Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,084)

Search Parameters:
Keywords = X-band applications

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2987 KB  
Article
Sustainable Graphene Electromagnetic Shielding Paper: Preparation and Applications in Packaging and Functional Design
by Chaohua Chen, Qingyuan Shi, Wei Chen and Yongjian Huai
Sustainability 2026, 18(3), 1219; https://doi.org/10.3390/su18031219 - 26 Jan 2026
Abstract
Electromagnetic interference (EMI) shielding materials are essential for ensuring the reliable operation of electronic devices and safeguarding human health, yet conventional metal-polymer materials are non-biodegradable, energy-intensive, and difficult to recycle. This study prepared a biodegradable paper-based shielding material; renewable cellulose filter paper was [...] Read more.
Electromagnetic interference (EMI) shielding materials are essential for ensuring the reliable operation of electronic devices and safeguarding human health, yet conventional metal-polymer materials are non-biodegradable, energy-intensive, and difficult to recycle. This study prepared a biodegradable paper-based shielding material; renewable cellulose filter paper was employed as the sole substrate, and graphene was integrated to construct an electromagnetic shielding network. A low-cost paper-based electromagnetic shielding preparation method was developed, and the performance of the material was analyzed in electromagnetic shielding applications. Samples were fabricated through a simple impregnation-evaporation-lamination process. It has a thickness of 1 mm for single layers and a maximum conductivity of 21.3 S/m. The influence of sample thickness on electromagnetic shielding in the X-band (8.2–12.4 GHz) was investigated, when the graphene filter cake loading reached 20 wt%, the SET values for triple-layer electromagnetic shielding papers reach 36 dB at 8.2 GHz and 33 dB at 12.4 GHz. A phone box for indoor environments and a card holder with anti-radio-frequency identification (RFID) functionality were designed. Furthermore, achievable design solutions for an EMI shielding wallpaper in medical and artistic installations were proposed. Full article
Show Figures

Figure 1

20 pages, 4393 KB  
Article
Biosynthesis, Characterisation, and Antimicrobial Activities of Nickel-Doped Silver Nanoparticles Using Caralluma umbellata Plant Root Extract
by Gundeti Bhagyalaxmi, Kothamasu Suresh Babu, Kannan Ramamurthy, Raju Vidap and Srinivas Ravella
Surfaces 2026, 9(1), 12; https://doi.org/10.3390/surfaces9010012 - 23 Jan 2026
Viewed by 174
Abstract
Greenly synthesised Ni-doped Ag nanoparticles utilising Caralluma umbellata root extracts, and an investigation into their optical properties, biological properties, and characterisation, is the focus of the study. Characterisation was performed using FTIR analysis, UV-Vis, X-ray diffraction, and field emission scanning electron microscopy. The [...] Read more.
Greenly synthesised Ni-doped Ag nanoparticles utilising Caralluma umbellata root extracts, and an investigation into their optical properties, biological properties, and characterisation, is the focus of the study. Characterisation was performed using FTIR analysis, UV-Vis, X-ray diffraction, and field emission scanning electron microscopy. The synthesis of Ni-doped Ag nanoparticles was confirmed through UV-Vis spectroscopy, revealing a peak at 396 nm and a band gap energy of 3.24 eV. XRD analysis revealed a face-centred cubic structure with a crystallite size of 55.22 nm (as-prepared) and 18.56 nm (annealed at 200 °C). Reduction and capping were demonstrated by FTIR, as evidenced by the presence of phytochemicals. The Ag NPs demonstrated potent antibacterial activity against both Gram-positive and Gram-negative bacteria, with a minimal inhibitory concentration of 1.25 μg/mL observed against Streptococcus mutans. Their vigorous anti-oxidant activity, as well as in vitro anti-diabetic potential through alpha-amylase and alpha-glucosidase inhibition, also proves suitable for biomedical applications. Full article
Show Figures

