compositions could be determined from extreme analytical electron microscopy (AEM) analyses. The described intergrowths and interlayers, under the optical resolution, could provide a clue to explain changes in the normal optic properties of chlorite, which are mentioned, but not explained, in the literature. Full article
Show Figures

Figure 1

16 pages, 9709 KiB  
Article
Al Doping Effect on Enhancement of Nonlinear Optical Absorption in Amorphous Bi2Te3 Thin Films
by Tengfei Zhang, Shenjin Wei, Shubo Zhang, Menghan Li, Jiawei Wang, Jingze Liu, Junhua Wang, Ertao Hu and Jing Li
Materials 2025, 18(6), 1372; https://doi.org/10.3390/ma18061372 - 20 Mar 2025
Viewed by 448
Abstract
Bismuth telluride (Bi2Te3) has attracted significant attention due to its broadband ultrafast optical response and strong nonlinearity at high laser fluence in the field of optoelectronic materials. The objective of this work is to study the effect of Al [...] Read more.
Bismuth telluride (Bi2Te3) has attracted significant attention due to its broadband ultrafast optical response and strong nonlinearity at high laser fluence in the field of optoelectronic materials. The objective of this work is to study the effect of Al doping on the structure, linear optical properties, and nonlinear optical absorption behavior of Bi2Te3 thin films. The amorphous Al-doped Bi2Te3 thin films with varying Al doping concentrations were prepared using magnetron co-sputtering. The structure and linear optical properties were characterized using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, spectroscopic ellipsometry, and UV/Vis/NIR spectrophotometry. The third-order nonlinear optical absorption properties of Al: Bi2Te3 thin films were investigated using the open-aperture Z-scan system with a 100 fs laser pulse width at a wavelength of 800 nm and a repetition rate of 1 kHz. The results indicate that Al dopant reduces both the refractive index and extinction coefficient and induces a redshift in the optical bandgap. The optical properties of the films can be effectively modulated by varying the Al doping concentration. Compared with undoped Bi2Te3 thin films, Al-doped Bi2Te3 thin films exhibit larger nonlinear optical absorption coefficients and higher damage thresholds and maintaining high transmittance. These findings provide experimental evidence and a reliable approach for the further optimization and design of ultrafast nonlinear optical devices. Full article
Show Figures

Figure 1

16 pages, 3737 KiB  
Article
Evaluation and Characterization of High-Uniformity SiNx Thin Film with Controllable Refractive Index by Home-Made Cat-CVD Based on Orthogonal Experiments
by Caifang Li, Minghui Li, Jinsong Shi, Haibin Huang and Zhimei Li
Molecules 2025, 30(5), 1091; https://doi.org/10.3390/molecules30051091 - 27 Feb 2025
Viewed by 890
Abstract
Silicon nitride (SiNx) thin film is a promising coating with great physiochemical and optical properties. However, the preparation of films with good comprehensive properties still faces challenges. This study focused on developing a method for the preparation of uniform SiNx [...] Read more.
Silicon nitride (SiNx) thin film is a promising coating with great physiochemical and optical properties. However, the preparation of films with good comprehensive properties still faces challenges. This study focused on developing a method for the preparation of uniform SiNx thin film with a controllable refractive index using home-made catalytic chemical vapor deposition (Cat-CVD) equipment. Orthogonal experimental design was employed to investigate the effects of four key influence factors, including reaction pressure, the ratio of SiH4 to NH3, the ratio of SiH4 to H2, and substrate temperature. The response parameters evaluated were the refractive index, extinction coefficient, uniformity, and deposition rate of SiNx thin film. Compared with the single-factor variable tests, an orthogonal experiment could obtain the optimal preparation process of the SiNx thin film with the best comprehensive quality through the least number of experiments. At the same time, the microstructures of SiNx thin film were analyzed by various characterization methods, including Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM), to research the relationship between preparation factors and the properties of SiNx thin film. This paper provides the theoretical guidance for fine-regulating the properties of SiNx thin film in practical applications. Full article
Show Figures

