Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (175)

Search Parameters:
Keywords = X-band antennas

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 18467 KiB  
Article
Additive Manufacturing of Variable Density Lenses for Radio Frequency Communications in X-Band
by Aleksandr Voronov, Carmen Bachiller, Álvaro Ferrer, Felipe Vico, Lluc Sempere, Felipe Peñaranda and Rainer Kronberger
J. Manuf. Mater. Process. 2025, 9(7), 238; https://doi.org/10.3390/jmmp9070238 - 11 Jul 2025
Viewed by 440
Abstract
This paper presents three realizations of a complete set with a horn antenna and a focusing Gradient Index (GRIN) lens in X-band. The set was specifically designed for advancing additive manufacturing (AM) of polymers with different materials and techniques. The set has three [...] Read more.
This paper presents three realizations of a complete set with a horn antenna and a focusing Gradient Index (GRIN) lens in X-band. The set was specifically designed for advancing additive manufacturing (AM) of polymers with different materials and techniques. The set has three constituent parts: a horn antenna, a support, and a lens. The horn antenna is the active element and must be electrically conductive; it was manufactured with Rigid10K acrylic resin and subsequently metallized using an electroless process. The support needed to be light, robust, and electrically transparent, so that Polyamide 11 (PA11) was used. The lens realization was intended for a dielectric material whose permittivity varies with its density. Therefore, the dielectric permittivity and loss tangent of different polymeric materials used in AM at 2.45, 6.25, and 24.5 GHz were measured. In addition, stochastic and gyroid mesh structures have been studied. These structures allow for printing a volume that presents porosity, enabling control over material density. Measuring the dielectric characteristics of each material with each density enables the establishment of graphs that relate them. The sets were then manufactured, and their frequency response and radiation diagram were measured, showing excellent results when compared with the literature. Full article
(This article belongs to the Special Issue Recent Advances in Optimization of Additive Manufacturing Processes)
Show Figures

Graphical abstract

22 pages, 25204 KiB  
Article
An Improved NSGA-II Algorithm for Multi-Objective Optimization of Irregular Polygon Patch Antennas
by Zhenyang Ma and Jiahao Liu
Micromachines 2025, 16(7), 786; https://doi.org/10.3390/mi16070786 - 30 Jun 2025
Viewed by 441
Abstract
This paper presents an improved NSGA-II algorithm for the multi-objective optimization of irregular polygon patch antennas (IPPAs), improving convergence efficiency and Pareto front quality. The algorithm integrates adaptive mechanisms that dynamically adjust crossover and mutation rates based on generational progression, accelerating convergence while [...] Read more.
This paper presents an improved NSGA-II algorithm for the multi-objective optimization of irregular polygon patch antennas (IPPAs), improving convergence efficiency and Pareto front quality. The algorithm integrates adaptive mechanisms that dynamically adjust crossover and mutation rates based on generational progression, accelerating convergence while preserving solution diversity. Furthermore, a simulated annealing-inspired acceptance criterion is embedded during offspring generation to mitigate local optima trapping and enhance evolutionary robustness. A dual-objective formulation simultaneously minimizes antenna volume and maximizes operational bandwidth within the X-band. Optimization is executed via HFSS co-simulation, with detailed electromagnetic models ensuring physical realizability and design fidelity. The optimized antenna achieves a compact volume of 2807.6 mm3 and an operational bandwidth of 2.7 GHz. Experimental validation of fabricated prototypes demonstrates agreement with simulations, confirming the accuracy and reliability of the proposed method. These results demonstrate the effectiveness of the improved NSGA-II algorithm in addressing complex multi-objective design challenges and underscore its potential in advanced broadband antenna applications. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