Figure 1

11 pages, 1995 KB  
Article
Design of Lattice-Matched InAs1−xSbx/Al1−yInySb Type-I Quantum Wells with Tunable Near-To Mid-Infrared Emission (2–5 μm): A Strain-Optimized Approach for Optoelectronic Applications
by Gerardo Villa-Martínez and Julio Gregorio Mendoza-Álvarez
Nanomaterials 2026, 16(2), 147; https://doi.org/10.3390/nano16020147 - 22 Jan 2026
Viewed by 93
Abstract
We propose a strain-optimized design strategy for lattice-matched InAs1−xSbx/Al1−yInySb Type-I quantum wells (QWs) that emit across the near-to mid-infrared spectrum (2–5 µm). By combining elastic strain energy minimization with band offset calculations, we [...] Read more.
We propose a strain-optimized design strategy for lattice-matched InAs1−xSbx/Al1−yInySb Type-I quantum wells (QWs) that emit across the near-to mid-infrared spectrum (2–5 µm). By combining elastic strain energy minimization with band offset calculations, we identify Type-I alignment for Sb contents (x ≤ 0.40) and In contents (0.10 < y ≤ 1). At the same time, Type-II dominates at higher Sb compositions (x ≥ 0.50). Using the transfer matrix method under the effective mass approximation, we demonstrate precise emission tuning via QW thickness (LW) and compositional control, achieving a wavelength coverage of 2–5 µm with <5% strain-induced energy deviation. Our results provide a roadmap for high-efficiency infrared optoelectronic devices, addressing applications in sensing and communications technologies. Full article
(This article belongs to the Special Issue Theory and Modeling of Nanostructured Materials)
Show Figures

Figure 1

21 pages, 68333 KB  
Article
Tuning Ag/Co Metal Ion Composition to Control In Situ Nanoparticle Formation, Photochemical Behavior, and Magnetic–Dielectric Properties of UV–Cured Epoxy Diacrylate Nanocomposites
by Gonul S. Batibay, Sureyya Aydin Yuksel, Meral Aydin and Nergis Arsu
Nanomaterials 2026, 16(2), 143; https://doi.org/10.3390/nano16020143 - 21 Jan 2026
Viewed by 222
Abstract
In this study, we report a reproducible in situ photochemical method for the simultaneous synthesis of metallic and hybrid metal/metal oxide nanoparticles (NPs) within a UV–curable polymer matrix. A series of epoxy diacrylate-based formulations (BEA) was prepared, consisting of Epoxy diacrylate, Di(Ethylene glycol)ethyl [...] Read more.
In this study, we report a reproducible in situ photochemical method for the simultaneous synthesis of metallic and hybrid metal/metal oxide nanoparticles (NPs) within a UV–curable polymer matrix. A series of epoxy diacrylate-based formulations (BEA) was prepared, consisting of Epoxy diacrylate, Di(Ethylene glycol)ethyl ether acrylate (DEGEEA), and Phenylbis (2,4,6-trimethylbenzoyl) phosphine oxide (BAPO), which served as a Type I photoinitiator. These formulations were designed to enable the simultaneous photopolymerization and photoreduction of metal precursors at various Ag+/Co2+ ratios, resulting in nanocomposites containing in situ-formed Ag NPs, cobalt oxide NPs, and hybrid Ag–Co3O4 nanostructures. The photochemical, magnetic, and dielectric properties of the resulting nanocomposites were evaluated in comparison with those of the pure polymer using UV–Vis and Fourier Transform Infrared Spectroscopy (FT-IR), Photo-Differential Scanning Calorimetry (Photo-DSC), Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), Impedance Analysis, and Vibrating Sample Magnetometry (VSM). Photo-DSC studies revealed that the highest conversion values were obtained for the BEA-Ag1Co1, BEA-Co, and BEA-Ag1Co2 samples, demonstrating that the presence of Co3O4 NPs enhances polymerization efficiency because of cobalt species participating in redox-assisted radical generation under UV irradiation, increasing the number of initiating radicals and leading to faster curing and higher final conversion. On the other hand, the Ag NPs, due to the SPR band formation at around 400 nm, compete with photoinitiator absorbance and result in a gradual decrease in conversion values. Crystal structures of the NPs were confirmed by XRD analyses. The dielectric and magnetic characteristics of the nanocomposites suggest potential applicability in energy-storage systems, electromagnetic interference mitigation, radar-absorbing materials, and related multifunctional electronic applications. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Graphical abstract

