Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (160)

Search Parameters:
Keywords = X-ray contrast agents

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2214 KB  
Article
Influence of Calcination Temperature on the Structure and Antimicrobial Properties of Arthrospira platensis-Mediated Zinc Oxide Nanoparticles
by Noor Akhras, Abuzer Çelekli and Hüseyin Bozkurt
Pharmaceutics 2025, 17(11), 1367; https://doi.org/10.3390/pharmaceutics17111367 - 23 Oct 2025
Viewed by 358
Abstract
Background/Objectives: Arthrospira platensis (A. platensis) is a cyanobacterium rich in bioactive compounds with proven antioxidant, antimicrobial, and stabilizing properties, making it an ideal candidate for the green synthesis of zinc oxide nanoparticles (ZnO NPs). This study aimed to synthesize ZnO [...] Read more.
Background/Objectives: Arthrospira platensis (A. platensis) is a cyanobacterium rich in bioactive compounds with proven antioxidant, antimicrobial, and stabilizing properties, making it an ideal candidate for the green synthesis of zinc oxide nanoparticles (ZnO NPs). This study aimed to synthesize ZnO NPs using A. platensis extract and to evaluate the influence of post-synthesis temperature on their physicochemical and antimicrobial properties. Methods: ZnO NPs were synthesized via a co-precipitation method using A. platensis extract, followed by post-synthesis treatments at 80 °C and 400 °C. Comprehensive characterization was performed using Ultraviolet–Visible Spectroscopy (UV–Vis), Fourier Transform Infrared Spectroscopy (FT–IR), Field Emission Scanning Electron Microscopy (FE–SEM), and Energy Dispersive X-ray Spectroscopy (EDX) to assess optical, structural, and compositional features. Antioxidant activity (DPPH assay) and antimicrobial properties against Staphylococcus aureus, Escherichia coli, and Candida albicans were also evaluated. Results: FE–SEM analysis confirmed a temperature-dependent effect, with ZnO NPs synthesized at 80 °C appearing as polydispersed, irregular aggregates (45.2 ± 8.6 nm), while calcination at 400 °C yielded compact, angular nanoparticles (37.1 ± 6.3 nm). In contrast, pure ZnO NPs were smaller (26.4 ± 4.1 nm), and A. platensis extract alone showed amorphous, irregular structures. FTIR spectra demonstrated the involvement of biomolecules in nanoparticle capping and stabilization, whereas EDX analysis revealed that higher calcination reduced organic residues and increased zinc purity. Antioxidant assays indicated a decrease in phenolic and flavonoid content with increasing temperature, leading to reduced DPPH radical scavenging activity. Antimicrobial evaluation showed superior inhibition zones (17.8–26.0 mm) for A. platensis-ZnO NPs compared to the crude extract, with S. aureus being most susceptible, particularly to the 400 °C nanoparticles. Conclusions: The study demonstrates that A. platensis extract provides a sustainable and efficient route for ZnO NP biosynthesis. Calcination temperature significantly affects nanoparticle morphology, biochemical composition, and antimicrobial performance. These findings highlight the potential of A. platensis-ZnO NPs as eco-friendly antimicrobial agents for biomedical, pharmaceutical, and food preservation applications. Full article
Show Figures

Graphical abstract

21 pages, 4979 KB  
Article
Synthesis and Characterization of Multifunctional Mesoporous Silica Nanoparticles Containing Gold and Gadolinium as a Theranostic System
by André Felipe Oliveira, Isabela Barreto da Costa Januário Meireles, Maria Angela Barros Correia Menezes, Klaus Krambrock and Edésia Martins Barros de Sousa
J. Nanotheranostics 2025, 6(4), 26; https://doi.org/10.3390/jnt6040026 - 26 Sep 2025
Viewed by 713
Abstract
Among the many nanomaterials studied for biomedical uses, silica and gold nanoparticles have gained significant attention because of their unique physical and chemical properties and their compatibility with living tissues. Mesoporous silica nanoparticles (MSNs) have great stability and a large surface area, while [...] Read more.
Among the many nanomaterials studied for biomedical uses, silica and gold nanoparticles have gained significant attention because of their unique physical and chemical properties and their compatibility with living tissues. Mesoporous silica nanoparticles (MSNs) have great stability and a large surface area, while gold nanoparticles (AuNPs) display remarkable optical features. Both types of nanoparticles have been widely researched for their individual roles in drug delivery, imaging, biosensing, and therapy. When combined with gadolinium (Gd), a common contrast agent, these nanostructures provide improved imaging due to gadolinium’s strong paramagnetic properties. This study focuses on incorporating gold nanoparticles and gadolinium into a silica matrix to develop a theranostic system. Various analytical techniques were used to characterize the nanocomposites, including infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-Vis), thermogravimetric analysis (TGA), nitrogen adsorption, scanning electron microscopy (SEM), dynamic light scattering (DLS), X-ray fluorescence (XRF), X-ray diffraction (XRD), vibrating sample magnetometry (VSM), and neutron activation analysis (NAA). Techniques like XRF mapping, XANES, nitrogen adsorption, SEM, and VSM were crucial in confirming the presence of gadolinium and gold within the silica network. VSM and EPR analyses confirmed the attenuation of the saturation magnetization for all nanocomposites. This validates their potential for biomedical applications in diagnostics. Moreover, activating gold nanoparticles in a nuclear reactor generated a promising radioisotope for cancer treatment. These results indicate the potential of using a theranostic nanoplatform that employs mesoporous silica as a carrier, gold nanoparticles for radioisotopes, and gadolinium for imaging purposes. Full article
Show Figures