15 pages, 6545 KiB  
Article
A X-Band Integrated Passive Device Structure Based on TMV-Embedded FOWLP
by Jiajie Yang, Lixin Xu, Xiangyu Yin and Ke Yang
Micromachines 2025, 16(6), 719; https://doi.org/10.3390/mi16060719 - 17 Jun 2025
Viewed by 348
Abstract
In this paper, the fabrication and testing of an integrated passive device (IPD) structure for X-band FMCW radar based on the fan-out wafer-level packaging (FOWLP) process are discussed. First, a transition line structure is added to the IPD structure to increase the upper [...] Read more.
In this paper, the fabrication and testing of an integrated passive device (IPD) structure for X-band FMCW radar based on the fan-out wafer-level packaging (FOWLP) process are discussed. First, a transition line structure is added to the IPD structure to increase the upper impedance limit of the substrate, so as to reduce the process implementation difficulty and development cost. Second, the vertical soldered SubMiniature Push-On Micro (SMPM) interfaces testing method is proposed, reducing the testing difficulty of the dual-port structure with the antenna. Finally, the process fabrication as well as testing of the IPD structure are completed. The dimensions of the fabricated structure are 16.983 × 24.099 × 0.56 mm3. Test results show that, with a center frequency of 8.5 GHz, the actual operational bandwidth of the structure reaches 7.66% (8.095–8.74 GHz), with a maximum isolation of 33.9 dB. The bandwidth with isolation greater than 20 dB is 1.76% (8.455–8.605 GHz). The maximum gain at the center frequency is 2.02 dBi. Additionally, experimental uncertainty analysis is performed on different IPD structures, and the measurement results are basically consistent. These results validate the feasibility of the FOWLP process in the miniaturization of X-band FMCW radar antenna and other passive devices. Full article
(This article belongs to the Special Issue Micro/Nano Sensors: Fabrication and Applications)
Show Figures

Figure 1

18 pages, 4955 KiB  
Article
Design of a High-Gain X-Band Electromagnetic Band Gap Microstrip Patch Antenna for CubeSat Applications
by Linh Phuong Ta, Daisuke Nakayama and Miyuki Hirose
Electronics 2025, 14(11), 2216; https://doi.org/10.3390/electronics14112216 - 29 May 2025
Viewed by 471
Abstract
Microstrip patch antennas (MPAs) are widely used in satellite communication due to their low profile, compact size, and ease of fabrication. This paper presents a design of an X-band microstrip patch antenna using an electromagnetic band gap (EBG) structure for CubeSat applications. The [...] Read more.
Microstrip patch antennas (MPAs) are widely used in satellite communication due to their low profile, compact size, and ease of fabrication. This paper presents a design of an X-band microstrip patch antenna using an electromagnetic band gap (EBG) structure for CubeSat applications. The X-band is preferred for CubeSat missions in high-speed communication, long distance or deep space because it allows communication at higher data rates, and the antenna is smaller than those used for lower frequency bands. In our study, the EBG elements are analyzed, modified and optimized so that the antenna can fit a 10 cm × 10 cm surface area of a standard 3U CubeSat structure while providing a significant high gain and circular polarization (CP). A noticeable point of this research is that the simplicity of the antenna and the EBG structure are being maintained by just using a simple single-probe feed to achieve a total antenna efficiency exceeding 90%, and the measured gain of around 11.7 dBi at the desired frequency of 8.483 GHz. Furthermore, the measured axial ratio (AR) is around 1.4 dB at 8.483 GHz, which satisfied the lower-than-3 dB requirement for CP antennas in general. The simulation, analysis and measured results are discussed in detail. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Graphical abstract

12 pages, 8791 KiB  
Article
Innovative Integration of High-Performance Floating Patch Antennas in Empty Substrate Integrated Waveguides
by Darío Herraiz Tirado, Marcos D. Fernandez, David Herraiz-Zanon, Ignacio Galeote Carballo, Akram Alomainy and Angel Belenguer
Appl. Sci. 2025, 15(8), 4549; https://doi.org/10.3390/app15084549 - 20 Apr 2025
Viewed by 369
Abstract
Substrate Integrated Circuits (SICs) represent a significant advancement in microwave communication systems due to their high efficiency, performance, and integration capabilities. Empty Substrate-Integrated Waveguides (ESIWs) are a type of SIC that offers benefits such as cost-effectiveness while maintaining high performance. This paper presents [...] Read more.
Substrate Integrated Circuits (SICs) represent a significant advancement in microwave communication systems due to their high efficiency, performance, and integration capabilities. Empty Substrate-Integrated Waveguides (ESIWs) are a type of SIC that offers benefits such as cost-effectiveness while maintaining high performance. This paper presents the design and implementation of the first floating patch antenna integrated into an ESIW, fed by a metallic rod. The proposed antenna is designed to operate in the X-band (8–12 GHz), with a resonance peak at 10 GHz. The patch antenna is square, which provides interesting radiation characteristics. It is excited by a metallic rod that connects the patch to the ESIW line, resulting in excellent performance in terms of measured radiation efficiency (over 90%) and −10 dB impedance bandwidth (approximately 20%). The prototype demonstrates minimal differences between the simulated and manufactured versions. These results highlight the potential of ESIW-fed floating patch antennas for advanced satellite communication systems. This will enable the integration of complete communication systems within ESIWs and facilitate the straightforward development of 2D element arrays. Full article
(This article belongs to the Special Issue Recent Advances in Antennas and Propagation)
Show Figures