13 pages, 4761 KB  
Article
Low Molecular Weight Acid-Modified Aluminum Nitride Powders for Enhanced Hydrolysis Resistance
by Linguang Wu, Yaling Yu, Shaomin Lin, Xianxue Li, Chenyang Zhang and Ji Luo
Inorganics 2026, 14(1), 30; https://doi.org/10.3390/inorganics14010030 - 18 Jan 2026
Viewed by 124
Abstract
Aluminum nitride (AlN) possesses an exceptional combination of high thermal conductivity and an ultra-wide band gap, rendering it highly attractive for electronic packaging and semiconductor substrate applications. In this study, surface chemical modification of AlN powders was performed employing low-molecular-weight organic acids, successfully [...] Read more.
Aluminum nitride (AlN) possesses an exceptional combination of high thermal conductivity and an ultra-wide band gap, rendering it highly attractive for electronic packaging and semiconductor substrate applications. In this study, surface chemical modification of AlN powders was performed employing low-molecular-weight organic acids, successfully yielding hydrolysis-resistant AlN powders. The underlying mechanisms responsible for the improved anti-hydrolysis performance imparted by both single organic acids and the composite acid were systematically investigated using X-ray diffraction (XRD), scanning electron microscope (SEM), and transmission electron microscope (TEM), characterization techniques. The results reveal that Oxalic acid within the concentration range of 0.25 M to 1.50 M partially inhibits the hydrolysis of aluminum nitride (AlN); however, hydrolysis products such as aluminum hydroxide are still formed. In the case of citric acid, a higher concentration leads to a stronger anti-hydrolysis effect on the modified AlN. No significant hydrolysis products were detected when the AlN sample was treated in a 1 M aqueous citric acid solution at 80 °C. The effectiveness of the organic acids in enhancing the hydrolysis resistance of AlN follows the order: composite acid (citric acid + oxalic acid) > citric acid > oxalic acid. Under the action of the composite acid, the AlN diffraction peaks exhibit the highest intensity. Furthermore, TEM observations reveal the formation of an amorphous protective layer on the surface, which contributes to the improved hydrolysis resistance. Analytical results confirmed that the surface modification process, mediated by citric acid, oxalic acid, or the composite acid, involved an esterification-like reaction between the surface hydroxyl groups on AlN and the chemical modifiers. This reaction led to the formation of a continuous protective coordination layer encapsulating the AlN particles, which serves as an effective diffusion barrier against water molecules, thereby significantly inhibiting the hydrolysis reaction. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Figure 1

32 pages, 10741 KB  
Article
A Robust Deep Learning Ensemble Framework for Waterbody Detection Using High-Resolution X-Band SAR Under Data-Constrained Conditions
by Soyeon Choi, Seung Hee Kim, Son V. Nghiem, Menas Kafatos, Minha Choi, Jinsoo Kim and Yangwon Lee
Remote Sens. 2026, 18(2), 301; https://doi.org/10.3390/rs18020301 - 16 Jan 2026
Viewed by 159
Abstract
Accurate delineation of inland waterbodies is critical for applications such as hydrological monitoring, disaster response preparedness and response, and environmental management. While optical satellite imagery is hindered by cloud cover or low-light conditions, Synthetic Aperture Radar (SAR) provides consistent surface observations regardless of [...] Read more.
Accurate delineation of inland waterbodies is critical for applications such as hydrological monitoring, disaster response preparedness and response, and environmental management. While optical satellite imagery is hindered by cloud cover or low-light conditions, Synthetic Aperture Radar (SAR) provides consistent surface observations regardless of weather or illumination. This study introduces a deep learning-based ensemble framework for precise inland waterbody detection using high-resolution X-band Capella SAR imagery. To improve the discrimination of water from spectrally similar non-water surfaces (e.g., roads and urban structures), an 8-channel input configuration was developed by incorporating auxiliary geospatial features such as height above nearest drainage (HAND), slope, and land cover classification. Four advanced deep learning segmentation models—Proportional–Integral–Derivative Network (PIDNet), Mask2Former, Swin Transformer, and Kernel Network (K-Net)—were systematically evaluated via cross-validation. Their outputs were combined using a weighted average ensemble strategy. The proposed ensemble model achieved an Intersection over Union (IoU) of 0.9422 and an F1-score of 0.9703 in blind testing, indicating high accuracy. While the ensemble gains over the best single model (IoU: 0.9371) were moderate, the enhanced operational reliability through balanced Precision–Recall performance provides significant practical value for flood and water resource monitoring with high-resolution SAR imagery, particularly under data-constrained commercial satellite platforms. Full article
(This article belongs to the Section AI Remote Sensing)
Show Figures