Figure 1

13 pages, 2592 KB  
Article
Reduction Study of Carbon-Bearing Briquettes in the System of Multiple Reductants
by Xiaojun Ning, Zheng Ren, Nan Zhang, Guangwei Wang, Xueting Zhang, Junyi Wu, Jiangbin Liu, Andrey Karasev and Chuan Wang
Materials 2025, 18(18), 4408; https://doi.org/10.3390/ma18184408 - 21 Sep 2025
Viewed by 472
Abstract
Against the backdrop of escalating global carbon emissions, the steel industry urgently requires a transition toward green and low-carbon practices. As a conditionally carbon-neutral renewable energy source, biochar holds potential for replacing traditional fossil-based reducing agents. This study aims to investigate the mechanism [...] Read more.
Against the backdrop of escalating global carbon emissions, the steel industry urgently requires a transition toward green and low-carbon practices. As a conditionally carbon-neutral renewable energy source, biochar holds potential for replacing traditional fossil-based reducing agents. This study aims to investigate the mechanism and performance differences between biochar (wood char, bamboo char) and conventional reducing agents (semi-coke, coke powder, anthracite) in the direct reduction process of carbon-bearing briquettes. Through reduction experiments simulating rotary kiln conditions, combined with analysis of reducing agent gasification characteristics, carbon-to-oxygen (C/O) molar ratio control, X-ray diffraction (XRD), and microstructural examination, the high-temperature behavior of different reducing agents was systematically evaluated. Results indicate that biochar exhibits superior gasification reactivity due to its high specific surface area and developed pore structure: wood char and bamboo char show significantly enhanced reaction rates above 1073 K, approaching complete conversion at 1173 K. In contrast, anthracite and coke powder, characterized by dense structures and low specific surface areas, failed to achieve complete gasification even at 1273 K. Pellets containing bamboo char achieved the highest metallization rate (90.16%) after calcination at 1373 K. The compressive strength of the pellets first decreased and then increased with rising temperature, consistent with the trend in metallization rate. The mechanism analysis indicates that the high reactivity and porous structure of biochar promote rapid CO diffusion and synergistic gas–solid reactions, significantly accelerating the reduction of iron oxides and the formation of metallic iron. Full article
(This article belongs to the Special Issue Advances in Process Metallurgy and Metal Recycling)
Show Figures

Figure 1

31 pages, 21231 KB  
Article
Comparative Analysis of Chemical Activators and Expansive Agents for Aeolian Sand Stabilization Using Industrial Solid Waste-Based Geopolymers
by Zilu Xie, Zengzhen Qian, Xianlong Lu, Hao Wang and Phatyoufy Lai
Gels 2025, 11(9), 713; https://doi.org/10.3390/gels11090713 - 4 Sep 2025
Viewed by 702
Abstract
Aeolian sand is the primary geological material for construction in desert regions, and its stabilization with industrial solid wastes-based geopolymer (ISWG) provides an eco-friendly treatment replacing cement. This study comparatively investigated the enhancement effects of chemical activators and expansive agents on compressive strength [...] Read more.
Aeolian sand is the primary geological material for construction in desert regions, and its stabilization with industrial solid wastes-based geopolymer (ISWG) provides an eco-friendly treatment replacing cement. This study comparatively investigated the enhancement effects of chemical activators and expansive agents on compressive strength of aeolian sand stabilized by ISWG (ASIG). Three chemical activators—NaOH, Ca(OH)2, and CaCl2—along with two expansive agents—desulfurized gypsum and bentonite—were considered. Through X-ray diffraction, thermogravimetric analysis, scanning electron microscopy, mercury intrusion porosimetry and pH values tests, the enhancement mechanisms of the additives on ASIG were elucidated. Results demonstrate that the expansive agent exhibits significantly superior strengthening effects on ASIG compared to the widely applied chemical activators. Chemical activators promoted ISWs dissolution and hydration product synthesis, thereby densifying the hydration product matrix but concurrently enlarged interparticle pores. Desulfurized gypsum incorporation induced morphological changes in ettringite, and excessive desulfurized gypsum generated substantial ettringite that disrupted gel matrix. In contrast, bentonite demonstrated superior pore-filling efficacy while densifying gel matrix through a compaction effect. These findings highlight bentonite superior compatibility with the unique microstructure of aeolian sand compared to conventional alkaline activators or expansive agents, and better effectiveness in enhancing the strength of ASIG. Full article
(This article belongs to the Special Issue Development and Applications of Advanced Geopolymer Gel Materials)
Show Figures