Figure 1

17 pages, 11490 KiB  
Article
A Transceiver-Shared Photonic Integrated Broadband Multi-Beamformer Based on an Extended Blass Matrix
by Ruixuan Wang, Weichao Ma and Wangzhe Li
Photonics 2025, 12(4), 379; https://doi.org/10.3390/photonics12040379 - 14 Apr 2025
Viewed by 385
Abstract
Multi-beam phased array antennas have become essential in modern radar and communication systems, offering high gain, superior directivity, and exceptional agility. However, traditional multi-beam phased array antennas face significant challenges in meeting the growing demand for large, instantaneous bandwidth and compatibility with transmit-and-receive [...] Read more.
Multi-beam phased array antennas have become essential in modern radar and communication systems, offering high gain, superior directivity, and exceptional agility. However, traditional multi-beam phased array antennas face significant challenges in meeting the growing demand for large, instantaneous bandwidth and compatibility with transmit-and-receive multi-beamforming. To achieve these requirements, we propose a novel transceiver-shared photonic integrated broadband multi-beamforming network architecture based on an extended Blass matrix framework. Combined with wavelength division multiplexing, the architecture enables the separation and decoupling of transmit and receive channels, ensuring the independent synthesis of multiple beams for transmission and receiving. Furthermore, we design and implement a 3 × 3 transceiver-shared photonic integrated broadband multi-beamformer on a standard silicon-on-insulator platform. The proposed multi-beamformer successfully demonstrates broadband multi-beamforming across six independent directions, with transmitted beams at 15°, 30°, and 45° and received beams at 20°, 40°, and 60°, covering both the whole X and Ku bands. Full article
Show Figures

Figure 1

12 pages, 12337 KiB  
Article
Dual-Frequency Common-Cable Waveguide Slot Satellite Communication Antenna
by Youzhi Liu, Linshu Huang, Hongke Li and Ce Sun
Electronics 2025, 14(7), 1326; https://doi.org/10.3390/electronics14071326 - 27 Mar 2025
Cited by 1 | Viewed by 325
Abstract
A marine cable-conformal dual-band omnidirectional circularly polarized waveguide slot antenna is proposed for L/S-band (1.59–1.84 GHz/2.48–2.55 GHz) maritime satellite systems. Axially symmetric X-shaped slots enable dual-band operation with 14.6% impedance bandwidth (L-band) and axial ratio < 3 dB. A three-stage tapered coaxial feeding [...] Read more.
A marine cable-conformal dual-band omnidirectional circularly polarized waveguide slot antenna is proposed for L/S-band (1.59–1.84 GHz/2.48–2.55 GHz) maritime satellite systems. Axially symmetric X-shaped slots enable dual-band operation with 14.6% impedance bandwidth (L-band) and axial ratio < 3 dB. A three-stage tapered coaxial feeding network achieves efficient matching (|S11| < −10 dB) across a BeiDou-1 uplink (1.61–1.6265 GHz) and downlink (2.4835–2.5 GHz), delivering 4.1 dBi peak omnidirectional gain at 1.6 GHz. The compact design (radial dimension ≤ 0.25λ) offers robust performance in harsh marine environments with integrated wideband, high-gain, and conformal capabilities. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