Figure 1

19 pages, 6587 KB  
Article
3D-Printed Cylindrical Dielectric Antenna Optimized Using Honey Bee Mating Optimization
by Burak Dokmetas
Electronics 2026, 15(2), 393; https://doi.org/10.3390/electronics15020393 - 16 Jan 2026
Viewed by 152
Abstract
This study presents the design, optimization, and experimental validation of a dual-band dielectric monopole antenna. The proposed antenna structure consists of three concentric cylindrical dielectric layers, each with independently tunable permittivities and radii. This configuration allows the effective control of electromagnetic performance over [...] Read more.
This study presents the design, optimization, and experimental validation of a dual-band dielectric monopole antenna. The proposed antenna structure consists of three concentric cylindrical dielectric layers, each with independently tunable permittivities and radii. This configuration allows the effective control of electromagnetic performance over distinct frequency bands. To determine the optimal geometric and material parameters, the bio-inspired Honey Bee Mating Optimization (HBMO) algorithm is employed. The optimization process simultaneously maximizes antenna gain and minimizes reflection coefficient in the X and Ku bands. A cost function incorporating both gain and impedance matching criteria is formulated to achieve well-balanced solutions. The final antenna prototype was fabricated using a fused deposition modeling (FDM)-based 3D printer, where the dielectric properties of each layer are adjusted through variable infill rates. Simulated and measured results confirm stable dual-band operation with reflection coefficients below −10 dB, while the maximum in-band realized gains reach approximately 6.6 dBi in the X-band and 7.1 dBi in the Ku-band. These findings demonstrate the effectiveness of the proposed optimization approach and validate the feasibility of using 3D-printed dielectric-loaded structures as an efficient solution for high-frequency and space-constrained communication systems. Full article
(This article belongs to the Special Issue Antenna Design and Its Applications, 2nd Edition)
Show Figures

Figure 1

19 pages, 2034 KB  
Article
Enhanced Dielectric and Microwave-Absorbing Properties of Poly(Lactic Acid) Composites via Ionic Liquid-Assisted Dispersion of GNP/CNT Hybrid Fillers
by Ruan R. Henriques, André Schettini and Bluma G. Soares
J. Compos. Sci. 2026, 10(1), 50; https://doi.org/10.3390/jcs10010050 - 16 Jan 2026
Viewed by 240
Abstract
Poly(lactic acid) (PLA)-based nanocomposites containing a mixture of graphene nanoplatelets (GNP) and carbon nanotube (CNT) as hybrid fillers were prepared using a solution-assisted sonication process followed by melt processing. The effects of the filler dispersion on dielectric properties and microwave absorbing (MWA) performance [...] Read more.
Poly(lactic acid) (PLA)-based nanocomposites containing a mixture of graphene nanoplatelets (GNP) and carbon nanotube (CNT) as hybrid fillers were prepared using a solution-assisted sonication process followed by melt processing. The effects of the filler dispersion on dielectric properties and microwave absorbing (MWA) performance were systematically investigated. Two ionic liquids (ILs), trihexyl-(tetra-decyl)phosphonium bis (trifluoromethanesulfonyl)imide (IL1) and 11-carboxyundecyl-triphenylphosphonium bromide (IL2), were employed as dispersing agents for the carbonaceous fillers. Incorporation of IL-treated fillers resulted in enhanced dielectric permittivity and improved MWA performance of the PLA composites. The MWA properties were evaluated in X- band and Ku-band. A minimum reflection loss (RL) of −34 dB and an effective absorption bandwidth (EAB) of 2.1 GHz were achieved for the composite containing GNP/CNT/IL2 (HB3) at a weight ratio of 2.5:0.5:0.5 wt% with one 3 mm thick layer. The superior performance of IL2 is attributed to π-π and π-cation interactions between its phenyl-containing cation and the carbonaceous fillers, as well as improved compatibility with the PLA matrix due to carboxyl groups. Additionally, three-layered composite structures, combining PLA/GNP as the outer layer with IL-assisted hybrid fillers in the core and PLA/CNT at the bottom layer, achieved an extended EAB of 4.5 GHz for GNP/HB2/CNT arrangement and 4.35 GHz for the GNP/HB3/CNT arrangement, driven by enhanced scattering and internal reflection of microwaves. These results demonstrate the potential of IL-assisted hybrid filler dispersion in PLA for developing biodegradable materials with multifunctional applications as charge storage capacitors and microwave absorbing materials for sustainable electronics. Full article
(This article belongs to the Section Nanocomposites)
Show Figures

