Design of Lattice-Matched InAs1−xSbx/Al1−yInySb Type-I Quantum Wells with Tunable Near-To Mid-Infrared Emission (2–5 μm): A Strain-Optimized Approach for Optoelectronic Applications
Abstract
1. Introduction
2. Calculation Procedures
3. Results and Discussion
3.1. Elastic Strain Energy in InAs1−xSbx/Al1−yInySb Heterostructures
3.2. Band Alignment and Type-I/II Criteria in InAs1−xSbx/Al1−yInySb Interface
3.3. Tuning of Excitonic Transitions in Lattice-Matched Quantum Wells
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manago, T.; Kasahara, K.; Shibasaki, I. Composition optimization of InAsxSb1−x/AlyIn1−ySb quantum Wells for Hall sensors with high sensitivity and high thermal stability. AIP Adv. 2021, 11, 035213. [Google Scholar] [CrossRef]
- Mironova, M.S.; Komkov, O.S.; Firsov, D.D.; Glinskii, G.F. Determination of InSb/AlInSb quantum well energy spectrum. J. Phys. Conf. Ser. 2014, 541, 012085. [Google Scholar] [CrossRef]
- Nash, G.R.; Haigh, M.K.; Hardaway, H.R.; Buckle, L.; Andreev, A.D.; Gordon, N.T.; Smith, S.J.; Emeny, M.T.; Ashley, T. InSb/AlInSb quantum-well light-emitting diodes. Appl. Phys. Lett. 2006, 88, 051107. [Google Scholar] [CrossRef]
- Kroemer, H. The 6.1 Å family (InAs, GaSb, AlSb) and its heterostructures: A selective review. Phys. E 2004, 20, 196–203. [Google Scholar] [CrossRef]
- Manago, T.; Ishida, S.; Geka, H.; Shibasaki, I. Relationship between transport properties and band diagrams in InAsxSb1−x/Al0.1In0.9Sb quantum wells. AIP Adv. 2015, 5, 067149. [Google Scholar] [CrossRef]
- Casallas-Moreno, Y.L.; Ramírez López, M.; Villa-Martínez, G.; Martínez-López, A.L.; Macías, M.; Cruz-Orea, A.; González de la Cruz, G.; Tomás, T.A.; Rodríguez-Fragoso, P.; Herrera-Pérez, J.L.; et al. Effect of the Sb content and the n- and p-GaSb(100) substrates on the physical and chemical properties of InSbxAs1−x alloys for mid-infrared applications: Analysis of surface, bulk and interface. J. Alloys Compd. 2021, 861, 157936. [Google Scholar] [CrossRef]
- Bal, M.E.; Cheah, E.; Lei, Z.; Schott, R.; Lehner, C.A.; Engelkamp, H.; Wegscheider, W.; Zeitler, U. Quantum Hall effect in InAsSb quantum wells at elevated temperatures. Phys. Rev. Res. 2024, 6, 023259. [Google Scholar] [CrossRef]
- Vurgaftman, I.; Meyer, J.R.; Ram-Mohan, L.R. Band parameters for III-V compounds semiconductors and their alloys. J. Appl. Phys. 2001, 89, 5815–5875. [Google Scholar] [CrossRef]
- Rogalski, A. Recent Progress in infrared detector technologies. Infrared Phys. Technol. 2011, 54, 136–154. [Google Scholar] [CrossRef]
- Somolka, T.; Motyka, M.; Romanov, V.V.; Moiseev, K.D. Photoluminescence Spectroscopy of the InAsSb-Based p-i-n Heterostructure. Materials 2022, 15, 1419. [Google Scholar] [CrossRef]
- Yi, W.; Kiselev, A.A.; Thorp, J.; Noah, R.; Nguyen, B.M.; Bui, S.; Rajavel, R.D.; Hussain, T.; Gyure, M.F.; Kratz, P.; et al. Gate-tunable high mobility remote-doped InSb/In1−xAlxSb quantum well heterostructures. Appl. Phys. Lett. 2015, 106, 142103. [Google Scholar] [CrossRef]