10 pages, 5038 KiB  
Communication
ITO Meta-Absorber-Loaded Conformal UHF Monopole Antenna with Wide-Angel RCS Reduction
by Pan Lu, Jiuhao Gong, Xiaona Liu, Yuanxi Cao, Anxue Zhang and Sen Yan
Materials 2025, 18(6), 1379; https://doi.org/10.3390/ma18061379 - 20 Mar 2025
Cited by 1 | Viewed by 514
Abstract
In this paper, a conformal UHF antenna with a wide-angle radar cross section (RCS) reduction capability is proposed. The radiator of the design is a planar monopole antenna. Since the large physical size of the antenna in UHF band can generate a scatter [...] Read more.
In this paper, a conformal UHF antenna with a wide-angle radar cross section (RCS) reduction capability is proposed. The radiator of the design is a planar monopole antenna. Since the large physical size of the antenna in UHF band can generate a scatter beam with a large RCS in the high operating frequency of radars and other sensing applications, i.e., the X band, two types of ITO (Indium Tin Oxide) meta-absorber are proposed and loaded onto the monopole antenna to suppress the scatter. For the incident beam around the direction orthogonal to the radiator plane, the periodical meta-absorber can realize around a 20 dB RCS reduction in the X band. The incident wave around the parallel direction of the radiator is absorbed by the taper meta-absorber, which can greatly suppress the surface and then reduce the RCS in the horizontal plane. The combined effect means the antenna can achieve a wide-angle RCS reduction. It should be noted that the antenna can still produce a high-efficiency omnidirectional beam after the lossy meta-absorber is loaded. In our opinion, the advantages of the proposed antenna design, including good radiation performance in UHF band and high RCS reduction in X band, make it a suitable candidate for airborne and drone applications. Full article
(This article belongs to the Special Issue Advancements in Optical Materials and Photonic Device Technologies)
Show Figures

Figure 1

18 pages, 7329 KiB  
Article
Visible-Light Photocatalytic Activity of a ZnO-Loaded Isoreticular Metal-Organic Framework
by Ana Y. Rojas-Forero, Laura Y. Hernández-Benítez, María L. Ospina-Castro, Nataly J. Galán-Freyle, John R. Castro-Suarez, Maximiliano Méndez-López, Samuel P. Hernández-Rivera, José A. Centeno-Ortiz, Sandra P. Romero-Nieto and Leonardo C. Pacheco-Londoño
Molecules 2025, 30(6), 1375; https://doi.org/10.3390/molecules30061375 - 19 Mar 2025
Cited by 1 | Viewed by 713
Abstract
A hybrid material composed of IRMOF-3 and ZnO (IRMOF-3/ZnO) was synthesized to enhance photocatalytic methylene blue (MB) degradation under visible-light irradiation. Scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, and diffuse-reflectance UV-Vis analyses confirmed the successful integration of ZnO into the IRMOF-3 framework. [...] Read more.
A hybrid material composed of IRMOF-3 and ZnO (IRMOF-3/ZnO) was synthesized to enhance photocatalytic methylene blue (MB) degradation under visible-light irradiation. Scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, and diffuse-reflectance UV-Vis analyses confirmed the successful integration of ZnO into the IRMOF-3 framework. Compared with unmodified IRMOF-3, the hybrid demonstrated superior MB decomposition, as evidenced by faster reaction rate constants and shorter half-lives. Monitoring the MB absorbance at 670 nm (λmax) revealed more pronounced colorant removal when IRMOF-3/ZnO was exposed to a visible-light source. Diffuse-reflectance UV-Vis spectroscopy showed that IRMOF-3 has a band gap of 2.7 eV, whereas IRMOF-3/ZnO exhibits a slightly higher band gap of 2.8 eV. This modest shift, coupled with the strong interaction between the ZnO semiconductor and the MOF’s amine functionalities, enabled two distinct energy-transfer pathways: intermolecular transfer from IRMOF-3 linkers (acting as visible-light antennas) to ZnO, and intramolecular transfer from Zn to IRMOF-3. Together, these pathways generated abundant free radicals for efficient dye degradation. Despite the necessity for careful synthesis protocols and control of operating conditions to preserve the MOF structure and optimize ZnO loading, the IRMOF-3/ZnO hybrid shows promise as a robust, cost-effective photocatalyst for water-pollutant remediation, taking advantage of the more abundant visible region of solar light. Full article
(This article belongs to the Special Issue Molecular Spectroscopy in Applied Chemistry)
Show Figures