Figure 1

14 pages, 2177 KB  
Article
Study on the Regulation Mechanism of Silane Coupling Agents’ Molecular Structure on the Rheological Properties of Fe3O4/CNT Silicone Oil-Based Magnetic Liquids
by Wenyi Li, Xiaotong Zeng, Shiyu Yang, Bingxue Wang, Xiangju Tian and Weihao Shen
J. Compos. Sci. 2025, 9(8), 423; https://doi.org/10.3390/jcs9080423 - 7 Aug 2025
Viewed by 1415
Abstract
Silicone oil-based magnetic liquids containing carbon nanotubes (CNTs) were prepared using an in situ chemical coprecipitation method. The surface modification of Fe3O4/CNT composite particles was carried out by using three silane coupling agents: γ-aminopropyltriethoxysilane (550), γ-methacryloxypropyltrimethoxysilane (570), and phenyltrimethoxysilane [...] Read more.
Silicone oil-based magnetic liquids containing carbon nanotubes (CNTs) were prepared using an in situ chemical coprecipitation method. The surface modification of Fe3O4/CNT composite particles was carried out by using three silane coupling agents: γ-aminopropyltriethoxysilane (550), γ-methacryloxypropyltrimethoxysilane (570), and phenyltrimethoxysilane (7030). Infrared Spectroscopy (IR), Transmission Electron Microscopy (TEM), and X-ray Diffraction (XRD) were used to confirm the successful doping of CNTs and the effective coating of the coupling agents. The rheological behavior of the magnetic liquids was systematically studied using an Anton Paar Rheometer. The results show that viscosity decreases exponentially with increasing temperature (fitting the Arrhenius equation), increases and tends to saturate with rising magnetic field intensity, and exhibits shear-thinning characteristics with increasing shear rate. Among the samples, Fe3O4@7030 has the best visco-thermal performance due to the benzene ring structure, which reduces the symmetry of the molecular chains. In contrast, Fe3O4@570 shows the most significant magneto-viscous effect (viscosity variation of 161.4%) as a result of the long-chain structure enhancing the steric hindrance of the magnetic dipoles. Full article
(This article belongs to the Section Composites Modelling and Characterization)
Show Figures