Figure 1

25 pages, 5522 KB  
Article
Green Synthesis of ZnO Nanoparticles: Effect of Synthesis Conditions on Their Size and Photocatalytic Activity
by Veronika Yu. Kolotygina, Arkadiy Yu. Zhilyakov, Maria A. Bukharinova, Ekaterina I. Khamzina and Natalia Yu. Stozhko
ChemEngineering 2026, 10(1), 15; https://doi.org/10.3390/chemengineering10010015 - 14 Jan 2026
Viewed by 198
Abstract
Green technologies are actively being used to produce nanosized zinc oxide, which is in demand for water purification processes to remove pollutants. Despite the success of the green synthesis of ZnO nanoparticles, no scientific approach exists for selecting plant extracts to produce nanoparticles [...] Read more.
Green technologies are actively being used to produce nanosized zinc oxide, which is in demand for water purification processes to remove pollutants. Despite the success of the green synthesis of ZnO nanoparticles, no scientific approach exists for selecting plant extracts to produce nanoparticles with the desired properties. This study shows that the antioxidant activity of the plant extracts used is a key parameter influencing the properties of the resulting ZnO nanoparticles. This conclusion is based on the results of nanoparticle synthesis with the use of various plant extracts. The antioxidant activity of the extracts increases in the following order: plum–gooseberry–black currant–strawberry–sea buckthorn. The synthesized ZnO nanoparticles were characterized by UV–visible spectroscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy. The catalytic properties of ZnO nanoparticles were tested under the degradation of a synthetic methylene blue dye after exposure to UV light. We found that with an increase in the AOA of plant extracts, the size of the nanoparticles decreases, while their photocatalytic activity increases. The smallest (d = 13 nm), most uniform in size (polydispersity index 0.1), and most catalytically active ZnO nanoparticles with a small band gap (2.85 eV) were obtained using the sea buckthorn extract with the highest AOA, pH 10 of the reaction mixture and 0.1 M Zn(CH3COO)2∙2H2O as a precursor salt. ZnO nanoparticles synthesized in the sea buckthorn extract demonstrated the highest dye photodegradation efficiency (96.4%) compared with other nanoparticles. The established patterns demonstrate the “antioxidant activity–size–catalytic activity” triad can be considered as a practical guide for obtaining ZnO nanoparticles of a given size and with given properties for environmental remediation applications. Full article
Show Figures