- Krier, A. III-Sb-based Type-I QW Diode Lasers. In Mid-Infrared Semiconductor Optoelectronics, 1st ed.; Rattunde, M., Schmitz, J., Mermelstein, C., Kiefer, R., Wagner, J., Eds.; Springer: Lancaster, UK, 2006; pp. 131–157. [Google Scholar]
- Nestoklon, M.O.; Benchamekh, R.; Voisin, P. Virtual crystal description of III-V semiconductor alloys in the tight binding approach. J. Phys. Condens. Matter 2016, 28, 305801. [Google Scholar] [CrossRef]
- Adachi, S. Properties of Semiconductor Alloys: Group-IV, III-V and II-VI Semiconductors, 1st ed.; Wiley: Chichester, UK, 2009; pp. 9–347. [Google Scholar]
- Tanner, D.S.P.; Caro, M.A.; Schulz, S.; O’Reilly, E.P. Fully analytic valence force field model for the elastic and inner elastic properties of diamond and zincblende crystal. arXiv 2019, arXiv:1908.11245. [Google Scholar] [CrossRef]
- Pohl, U.W. Structural Properties of Heterostructures. In Epitaxy of Semiconductors, 1st ed.; Rhodes, W.T., Stanley, H.E., Needs, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 11–77. [Google Scholar] [CrossRef]
- Bansal, B.; Dixit, V.K.; Venkataraman, V.; Bhat, H.L. Alloying induced degradation of the absorption edge of InAsxSb1−x. Appl. Phys. Lett. 2007, 90, 101905. [Google Scholar] [CrossRef]
- Manyk, T.; Rutkowski, J.; Kopytko, M.; Martyniuk, P. Determination of the Strain Influence on the InAs/InAsSb Type-II Superlattice Effective Masses. Sensors 2022, 22, 8243. [Google Scholar] [CrossRef]
- Marchewka, M.; Jarosz, D.; Ruszala, M.; Jus’, A.; Krzeminski, P.; Ploch, D.; Mas, K.; Wojnarowska-Nowak, R. Strain-Balanced InAs/AlSb Type II Superlattice Structures Growth on GaSb Substrate by Molecular Beam Epitaxy. Materials 2023, 16, 1968. [Google Scholar] [CrossRef]
- Achilli, E.; Armani, N.; Pedrini, J.; Greco, E.; Digrandi, S.; Fratta, A.; Pezzoli, F.; Campesato, R.; Timó, G. Step-Graded II-V Metamophic Buffers on Ge for High-Efficiency Photovoltaics: Investigation of Strain Relaxation and Morphology Evolution. Crystals 2025, 15, 900. [Google Scholar] [CrossRef]
- Anderson, R.L. Experiments on Ge-GaAs heterojunctions. Solid-State Electron. 1962, 5, 341–351. [Google Scholar] [CrossRef]
- Harrison, W.A. Elementary theory of heterojunctions. J. Vac. Sci. Technol. 1977, 14, 1016–1021. [Google Scholar] [CrossRef]
- Magri, R.; Zunger, A.; Kroemer, H. Evolution of the band-gap and band-edge energies of the lattice-matched GaInAsSb/GaSb and GaInAsSb/InAs alloys as a function of composition. J. Appl. Phys. 2005, 98, 043709. [Google Scholar] [CrossRef]
- Mathieu, H.; Lefebvre, P.; Christol, P. Simple analytical method for calculating exciton binding energies in semiconductor quantum wells. Phys. Rev. B 1992, 46, 4092. [Google Scholar] [CrossRef]
- Pinardi, K.; Jain, U.; Jain, S.C.; Maes, H.E.; Overstraeten, R.V. Critical thickness and strain relaxation in lattice mismatched II-VI semiconductor layers. J. Appl. Phys. 1998, 83, 4724. [Google Scholar] [CrossRef]