Figure 1

19 pages, 4569 KB  
Article
Tailored Magnetic Fe3O4-Based Core–Shell Nanoparticles Coated with TiO2 and SiO2 via Co-Precipitation: Structure–Property Correlation for Medical Imaging Applications
by Elena Emanuela Herbei, Daniela Laura Buruiana, Alina Crina Muresan, Viorica Ghisman, Nicoleta Lucica Bogatu, Vasile Basliu, Claudiu-Ionut Vasile and Lucian Barbu-Tudoran
Diagnostics 2025, 15(15), 1912; https://doi.org/10.3390/diagnostics15151912 - 30 Jul 2025
Viewed by 905
Abstract
Background/Objectives: Magnetic nanoparticles, particularly iron oxide-based materials, such as magnetite (Fe3O4), have gained significant attention as contrast agents in medical imaging This study aimsto syntheze and characterize Fe3O4-based core–shell nanostructures, including Fe3O4 [...] Read more.
Background/Objectives: Magnetic nanoparticles, particularly iron oxide-based materials, such as magnetite (Fe3O4), have gained significant attention as contrast agents in medical imaging This study aimsto syntheze and characterize Fe3O4-based core–shell nanostructures, including Fe3O4@TiO2 and Fe3O4@SiO2, and to evaluate their potential as tunable contrast agents for diagnostic imaging. Methods: Fe3O4, Fe3O4@TiO2, and Fe3O4@SiO2 nanoparticles were synthesized via co-precipitation at varying temperatures from iron salt precursors. Fourier transform infrared spectroscopy (FTIR) was used to confirm the presence of Fe–O bonds, while X-ray diffraction (XRD) was employed to determine the crystalline phases and estimate average crystallite sizes. Morphological analysis and particle size distribution were assessed by scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX) and transmission electron microscopy (TEM). Magnetic properties were investigated using vibrating sample magnetometry (VSM). Results: FTIR spectra exhibited characteristic Fe–O vibrations at 543 cm−1 and 555 cm−1, indicating the formation of magnetite. XRD patterns confirmed a dominant cubic magnetite phase, with the presence of rutile TiO2 and stishovite SiO2 in the coated samples. The average crystallite sizes ranged from 24 to 95 nm. SEM and TEM analyses revealed particle sizes between 5 and 150 nm with well-defined core–shell morphologies. VSM measurements showed saturation magnetization (Ms) values ranging from 40 to 70 emu/g, depending on the synthesis temperature and shell composition. The highest Ms value was obtained for uncoated Fe3O4 synthesized at 94 °C. Conclusions: The synthesized Fe3O4-based core–shell nanomaterials exhibit desirable structural, morphological, and magnetic properties for use as contrast agents. Their tunable magnetic response and nanoscale dimensions make them promising candidates for advanced diagnostic imaging applications. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

41 pages, 3816 KB  
Review
Updates on the Advantages and Disadvantages of Microscopic and Spectroscopic Characterization of Magnetotactic Bacteria for Biosensor Applications
by Natalia Lorela Paul, Catalin Ovidiu Popa and Rodica Elena Ionescu
Biosensors 2025, 15(8), 472; https://doi.org/10.3390/bios15080472 - 22 Jul 2025
Cited by 1 | Viewed by 1562
Abstract
Magnetotactic bacteria (MTB), a unique group of Gram-negative prokaryotes, have the remarkable ability to biomineralize magnetic nanoparticles (MNPs) intracellularly, making them promising candidates for various biomedical applications such as biosensors, drug delivery, imaging contrast agents, and cancer-targeted therapies. To fully exploit the potential [...] Read more.
Magnetotactic bacteria (MTB), a unique group of Gram-negative prokaryotes, have the remarkable ability to biomineralize magnetic nanoparticles (MNPs) intracellularly, making them promising candidates for various biomedical applications such as biosensors, drug delivery, imaging contrast agents, and cancer-targeted therapies. To fully exploit the potential of MTB, a precise understanding of the structural, surface, and functional properties of these biologically produced nanoparticles is required. Given these concerns, this review provides a focused synthesis of the most widely used microscopic and spectroscopic methods applied in the characterization of MTB and their associated MNPs, covering the latest research from January 2022 to May 2025. Specifically, various optical microscopy techniques (e.g., transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM)) and spectroscopic approaches (e.g., localized surface plasmon resonance (LSPR), surface-enhanced Raman scattering (SERS), and X-ray photoelectron spectroscopy (XPS)) relevant to ultrasensitive MTB biosensor development are herein discussed and compared in term of their advantages and disadvantages. Overall, the novelty of this work lies in its clarity and structure, aiming to consolidate and simplify access to the most current and effective characterization techniques. Furthermore, several gaps in the characterization methods of MTB were identified, and new directions of methods that can be integrated into the study, analysis, and characterization of these bacteria are suggested in exhaustive manner. Finally, to the authors’ knowledge, this is the first comprehensive overview of characterization techniques that could serve as a practical resource for both younger and more experienced researchers seeking to optimize the use of MTB in the development of advanced biosensing systems and other biomedical tools. Full article
(This article belongs to the Special Issue Material-Based Biosensors and Biosensing Strategies)
Show Figures