Figure 1

14 pages, 9498 KiB  
Article
Electromagnetic Absorber-Embedded Ka-Band Double-Layer Tapered Slot Antenna for the Reduced Radar Cross Section at X-Band
by Wonkyo Kim, Youngwan Kim, Hee-Duck Chae, Jihan Joo, Jun-Beom Kwon and Ick-Jae Yoon
Appl. Sci. 2025, 15(5), 2507; https://doi.org/10.3390/app15052507 - 26 Feb 2025
Cited by 1 | Viewed by 594
Abstract
An electromagnetic (EM) absorber-embedded Ka-band double-layer tapered slot antenna (DLTSA) is proposed in this work. The EM absorber is placed on both sides of the tapered radiating slots as a means of achieving the reduced monostatic radar cross section (RCS) at the X-band. [...] Read more.
An electromagnetic (EM) absorber-embedded Ka-band double-layer tapered slot antenna (DLTSA) is proposed in this work. The EM absorber is placed on both sides of the tapered radiating slots as a means of achieving the reduced monostatic radar cross section (RCS) at the X-band. A conventional tapered slot antenna (TSA) with EM absorbers at the same position suffers from the distorted current distribution from the feedline to the radiating slots and causes a degraded radiation performance with a tilted beam. In contrast, the DLTSA with EM absorbers maintains the impedance and radiation characteristics of the antenna without the EM absorbers, while achieving the reduced monostatic RCS for the cross-polarized incident wave. The functionality of the reduced RCS is verified with the 4-by-4 DLTSA array design. The 4-by-4 array prototype with FGM-125 EM absorbers is matched at the Ka-band with a 14.7 dBi boresight gain at 35 GHz. The monostatic RCS is measured in an indoor environment, showing 6.5 dB monostatic RCS reduction at the X-band on average, verifying the computed expectations. This work validates the possible use of EM absorbers at the front side of a missile seeker composed of end-fire radiating elements. Full article
(This article belongs to the Special Issue Multi-Band/Broadband Antenna Design, Optimization and Measurement)
Show Figures

Figure 1

19 pages, 4707 KiB  
Article
The Impact of Lightning Rods on the Differential Reflectivity of X-Band Radar
by Hui Wang, Haifeng Yu, Hao Wen and Zhifeng Shu
Atmosphere 2025, 16(2), 204; https://doi.org/10.3390/atmos16020204 - 11 Feb 2025
Viewed by 628
Abstract
Lightning rod configuration is crucial in radar stations. With widespread application of dual-polarisation technology, lightning rods have a significant impact on radar differential reflectivity, particularly for X-band radars with shorter wavelengths. Quantitative analyses and methods for reducing the impact of lightning rods on [...] Read more.
Lightning rod configuration is crucial in radar stations. With widespread application of dual-polarisation technology, lightning rods have a significant impact on radar differential reflectivity, particularly for X-band radars with shorter wavelengths. Quantitative analyses and methods for reducing the impact of lightning rods on radar data quality have become particularly important. In this study, lightning rods of two different sizes were configured on Beijing’s Fangshan X-band radar to perform antenna far-field tests and precipitation process comparative observation tests, and to conduct a quantitative impact assessment of the antenna electrical performance parameters and radar differential reflectivity. First, far-field tests were conducted on the impact of small- and original-diameter lightning rods on the Fangshan X-band radar. The results showed that the horizontal polarisation beam width was reduced by 0.081 and 0.08°, while the vertical polarisation beam width was reduced by 0.02 and 0.11°, respectively. Second, light rain or snowfall with a signal-to-noise ratio greater than 15 dB, and a correlation coefficient greater than 0.985, were selected for comparative observation. When other environmental influences could not be isolated, the original lightning rod showed a maximum ZDR value of 1.32 dB and a maximum azimuth span of 35°. The maximum ZDR value of the small-diameter lightning rod was 0.18 dB and the maximum azimuth span was 20°; however, its deviation from the theoretical maximum value is only 0.05 dB. Therefore, once the system configuration is determined, the design of an appropriate lightning rod scheme can effectively improve radar data quality. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