- Ohtake, A.; Mano, T.; Sakuma, Y. Strain relaxation in InAs heteroepitaxy on lattice-mismatched substrates. Sci. Rep. 2020, 10, 4605. [Google Scholar] [CrossRef]
- Davlatov, A.B.; Hameed, A.H.; Feddi, K.; Baymatov, P.J.; Abdulazizov, B.T.; Abdukarimov, A.A.; Al-Shatravi, A.G.; Al-Khursan, A.H.; Pérez, L.M.; Laroze, D.; et al. Strain, pressure and temperature effects on linear and nonlinear optical properties of InP/InAs1−xPx/InP quantum well heterostructures. Appl. Phys. A 2025, 131, 1. [Google Scholar] [CrossRef]
- Haugan, H.J.; Brown, G.J.; Peoples, J.A. On the study of antimony incorporation in InAs/InAsSb superlattices for infrared sensing. J. Vac. Sci. Technol. B 2017, 35, 02B107. [Google Scholar] [CrossRef]
- Gonzalez, D.; Flores, S.; Braza, V.; Reyes, D.F.; Gallego Carro, A.; Stanojevic, L.; Schwarz, M.; Ulloa, J.M.; Ben, T. Identification of the Segregation Kinetics of Ultrathin GaAsSb/GaAs Films Using AlAs Markers. Nanomaterials 2023, 13, 798. [Google Scholar] [CrossRef]
- Ince, F.F.; Frost, M.; Shima, D.; Rotter, T.J.; Addamane, S.; McCartney, M.R.; Smith, D.J.; Canedy, C.L.; Tomasulo, S.; Kim, C.S.; et al. Interband cascade light-emitting diodes grown on silicon substrates using GaSb buffer layer. Appl. Phys. Lett. 2024, 125, 011101. [Google Scholar] [CrossRef]





| Parameter | AlSb | InAs | InSb |
|---|---|---|---|
| a [] | 6.1355 | 6.0583 | 6.4793 |
| Eg [LT][eV] | 2.386 | 0.420 | 0.240 |
| me/m0 | 0.14 | 0.024 | 0.013 |
| mhh/m0 | 0.9 | 0.36 | 0.38 |
| C11 [GPa] | 87.69 | 83.29 | 66.08 |
| C12 [GPa] | 43.41 | 45.26 | 35.31 |
| ad [eV] | - | −5.08 | −6.94 |
| bd [eV] | - | −1.8 | −2 |
| ε | 11.21 | 14.3 | 17.2 |
| γ1 | 4.15 | 20.4 | 36.3 |
| γ2 | 1.01 | 8.3 | 16.1 |
| χ [eV] | 3.65 | 5.06 | 4.72 |
| bAlInSb [eV] | 0.43 | - | - |
| bInAsSb [eV] | 0.60 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Villa-Martínez, G.; Mendoza-Álvarez, J.G. Design of Lattice-Matched InAs1−xSbx/Al1−yInySb Type-I Quantum Wells with Tunable Near-To Mid-Infrared Emission (2–5 μm): A Strain-Optimized Approach for Optoelectronic Applications. Nanomaterials 2026, 16, 147. https://doi.org/10.3390/nano16020147
Villa-Martínez G, Mendoza-Álvarez JG. Design of Lattice-Matched InAs1−xSbx/Al1−yInySb Type-I Quantum Wells with Tunable Near-To Mid-Infrared Emission (2–5 μm): A Strain-Optimized Approach for Optoelectronic Applications. Nanomaterials. 2026; 16(2):147. https://doi.org/10.3390/nano16020147
Chicago/Turabian StyleVilla-Martínez, Gerardo, and Julio Gregorio Mendoza-Álvarez. 2026. "Design of Lattice-Matched InAs1−xSbx/Al1−yInySb Type-I Quantum Wells with Tunable Near-To Mid-Infrared Emission (2–5 μm): A Strain-Optimized Approach for Optoelectronic Applications" Nanomaterials 16, no. 2: 147. https://doi.org/10.3390/nano16020147
APA StyleVilla-Martínez, G., & Mendoza-Álvarez, J. G. (2026). Design of Lattice-Matched InAs1−xSbx/Al1−yInySb Type-I Quantum Wells with Tunable Near-To Mid-Infrared Emission (2–5 μm): A Strain-Optimized Approach for Optoelectronic Applications. Nanomaterials, 16(2), 147. https://doi.org/10.3390/nano16020147