Figure 1

13 pages, 6902 KB  
Article
Influence of Content and Type of Lanthanide on the Structure of Ln2O3-Covered Carbon Nanoflakes: The EPR and XPS Study
by Serguei V. Savilov, Evgeniya V. Suslova, Alexander N. Ulyanov, Konstantin I. Maslakov, Sergey V. Maximov, Denis A. Shashurin and Georgy A. Chelkov
Nanomaterials 2025, 15(13), 1016; https://doi.org/10.3390/nano15131016 - 1 Jul 2025
Viewed by 526
Abstract
Synthesized Ln2O3 (Ln = La, Nd or Gd) nanoparticles with sizes of 1–3 nm, 5–6 nm and 10–15 nm were stabilized by carbon nanoflakes (CNFs). The weight content of Ln2O3 in the Ln2O3/CNF [...] Read more.
Synthesized Ln2O3 (Ln = La, Nd or Gd) nanoparticles with sizes of 1–3 nm, 5–6 nm and 10–15 nm were stabilized by carbon nanoflakes (CNFs). The weight content of Ln2O3 in the Ln2O3/CNF composites was 20–50 wt. %, which makes these composites potentially suitable for practical use as computed tomography and magnetic resonance imaging contrast agents. The structure of CNFs and Ln2O3/CNF composites was investigated by X-ray diffraction data, X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR). The EPR spectra of raw CNFs were silent. The oxidation of the CNF surface resulted in the appearance of paramagnetic centers associated with two types of unpaired electrons in the carbon support. After impregnation of the CNFs with the Ln3+ ion solution, the number of unpaired electrons was reduced, presumably due to the formation of C–O–Ln bonds. All Ln3+ ions changed the composites’ EPR spectra by reducing the number of unpaired electrons in the CNF structure. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

14 pages, 2508 KB  
Article
Enhancement of Efficiency in an Ex Situ Coprecipitation Method for Superparamagnetic Bacterial Cellulose Hybrid Materials
by Thaís Cavalcante de Souza, Italo José Batista Durval, Hugo Moraes Meira, Andréa Fernanda de Santana Costa, Eduardo Padrón Hernández, Attilio Converti, Glória Maria Vinhas and Leonie Asfora Sarubbo
Membranes 2025, 15(7), 198; https://doi.org/10.3390/membranes15070198 - 1 Jul 2025
Viewed by 858
Abstract
Superparamagnetic magnetite nanoparticles (Fe3O4) have garnered considerable interest due to their unique magnetic properties and potential for integration into multifunctional biomaterials. In particular, their incorporation into bacterial cellulose (BC) matrices offers a promising route for developing sustainable and high-performance [...] Read more.
Superparamagnetic magnetite nanoparticles (Fe3O4) have garnered considerable interest due to their unique magnetic properties and potential for integration into multifunctional biomaterials. In particular, their incorporation into bacterial cellulose (BC) matrices offers a promising route for developing sustainable and high-performance magnetic composites. Numerous studies have explored BC-magnetite systems; however, innovations combining ex situ coprecipitation synthesis within BC matrices, tailored reagent molar ratios, stirring protocols, and purification processes remain limited. This study aimed to optimize the ex situ coprecipitation method for synthesizing superparamagnetic magnetite nanoparticles embedded in BC membranes, focusing on enhancing particle stability and crystallinity. BC membranes containing varying concentrations of magnetite (40%, 50%, 60%, and 70%) were characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and vibrating sample magnetometry (VSM). The resulting magnetic BC membranes demonstrated homogenous dispersion of nanoparticles, improved crystallite size (6.96 nm), and enhanced magnetic saturation (Ms) (50.4 emu/g), compared to previously reported methods. The adoption and synergistic optimization of synthesis parameters—unique to this study—conferred greater control over the physicochemical and magnetic properties of the composites. These findings position the optimized BC-magnetite nanocomposites as highly promising candidates for advanced applications, including electromagnetic interference (EMI) shielding, electronic devices, gas sensors, MRI contrast agents, and targeted drug delivery systems. Full article
(This article belongs to the Section Membrane Fabrication and Characterization)
Show Figures