12 pages, 2891 KiB  
Article
Dual-Band Multi-Layer Antenna Array with Circular Polarization and Gain Enhancement for WLAN and X-Band Applications
by Bal S. Virdee, Tohid Aribi and Tohid Sedghi
Micromachines 2025, 16(2), 203; https://doi.org/10.3390/mi16020203 - 10 Feb 2025
Viewed by 1003
Abstract
This paper presents a novel multi-layer, dual-band antenna array designed for WLAN and X-band applications, incorporating several innovative features. The design employs a pentagon-shaped radiating element with parasitic strips to enable dual-band operation. A dual-transformed feed network with chamfered feed strip corners minimizes [...] Read more.
This paper presents a novel multi-layer, dual-band antenna array designed for WLAN and X-band applications, incorporating several innovative features. The design employs a pentagon-shaped radiating element with parasitic strips to enable dual-band operation. A dual-transformed feed network with chamfered feed strip corners minimizes radiation distortion and cross-polarization while introducing orthogonal phase shifts to achieve circular polarization (CP) at the X-band. A Fabry–Pérot structure, strategically placed above the array, enhances gain in the WLAN band. The antenna demonstrates an impedance bandwidth of 1.8 GHz (S11 < −10 dB) at the WLAN band, with 36% fractional bandwidth, and 4.3 GHz at the X-band, with 43% fractional bandwidth. Measured peak gains are 7 dBi for the WLAN band and 6.8 dBi for the X-band, with favourable S11 levels, omni-directional radiation patterns, and consistent gain across both bands. Circular polarization is achieved within 8.5–10.4 GHz. Experimental results confirm the array’s significant advancements in multi-band performance, making it highly suitable for diverse wireless communication applications. Full article
(This article belongs to the Special Issue RF Devices: Technology and Progress)
Show Figures

Figure 1

19 pages, 10969 KiB  
Article
Fish-Tail Structured Fractal Monopole Printed Antenna with Dual Broadband Characteristics for Sub–6GHz 5G and X–Band Radar Applications
by Guntamukkala Yaminisasi, Pokkunuri Pardhasaradhi, Nagandla Prasad, Boddapati Taraka Phani Madhav, Abeer D. Algarni, Sudipta Das and Mohammed El Ghzaoui
Fractal Fract. 2025, 9(1), 29; https://doi.org/10.3390/fractalfract9010029 - 7 Jan 2025
Cited by 2 | Viewed by 1148
Abstract
This article presents a printed antenna, designed with a fractal-shaped patch with fish-tail structured outer edges, a tapered feedline, and a rectangular notch-based defected partial ground structure (DPGS). The presented design has been printed on a FR-4 substrate, which has a dielectric constant [...] Read more.
This article presents a printed antenna, designed with a fractal-shaped patch with fish-tail structured outer edges, a tapered feedline, and a rectangular notch-based defected partial ground structure (DPGS). The presented design has been printed on a FR-4 substrate, which has a dielectric constant of 4.4 and a loss tangent of 0.035. The overall dimension of the proposed antenna is 24 × 40 × 1.6 mm3. The proposed fractal antenna achieved dual broad-band functionality by maintaining the compact size of the radiator. The designed fractal radiator can operate at three distinct resonant frequencies (3.22, 7.64, and 9.41 GHz), covering two distinct frequency bands, extending from 2.5 to 4.2 GHz and 7 to 9.8 GHz. A thorough parametric analysis has been carried out using CST Studio suite 2019 licensed version to achieve better performance in terms of S11 (dB), radiation efficiency, and gain over the operating frequency range. The operating bands fall within the S, C, and X bands to support sub-6GHz 5G and Radar applications at the microwave frequency range. Full article
Show Figures