Graphical abstract

15 pages, 2335 KB  
Article
Early-Stage Biofilm Prevention Enabled by Rapid Microwave Waveguide Detection of Planktonic Microorganisms in Diesel Fuel
by Andrzej Miszczyk, Michał Kuna and Anna Brillowska-Dąbrowska
Coatings 2026, 16(1), 101; https://doi.org/10.3390/coatings16010101 - 13 Jan 2026
Viewed by 155
Abstract
Many industrial sectors are concerned about microbiological contamination and the associated risk of microbiologically influenced corrosion (MIC). This applies in particular to the transmission and storage of fuels in the refining industry. Exceeding a certain level of these contaminants poses a serious risk [...] Read more.
Many industrial sectors are concerned about microbiological contamination and the associated risk of microbiologically influenced corrosion (MIC). This applies in particular to the transmission and storage of fuels in the refining industry. Exceeding a certain level of these contaminants poses a serious risk to fuel quality and can cause storage and pipeline infrastructure corrosion. This situation requires an urgent evaluation of microorganism levels in the fuel to avert such detrimental consequences. Diesel fuels containing biofuel additives are particularly susceptible to these phenomena. Traditional detection methods are limited by low sensitivity, high costs, and long turnaround times, making them unsuitable for quick, on-site, and real-time detection and monitoring. A novel approach involves the application of microwave dielectric testing to quantify microbial load in diesel fuel. Microwave dielectric spectroscopy offers a non-destructive, label-free solution, providing rapid information on microorganism presence. Combined with chemometric techniques, it effectively estimates total microorganism counts in diesel fuel. Measurement in the X-band range (8.2–12.4 GHz) takes a few seconds. Calibration with known bacterial and fungal concentrations (103 to 107 CFU/mL) and principal component analysis (PCA) of the spectroscopic data allow for clear differentiation of contamination levels, categorizing them from acceptable to hazardous. The sensitivity limit of the proposed method corresponds to a bacterial concentration of 103 CFU/mL. Full article
Show Figures

Figure 1

14 pages, 1962 KB  
Article
Impact of High Fe Doping on Structure, Optical, and Magnetic Properties of Zinc Oxide Nanostructures Synthesized by Hydrothermal Route
by Essam M. Abdel-Fattah and Salman M. Alshehri
Crystals 2026, 16(1), 55; https://doi.org/10.3390/cryst16010055 - 13 Jan 2026
Viewed by 208
Abstract
Zn1−xFexO nanocomposites (NCs) with varying Fe concentrations (x = 0, 0.1, 0.2, 0.3, and 0.4) were effectively prepared using the hydrothermal approach, and their morphology, structural, optical, and magnetic properties were systematically analyzed. XRD analysis confirmed Fe doping reduced [...] Read more.
Zn1−xFexO nanocomposites (NCs) with varying Fe concentrations (x = 0, 0.1, 0.2, 0.3, and 0.4) were effectively prepared using the hydrothermal approach, and their morphology, structural, optical, and magnetic properties were systematically analyzed. XRD analysis confirmed Fe doping reduced crystallinity and crystallite size. TEM images of Zn1−xFexO NCs exhibited smaller and more agglomerated nanostructures compared to the pure ZnO NPs. Raman and XPS analyses indicated increased lattice disorder, oxygen vacancies, and the coexistence of Fe2+/Fe3+ species. UV–Vis spectra showed enhanced visible light absorption and a tunable band gap, while PL results reflected defect-induced emission shifts and quenching, associated with zinc vacancies, interstitials, and oxygen-related defects. Magnetic measurements revealed a transition from diamagnetism to ferromagnetic-like behavior at room temperature for Fe content x ≥ 0.2, with magnetization strongly dependent on doping level. These results highlight Zn1−xFexO for advanced optoelectronic and spintronic applications. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