Figure 1

21 pages, 4150 KB  
Article
Novel Cerium- and Terbium-Doped Gadolinium Fluoride Nanoparticles as Radiosensitizers with Pronounced Radiocatalytic Activity
by Nikita A. Pivovarov, Danil D. Kolmanovich, Nikita N. Chukavin, Irina V. Savintseva, Nelli R. Popova, Alexander E. Shemyakov, Arina D. Filippova, Maria A. Teplonogova, Alexandra V. Yurkovskaya, Ivan. V. Zhukov, Azamat Y. Akkizov and Anton L. Popov
Biomedicines 2025, 13(7), 1537; https://doi.org/10.3390/biomedicines13071537 - 24 Jun 2025
Viewed by 918
Abstract
Background: The use of nanoradiosensitizers is a promising strategy for the precision enhancement of tumor tissue damage during radiotherapy. Methods: Here, we propose a novel biocompatible theranostic agent based on gadolinium fluoride doped with cerium and terbium (Gd0.7Ce0.2Tb0.1 [...] Read more.
Background: The use of nanoradiosensitizers is a promising strategy for the precision enhancement of tumor tissue damage during radiotherapy. Methods: Here, we propose a novel biocompatible theranostic agent based on gadolinium fluoride doped with cerium and terbium (Gd0.7Ce0.2Tb0.1F3 NPs), which showed pronounced radiocatalytic activity when exposed to photon or proton beam irradiation, as well as remarkable MRI contrast ability. A scheme for the production of biocompatible colloidally stable Gd0.7Ce0.2Tb0.1F3 NPs was developed. Comprehensive physicochemical characterization of these NPs was carried out, including TEM, SEM, XRD, DLS, and EDX analyses, as well as UV–vis spectroscopy and MRI relaxation assays. Results: Cytotoxicity analysis of Gd0.7Ce0.2Tb0.1F3 NPs in vitro and in vivo revealed a high level of biocompatibility. It was shown that Gd0.7Ce0.2Tb0.1F3 NPs effectively accumulate in MCF-7 tumor cells. A study of their radiosensitizing activity demonstrated that the combined effect of Gd0.7Ce0.2Tb0.1F3 NPs and X-ray irradiation leads to a dose-dependent decrease in mitochondrial membrane potential, a sharp increase in the level of intracellular ROS, and the subsequent development of radiation-induced apoptosis. Conclusions: This outstanding radiosensitizing effect is explained by the radiocatalytic generation of reactive oxygen species by the nanoparticles, which goes beyond direct physical dose enhancement. It emphasizes the importance of evaluating the molecular mechanisms underlying the sensitizing effectiveness of potential nanoradiosensitizers before choosing conditions for their testing in in vivo models. Full article
(This article belongs to the Special Issue Latest Advancements in Radiotherapy)
Show Figures

Graphical abstract

15 pages, 1100 KB  
Article
Assessment of CA4+ Impact on Mechanical Properties of Articular Cartilage
by Matteo Berni, Simone Fantoni, Roberta Fognani, Paolo Cardarelli, Fabio Baruffaldi and Massimiliano Baleani
Materials 2025, 18(13), 2943; https://doi.org/10.3390/ma18132943 - 21 Jun 2025
Viewed by 3623
Abstract
X-ray imaging of articular cartilage could be a breakthrough for the early diagnosis of tissue degeneration. This approach relies on radiopaque contrast agents to enhance the visualization of soft tissues. The potential impact of contrast agents on the mechanical response of articular cartilage [...] Read more.
X-ray imaging of articular cartilage could be a breakthrough for the early diagnosis of tissue degeneration. This approach relies on radiopaque contrast agents to enhance the visualization of soft tissues. The potential impact of contrast agents on the mechanical response of articular cartilage should be considered in the frame of both clinical and research applications. Attention has been drawn to a solution containing molecules with six iodine atoms and four positive charges (CA4+), which has been shown to improve the X-ray visibility of articular cartilage. This study aimed to determine the effects of a CA4+ solution on tissues’ mechanical properties. An experimental pipeline based on indentation tests was applied to paired samples of articular cartilage before and after the immersion in either CA4+ or phosphate-buffered saline solution, maintained at a temperature of 22 ± 2 °C, for 22 h to determine the differences in instantaneous, viscous, and equilibrium responses between the articular cartilage of the two groups. The 22 h immersion of articular cartilage in either CA4+ or phosphate-buffered saline solution had a significant detrimental effect on the overall response, including the instantaneous, viscous, and equilibrium responses, of the articular cartilage. However, this detrimental effect was greater with exposure to the CA4+ solution. Specifically, the articular cartilage was found to be less stiff in both the instantaneous response (approximately −25%) and the equilibrium response (approximately −38%). The softening effect could be attributable to an alteration of the interaction between the proteoglycans of articular cartilage, induced by the positive charges within the CA4+ contrast agent. Further investigations are needed to elucidate whether this hypothesized mechanism is reversible. Full article
(This article belongs to the Special Issue State of the Art of Materials Science and Engineering in Italy)
Show Figures