Figure 1

19 pages, 8144 KiB  
Article
Thermal Optimization Design for a Small Flat-Panel Synthetic Aperture Radar Satellite
by Tian Bai, Yuanbo Zhang, Lin Kong, Hongrui Ao, Jisong Yu and Lei Zhang
Aerospace 2024, 11(12), 982; https://doi.org/10.3390/aerospace11120982 - 27 Nov 2024
Viewed by 1371
Abstract
This article introduces a small microwave remote sensing satellite weighing 310 kg, operating in low earth orbit (LEO). It is equipped with an X-band synthetic aperture radar (SAR) antenna, capable of a maximum imaging resolution of 0.6 m. To achieve the objectives of [...] Read more.
This article introduces a small microwave remote sensing satellite weighing 310 kg, operating in low earth orbit (LEO). It is equipped with an X-band synthetic aperture radar (SAR) antenna, capable of a maximum imaging resolution of 0.6 m. To achieve the objectives of lower cost, reduced weight, minimized power consumption, and enhanced temperature stability, an optimized thermal design method tailored for satellites has been developed, with a particular focus on SAR antennas. The thermal control method of the antenna is closely integrated with structural design, simplifying the thermal design and its assembly process, reducing the resource consumption of thermal control systems. The distribution of thermal interface material (TIM) in the antenna assembly has been carefully calculated, achieving a zero-consumption thermal design for the SAR antenna. And the temperature difference of the entire antennas when powered on and powered off would not exceed 17 °C, meeting the specification requirements. In addition, to ensure the accuracy of antenna pointing, the support plate of antennas requires stable temperature. The layout of the heaters on the board has been optimized, reducing the use of heaters by 30% while ensuring that the temperature variation of the support board remains within 5 °C. Then, an on-orbit thermal simulation analysis of the satellite was conducted to refine the design and verification. Finally, the thermal test of the SAR satellite under vacuum conditions was conducted, involving operating the high-power antenna, verifying that the peak temperature of T/RM is below 29 °C, the temperature fluctuation amplitude during a single imaging task is 10 °C, and the lowest temperature point of the support plate is 16 °C. The results of the thermal simulation and test are highly consistent, verifying the correctness and effectiveness of the thermal design. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

21 pages, 13387 KiB  
Article
Eight Element Wideband Antenna with Improved Isolation for 5G Mid Band Applications
by Deepthi Mariam John, Shweta Vincent, Sameena Pathan, Alexandros-Apostolos A. Boulogeorgos, Jaume Anguera, Tanweer Ali and Rajiv Mohan David
Technologies 2024, 12(10), 200; https://doi.org/10.3390/technologies12100200 - 17 Oct 2024
Viewed by 2345
Abstract
Modern wireless communication systems have undergone a radical change with the introduction of multiple-input multiple-output (MIMO) antennas, which provide increased channel capacity, fast data rates, and secure connections. To achieve real-time requirements, such antenna technology needs to have good gains, wider bandwidths, satisfactory [...] Read more.
Modern wireless communication systems have undergone a radical change with the introduction of multiple-input multiple-output (MIMO) antennas, which provide increased channel capacity, fast data rates, and secure connections. To achieve real-time requirements, such antenna technology needs to have good gains, wider bandwidths, satisfactory radiation characteristics, and high isolation. This article presents an eight-element CPW-fed antenna for the 5G mid-band. The proposed antenna consists of eight symmetrical, modified circular monopole antennas with a connected CPW-fed ground plane that offers 24 dB isolation over the operating range. The antenna is further investigated in terms of the scattering parameters, and radiation characteristics under both the x and y-axis bending scenarios. The antenna holds a volume of 83 × 129 × 0.1 mm3 and covers a measured impedance bandwidth of 4.5–5.5 GHz (20%) with an average gain of 4 dBi throughout the operating band. MIMO diversity performance of the antenna is performed, and the antenna exhibits good performance suitable for MIMO applications. Furthermore, the channel capacity (CC) is estimated, and the antenna gives a value of 41.8–42.6 bps/Hz within the operating bandwidth, which is very close to an ideal 8 × 8 MIMO system. The antenna shows an excellent match between the simulated and measured findings. Full article
(This article belongs to the Special Issue Perpetual Sensor Nodes for Sustainable Wireless Network Applications)
Show Figures

Figure 1

Back to TopTop