Figure 1

17 pages, 10151 KiB  
Article
Study on the Relationship Between WC Coating Thickness and Residual Stress Using Critical Refracted Ultrasonic Longitudinal Waves
by Darui Xu, Xiangyu Zhang, Vasiliy O. Pelenovich, Oleksandr Pohrebniak, Bing Yang, Jun Zhang and Yanming Chen
Coatings 2025, 15(3), 264; https://doi.org/10.3390/coatings15030264 - 23 Feb 2025
Viewed by 724
Abstract
Tungsten carbide (WC) coatings of varying thicknesses were prepared using electrical discharge deposition technology. Relevant characterizations were conducted to analyze the residual stress in the WC coatings from a microscopic perspective, and this residual stress was measured using X-ray diffraction technology. Under isothermal [...] Read more.
Tungsten carbide (WC) coatings of varying thicknesses were prepared using electrical discharge deposition technology. Relevant characterizations were conducted to analyze the residual stress in the WC coatings from a microscopic perspective, and this residual stress was measured using X-ray diffraction technology. Under isothermal conditions, a novel method for detecting the residual stress of the coatings utilizing critical refractive longitudinal (LCR) waves was employed to investigate the relationship between the residual stress of the WC coatings and their thickness. According to acoustic elastic theory, LCR stress measurement is based on the principle that stress within the material alters the propagation characteristics of ultrasonic waves. After correcting the effect of coating thickness on LCR propagation, the detection results of the LCR wave indicate that the compressive stress present in the coating may cause the substrate to exhibit a certain degree of tensile stress. At a coating thickness of 6–13 µm, as the thickness of the WC coating increases, the residual compressive stress within the coating gradually rises, leading to an increase in tensile stress on the substrate. However, at coating thicknesses of 13–16 µm, the changes in tensile stress on the substrate become minimal or even decrease, despite the continued increase in compressive stress within the WC coating. The relationship curve derived from the matrix surface aligns more closely with a quadratic function, while the curve obtained from the coating surface corresponds more to a linear function. This study employs LCR waves to detect residual stress in coatings, and the results indicate that LCR waves hold significant potential for application in the field of residual stress detection in coatings. Full article
Show Figures

Figure 1

16 pages, 5534 KiB  
Article
Femtosecond Laser Textured Surfaces for Radiative Cooling: Black Metals
by Nan Zheng, Ričardas Buividas, Hsin-Hui Huang, Dominyka Stonytė, Suresh Palanisamy, De Ming Zhu, Tomas Katkus, Maciej Kretkowski, Yoshiaki Nishijima, Lina Grineviciute, Paul R. Stoddart and Saulius Juodkazis
Appl. Sci. 2025, 15(4), 2076; https://doi.org/10.3390/app15042076 - 16 Feb 2025
Cited by 3 | Viewed by 1025
Abstract
There is a growing need for novel methods to modify the surfaces of a wide range of materials over large areas. Here, we demonstrate the creation of low-reflectance (R<2%) surfaces in the near-to-mid infrared (IR) spectral window of [...] Read more.
There is a growing need for novel methods to modify the surfaces of a wide range of materials over large areas. Here, we demonstrate the creation of low-reflectance (R<2%) surfaces in the near-to-mid infrared (IR) spectral window of 2–20 μm by ablating W, Al, and Cu with high average intensity 20–120 TW/cm2, 200 fs laser pulses at 1030 nm wavelength. The chemical modifications of the surfaces by laser ablation under ambient room conditions were analyzed using X-ray photoelectron spectroscopy (XPS). The results show a consistent decrease in the metallic component, accompanied by an increase in metal oxides. Energy dispersive spectroscopy (EDS) showed a similar increase in oxygen content over a micrometer depth scale. The reduced refractive index of the metal oxides compared to the corresponding metals contributes to the reduction in IR reflectance, combined with the formation of 3D hierarchically textured surface structures. These IR-black metals exhibit great potential for radiative cooling at elevated temperatures relevant to industrial and space applications. Full article
(This article belongs to the Section Optics and Lasers)
Show Figures