Figure 1

14 pages, 5300 KB  
Article
Synthesis and Antibacterial Evaluation of Silver-Coated Magnetic Iron Oxide/Activated Carbon Nanoparticles Derived from Hibiscus esculentus
by Müslüm Güneş, Erdal Ertaş, Seyhmus Tumur, Parvin Zulfugarova, Fidan Nuriyeva, Taras Kavetskyy, Yuliia Kukhazh, Pavlo Grozdov, Ondrej Šauša, Oleh Smutok, Dashgin Ganbarov and Arnold Kiv
Magnetochemistry 2025, 11(7), 53; https://doi.org/10.3390/magnetochemistry11070053 - 21 Jun 2025
Cited by 8 | Viewed by 1319
Abstract
The increasing prevalence of antimicrobial resistance alongside the pharmacological limitations and adverse effects associated with conventional antibiotics necessitates the development of novel and efficacious antimicrobial agents. In this study, magnetic iron oxide nanoparticles (MIONPs) were synthesized via a chemical co-precipitation method. Activated carbon [...] Read more.
The increasing prevalence of antimicrobial resistance alongside the pharmacological limitations and adverse effects associated with conventional antibiotics necessitates the development of novel and efficacious antimicrobial agents. In this study, magnetic iron oxide nanoparticles (MIONPs) were synthesized via a chemical co-precipitation method. Activated carbon (AC) derived from Hibiscus esculentus (HE) fruit was coated onto the nanoparticle surfaces to fabricate MIONPs/HEAC nanocomposites. To augment their antimicrobial properties, silver ions were chemically reduced and deposited onto the MIONPs/HEAC surface, yielding MIONPs/HEAC@Ag nanocomposites. Comprehensive characterization of the synthesized nanocomposites was performed using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometry (VSM), dynamic light scattering (DLS), and zeta potential analysis. DLS measurements indicated average particle sizes of approximately 122 nm and 164 nm for MIONPs/HEAC and MIONPs/HEAC@Ag, respectively. Saturation magnetization values were determined to be 73.6 emu/g for MIONPs and 65.5 emu/g for MIONPs/HEAC. Antibacterial assays demonstrated that MIONPs/HEAC@Ag exhibited significant inhibitory effects against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923, with inhibition zone diameters of 11.50 mm and 13.00 mm, respectively. In contrast, uncoated MIONPs/HEAC showed negligible antibacterial activity against both bacterial strains. These findings indicate that MIONPs/HEAC@Ag nanocomposites possess considerable potential as antimicrobial agents for biomedical applications, particularly in addressing infections caused by antibiotic-resistant bacteria. Full article
Show Figures

Figure 1

20 pages, 8464 KB  
Article
Influence of Different Synthesis Methods on the Defect Structure, Morphology, and UV-Assisted Ozone Sensing Properties of Zinc Oxide Nanoplates
by Pedro P. Ortega, João V. N. Palma, Ana L. Doimo, Laura Líbero, Gabriel F. Yamakawa, Leonnam G. Merízio, Ederson C. Aguiar, Luís F. Silva and Elson Longo
Chemosensors 2025, 13(4), 152; https://doi.org/10.3390/chemosensors13040152 - 20 Apr 2025
Viewed by 1199
Abstract
In this work, room-temperature UV-assisted ozone detection was investigated using ZnO nanoplates synthesized via precipitation, ultrasound-, ultrasonic tip-, and microwave-assisted hydrothermal (MAH) methods. X-ray diffraction confirmed the formation of crystalline phases with an ~3.3 eV band gap, independent of the synthesis used. Raman [...] Read more.
In this work, room-temperature UV-assisted ozone detection was investigated using ZnO nanoplates synthesized via precipitation, ultrasound-, ultrasonic tip-, and microwave-assisted hydrothermal (MAH) methods. X-ray diffraction confirmed the formation of crystalline phases with an ~3.3 eV band gap, independent of the synthesis used. Raman spectroscopy revealed oxygen-related defects. Plate-like morphologies were observed, with the ultrasonic tip-assisted synthesis yielding ~17 nm-thick plates. Electrical measurements showed 10–170 ppb ozone sensitivity under UV. The sample synthesized via the MAH method (ZM) demonstrated superior conductance, with a baseline resistance of ~1.2% for the ultrasound (ZU) sample and less than 50% for the precipitation (ZA) and ultrasonic tip (ZP) samples. Despite the appreciable response in dark mode, the recovery was slow (>>30 min), except for the UV illumination condition, which reduced the recovery response to ~2 min. With top areas of ~0.0122 µm2, ZP and ZU showed high specific surface areas (24.75 and 19.37 m2/g, respectively), in contrast to ZM, which exhibited the lowest value (15.32 m2/g) with a top area of ~0.0332 µm2 and a thickness of 26.0 nm. The superior performance of ZM was attributed to the larger nanoplate sizes and the lower baseline resistance. The ultrasound method showed the lowest sensitivity due to the higher resistance and the depletion layer effect. The results indicate that the synthesis methods presented herein for the production of reactive ZnO nanoplates using NaOH as a growth-directing agent are reliable, simple, and cost-effective, in addition to being capable of detecting ozone with high sensitivity and reproducibility at concentrations as low as 10 ppb. Full article
Show Figures