10 pages, 1178 KB  
Article
The Modification of Nitrogen to Modulate Perovskite for the Application of p-Type Transparent Conductive Oxides
by Yunting Liang, Kaihua Li, Haixu Chen, Yinling Wang, Shasha Zheng and Liuyang Bai
Molecules 2026, 31(2), 222; https://doi.org/10.3390/molecules31020222 - 8 Jan 2026
Viewed by 178
Abstract
Due to the strong electronegativity of oxygen ions, the valence band maximum (VBM) that is derived from the O 2p orbital leads to strong localization, as well as further heavy hole mass and low hole mobility, which makes it extremely difficult to obtain [...] Read more.
Due to the strong electronegativity of oxygen ions, the valence band maximum (VBM) that is derived from the O 2p orbital leads to strong localization, as well as further heavy hole mass and low hole mobility, which makes it extremely difficult to obtain high-conductivity p-type transparent conductive materials. Herein, we propose the strategy of multiple anions through the introduction of weaker electronegative nitrogen, in consideration of the delocalization on VBM, as well as the stability of octahedral anion cages. As such, first-principles calculations in the framework of density functional theory (DFT) are used for this work. Crystal structure prediction software USPEX (version 2023.0) was adopted to investigate the N-O appropriate ratio in CaTiO3−xNx (0 ≤ x ≤ 1) to balance the high transmission of light and highly favorable dispersion at the VBM. Furthermore, the p-type TCO performance of CaTiO3-xNx was evaluated based on the hole effective mass, hole mobility, and conductivity. The effectiveness of modulating p-type TCO through N-O multiple anions was also evaluated through defect formation energy and ionization energy. Ultimately, the construction of a CaTiO3-xNx/Si heterojunction and band alignment were considered for practical application. This approach attempts to boost the diversity of p-type perovskite-based TCOs and opens a new perspective for engineering and innovative material design for sustainable TCOs demand. Full article
Show Figures

Figure 1

16 pages, 5352 KB  
Article
CIGS Electrodeposition from Diluted Electrolyte: Effect of Current Density and Pulse Timing on Deposition Quality and Film Properties
by Mahfouz Saeed
Chemistry 2026, 8(1), 6; https://doi.org/10.3390/chemistry8010006 - 8 Jan 2026
Viewed by 192
Abstract
Among the most promising alloys for photovoltaic applications is copper–indium–gallium–selenide (CIGS) because of its enhanced optical properties. This study examines the influence of current density and pulse timing on the electrodeposition of Cu(In, Ga)Se2 (CIGS) thin films from a dilute electrolyte. It [...] Read more.
Among the most promising alloys for photovoltaic applications is copper–indium–gallium–selenide (CIGS) because of its enhanced optical properties. This study examines the influence of current density and pulse timing on the electrodeposition of Cu(In, Ga)Se2 (CIGS) thin films from a dilute electrolyte. It assesses how these parameters affect deposition quality, film characteristics, and device performance. CIGS absorber layers were electrodeposited using a pulsed-current method, with systematic variations in current density and pulse on/off durations in a low-concentration solution. The deposited precursors were subsequently selenized and incorporated into fully assembled CIGS solar cell architectures. Structural characteristics were analyzed by X-ray diffraction (XRD), whereas composition and elemental distribution were assessed by energy-dispersive X-ray spectroscopy (EDS). Optical properties pertinent to photovoltaic performance were evaluated through transmittance and reflectance measurements. The results indicate that moderate current densities, when combined with brief off-times, produce dense, microcrack-free films exhibiting enhanced crystallinity and near-stoichiometric Cu/(In + Ga) and Ga/(In + Ga) ratios, in contrast to films deposited at higher current densities and extended off-times. These optimized pulse parameters also produce absorber layers with advantageous optical band gaps and improved device performance. Overall, the study demonstrates that regulating pulse parameters in attenuated electrolytes is an effective strategy to optimize CIGS film quality and to facilitate the advancement of economical, solution-based fabrication methods for high-performance CIGS solar cells. Full article
(This article belongs to the Section Electrochemistry and Photoredox Processes)
Show Figures