Figure 1

16 pages, 421 KiB  
Article
The Gaussian-Drude Lens: A Dusty Plasma Model Applicable to Observations Across the Electromagnetic Spectrum
by Adam Rogers
Universe 2025, 11(2), 40; https://doi.org/10.3390/universe11020040 - 26 Jan 2025
Viewed by 747
Abstract
When radiation from a background source passes through a cloud of cold plasma, diverging lensing occurs if the source and observer are well-aligned. Unlike gravitational lensing, plasma lensing is dispersive, increasing in strength with wavelength. The Drude model is a generalization of cold [...] Read more.
When radiation from a background source passes through a cloud of cold plasma, diverging lensing occurs if the source and observer are well-aligned. Unlike gravitational lensing, plasma lensing is dispersive, increasing in strength with wavelength. The Drude model is a generalization of cold plasma, including absorbing dielectric dust described by a complex index of refraction. The Drude lens is only dispersive for wavelengths shorter than the dust characteristic scale (λλd). At sufficient photon energy, the dust particles act like refractive clouds. For longer wavelengths λλd, the optical properties of the Drude lens are constant, unique behavior compared to the predictions of the cold plasma lens. Thus, cold plasma lenses can be distinguished from Drude lenses using multi-band observations. The Drude medium extends the applicability of all previous tools, from gravitational and plasma lensing, to describe scattering phenomena in the X-ray regime. Full article
(This article belongs to the Special Issue Recent Advances in Gravitational Lensing and Galactic Dynamics)
Show Figures

Figure 1

22 pages, 8002 KiB  
Article
Spectroscopic Ellipsometry and Correlated Studies of AlGaN-GaN HEMTs Prepared by MOCVD
by Yanlian Yang, Yao Liu, Yaoze Li, Manika Tun Nafisa, Zhe Chuan Feng, Lianshan Wang, Jeffrey Yiin, Lingyu Wan, Benjamin Klein, Ian Ferguson and Wenhong Sun
Nanomaterials 2025, 15(3), 165; https://doi.org/10.3390/nano15030165 - 22 Jan 2025
Cited by 1 | Viewed by 1399
Abstract
A series of AlGaN/GaN high-electron-mobility transistor (HEMT) structures, with an AlN thin buffer, GaN thick layer and Al0.25Ga0.75N layer (13–104 nm thick), is prepared by metal–organic chemical vapor deposition and investigated via multiple techniques. Spectroscopic ellipsometry (SE) and temperature-dependent [...] Read more.
A series of AlGaN/GaN high-electron-mobility transistor (HEMT) structures, with an AlN thin buffer, GaN thick layer and Al0.25Ga0.75N layer (13–104 nm thick), is prepared by metal–organic chemical vapor deposition and investigated via multiple techniques. Spectroscopic ellipsometry (SE) and temperature-dependent measurements and penetrative analyses have achieved significant understanding of these HEMT structures. Bandgaps of AlGaN and GaN are acquired via SE-deduced relationships of refraction index n and extinguish coefficient k vs. wavelength λ in a simple but straightforward way. The optical constants of n and k, and the energy gap Eg of AlGaN layers, are found slightly altered with the variation in AlGaN layer thickness. The Urbach energy EU at the AlGaN and GaN layers are deduced. High-resolution X-ray diffraction and calculations determined the extremely low screw dislocation density of 1.6 × 108 cm−2. The top AlGaN layer exhibits a tensile stress influenced by the under beneath GaN and its crystalline quality is improved with the increase in thickness. Comparative photoluminescence (PL) experiments using 266 nm and 325 nm two excitations reveal and confirm the 2DEG within the AlGaN-GaN HEMT structures. DUV (266 nm) excitation Raman scattering and calculations acquired carrier concentrations in compatible AlGaN and GaN layers. Full article
Show Figures