Graphical abstract

16 pages, 8016 KB  
Article
Structural Insights: In Situ Synthesis of Titanium Carbide by Magnesiothermic Method Using Carbon Nanotubes and Turbostratic Carbon as Carbon Sources
by María Luisa Camacho-Ríos, Guillermo Herrera-Pérez, Luis Carlos Rodriguez-Pacheco, Mariana Lizbeth Luján-Aguilar, Antonio Ramírez-de la Cruz, Nathaly Withney Aguilar-Cisneros, Marco Antonio Ruiz Esparza-Rodriguez, Daniel Lardizabal-Gutierrez, Raúl Pérez-Bustamante and José Antonio Betancourt-Cantera
J. Compos. Sci. 2025, 9(4), 171; https://doi.org/10.3390/jcs9040171 - 31 Mar 2025
Viewed by 1076
Abstract
The current work presents the influence of the magnesiothermic synthesis method on titanium carbide (TiC). In this method, powdered titanium precursors and two carbon sources—turbostratic carbon and carbon nanotubes—were employed in proportions of 10 wt.% and 20 wt.%. The refinement of the X-ray [...] Read more.
The current work presents the influence of the magnesiothermic synthesis method on titanium carbide (TiC). In this method, powdered titanium precursors and two carbon sources—turbostratic carbon and carbon nanotubes—were employed in proportions of 10 wt.% and 20 wt.%. The refinement of the X-ray diffraction (XRD) patterns using the Rietveld method for TiC suggests suggested coexistence of two phases, cubic with Fm-3m space group and hexagonal with P3121 space group. In particular, for the sample with 20 wt.% of carbon sources, the XRD refinement revealed that the cubic phase accounted for 94% of the composition, in contrast to a secondary hexagonal phase, Ti6C3.75, which comprised 6%. The influence of carbon on the morphology (particle size and shape) and crystallite size was monitored through bright-field transmission electron microscopy (BF-TEM) imaging and XRD. In samples containing 20 wt.% carbon, a homogeneous morphology in both size (around 11 microns) and shape was observed, along with a reduction in crystallite size (from 22.7 to 17.8 nm). Raman band analysis further revealed vibrational modes indicating that carbon induced disorder in the TiC structure. The magnesiothermic synthesis method developed in this work offers a low-cost approach of interest in the aerospace and automotive industries. Additionally, the study provides significant insights for particles used as additives or reinforcing agents to enhance the mechanical properties of metal matrix composites (MMCs). Full article
(This article belongs to the Section Carbon Composites)
Show Figures

Figure 1

15 pages, 1250 KB  
Article
A 12-Week, Randomized, Double-Blind, Placebo-Controlled Study to Evaluate the Efficacy and Safety of Lactobacillus plantarum LMT1-48 on Body Fat Loss
by Sung-Bum Lee, Byungwook Yoo, Chaemin Baeg, Jiae Yun, Dong-wook Ryu, Gyungcheon Kim, Seongok Kim, Hakdong Shin and Ju Hee Lee
Nutrients 2025, 17(7), 1191; https://doi.org/10.3390/nu17071191 - 28 Mar 2025
Cited by 1 | Viewed by 6887
Abstract
Objectives: This study aims to evaluate the efficacy and safety of probiotics for body fat reduction in obese individuals. Methods: A total of 106 participants with a body mass index between 25 and 30 kg/m2 were randomly assigned to either the experimental [...] Read more.
Objectives: This study aims to evaluate the efficacy and safety of probiotics for body fat reduction in obese individuals. Methods: A total of 106 participants with a body mass index between 25 and 30 kg/m2 were randomly assigned to either the experimental group treating with Lactobacillus plantarum LMT1-48 or the placebo group in the placebo-controlled clinical trial. Body composition was assessed by dual-energy X-ray absorptiometry and computed tomography. Fecal samples between the groups were contrasted via DNA sequencing for evaluation of the microbiota and its diversity. Results: After 12 weeks of follow-up period, the body fat mass decreased significantly, from 30.0 ± 4.4 to 28.3 ± 4.1 kg in the experimental group (p = 0.009). The percentage of body fat in the two groups showed a similar trend (p = 0.004). Conclusions: LMT1-48 also positively influenced the microbial taxa linked to obesity analyzed by gut microbiome sequencing. LMT1-48 is a safe and collaborative agent to reduce obesity. Full article
(This article belongs to the Special Issue Interaction Between Gut Microbiota and Obesity)
Show Figures

Figure 1

Back to TopTop