Figure 1

16 pages, 4291 KB  
Article
New CdS–Bentonite Composites with Photocatalytic Properties
by Anca Dumbrava, Cristian Matei, Florin Moscalu, Diana Jecu and Daniela Berger
Appl. Sci. 2026, 16(2), 649; https://doi.org/10.3390/app16020649 - 8 Jan 2026
Viewed by 186
Abstract
Cadmium sulfide is an important II-VI semiconductor known for its valuable photocatalytic properties ascribable to its band gap energy, which allows light absorption in the visible domain. Nonetheless, the application of cadmium sulfide in wastewater organic pollutant degradation is restricted due to its [...] Read more.
Cadmium sulfide is an important II-VI semiconductor known for its valuable photocatalytic properties ascribable to its band gap energy, which allows light absorption in the visible domain. Nonetheless, the application of cadmium sulfide in wastewater organic pollutant degradation is restricted due to its high toxicity to humans, soil, and marine life. To address this issue, we developed new composite materials by depositing CdS on a bentonite support in a 1:9 mass ratio to develop a photocatalyst with lower toxicity. In the first step, bentonite was activated using an aqueous HCl solution; for the deposition of CdS powder, we proposed the trituration method and compared it with chemical precipitation and hydrothermal synthesis, using thioacetamide as a sulfide ion source. The modified bentonite underwent characterization using X-ray diffraction, scanning electron microscopy, X-ray fluorescence, UV-Vis, and FTIR spectroscopy. The photocatalytic activity was tested in the degradation of Congo red (CR), a persistent diazo dye. The efficiency of removing CR with CdS–bentonite composites depended on the deposition method of CdS, and it was higher than that of pristine CdS and of only adsorption onto acid-activated bentonite. The photocatalytic degradation mechanism was estimated by the scavenger test using ethylenediaminetetraacetic acid disodium salt, ascorbic acid, ethanol, and silver nitrate as radical scavengers. Full article
(This article belongs to the Special Issue New Approaches to Water Treatment: Challenges and Trends, 2nd Edition)
Show Figures

Figure 1

8 pages, 2265 KB  
Proceeding Paper
Single-Source Facile Synthesis of Phase-Pure Na+- and Sr2+-Modified Bismuth Titanate—Structural, Optical, and Electrical Properties for Energy Storage Application
by Anitha Gnanasekar, Pavithra Gurusamy and Geetha Deivasigamani
Mater. Proc. 2025, 25(1), 18; https://doi.org/10.3390/materproc2025025018 - 7 Jan 2026
Viewed by 88
Abstract
In this present study, sodium- and strontium-modified bismuth titanate—Bi0.5Na0.5TiO3 (BNT) and Bi0.5Sr0.5TiO3 (BST)—were synthesized using the auto-combustion technique with citric acid (C6H8O7) and glycine (C2H [...] Read more.
In this present study, sodium- and strontium-modified bismuth titanate—Bi0.5Na0.5TiO3 (BNT) and Bi0.5Sr0.5TiO3 (BST)—were synthesized using the auto-combustion technique with citric acid (C6H8O7) and glycine (C2H5NO2) as fuels in an optimized ratio of 1.5:1. The resulting powders were characterized using X-ray diffraction (XRD), energy-dispersive X-ray (EDX) spectroscopy, UV–Visible diffuse reflectance spectroscopy (DRS), and Fourier-transform infrared (FT-IR) spectroscopy. The electrical behavior of the samples was studied using an LCR meter. XRD analysis confirmed the formation of a single-phase perovskite structure with average crystallite sizes of 18.60 nm for BNT and 22.03 nm for BST, attributed to the difference in ionic radii between Na+ and Sr2+. An increase in crystallite size was accompanied by a corresponding increase in lattice parameters and unit-cell volume. The Williamson–Hall analysis further validated the strain-size contributions. EDX (Energy-Dispersive X-ray analysis) results confirmed successful incorporation of Na+ and Sr2+ without detectable impurity phases. Optical studies revealed distinct absorption peaks at 341 nm for BNT and 374 nm for BST, and the optical bandgap (Eg), calculated using Tauc’s relation, was found to be 2.6 eV and 2.0 eV, respectively. FT-IR spectra exhibited characteristic Ti-O vibrational bands in the range of 420–720 cm−1, consistent with the perovskite structure. For electrical characterization, the powders were pelletized under 3-ton pressure and sintered at 1000 °C for 3 h. The dielectric constant (εr), dielectric loss (tan δ), and ac conductivity (σ) of both samples increased with frequency. The combined structural, optical, and electrical results indicate that the optimized compositions of BNT and BST possess properties suitable for use in capacitors and other energy-storage applications. Full article
(This article belongs to the Proceedings of The 5th International Online Conference on Nanomaterials)
Show Figures

Figure 1

Back to TopTop