Figure 1

11 pages, 4561 KiB  
Article
Influence of Proton Irradiation on Thin Films of AZO and ITO Transparent Conductive Oxides—Simulation of Space Environment
by Katarzyna Ungeheuer, Janusz Rybak, Amelia E. Bocirnea, Denis A. Pikulski, Aurelian C. Galca and Konstanty W. Marszalek
Appl. Sci. 2025, 15(2), 754; https://doi.org/10.3390/app15020754 - 14 Jan 2025
Viewed by 1042
Abstract
Transparent conductive oxides are essential materials for many optoelectronic applications. For new devices for aerospace and space applications, it is crucial to know how they respond to the space environment. The most important issue in commonly used low-Earth orbits is proton radiation. This [...] Read more.
Transparent conductive oxides are essential materials for many optoelectronic applications. For new devices for aerospace and space applications, it is crucial to know how they respond to the space environment. The most important issue in commonly used low-Earth orbits is proton radiation. This study examines the effects of high-energy proton irradiation (226.5 MeV) on thin films of aluminium-doped zinc oxide (AZO) and indium tin oxide (ITO). We use X-ray diffraction and electron microscopy observations to see the changes in the structure and microstructure of the films. The optical properties and homogeneity of the materials are determined by spectrophotometry and spectroscopic ellipsometry (SE). Analysis of the chemical states of the elements with X-ray photoelectron spectroscopy (XPS) gives insight into what proton irradiation changes at the surface of the oxides. All measurements show that ITO is less influenced than AZO. The proton energy and fluence used in this study simulate about a hundred years in low Earth orbit. This research demonstrates that both transparent conductive oxide thin films can function under simulated space conditions, with ITO showing superior resilience. The ITO film was more homogenous in terms of the total thickness measured with SE, had fewer defects and adsorbates present on the surface, as XPS analysis proved, and did not show a difference after irradiation regarding its optical properties, transmission, refractive index, or extinction coefficient. Full article
(This article belongs to the Special Issue Materials and Coatings for Extreme Environments)
Show Figures

Graphical abstract

16 pages, 5269 KiB  
Article
X-Ray Shielding Polymer Based on Sequential Polycondensation of BiPh3 and Carboxylic Acids and Radical Polymerization
by Bungo Ochiai, Ryo Kamiya, Yoshimasa Matsumura, Hiroyasu Tanaka, Hideki Ueda, Kazuyoshi Uera, Kikuo Furukawa and Yoshio Nishimura
Polymers 2025, 17(2), 134; https://doi.org/10.3390/polym17020134 - 8 Jan 2025
Viewed by 1077
Abstract
Transparent X-ray shielding polymer films were developed by bulk photo copolymerization of in situ prepared bismuth carboxylate prepolymers with polymerizable exomethylene moieties and N,N-dimethylacrylamide (DMAA). The bismuth-containing prepolymers were prepared via the polycondensation of BiPh3, 2-octenylsuccinic acid (OSA), [...] Read more.
Transparent X-ray shielding polymer films were developed by bulk photo copolymerization of in situ prepared bismuth carboxylate prepolymers with polymerizable exomethylene moieties and N,N-dimethylacrylamide (DMAA). The bismuth-containing prepolymers were prepared via the polycondensation of BiPh3, 2-octenylsuccinic acid (OSA), and itaconic acid (IA) bearing an exomethylene group for polymerization. OSA was a chain extender by intermolecular condensation and a stopper by intramolecular cyclization to inhibit cross-linkage. The resulting photocured films exhibit high visible-light transparency and high nD, reaching 1.57. The X-ray shielding ability increased with the bismuth content and reached an aluminum equivalent of 0.80. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

Back to TopTop