Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,662)

Search Parameters:
Keywords = Wilcoxon tests

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
49 pages, 24339 KiB  
Article
An Enhanced Slime Mould Algorithm Based on Best–Worst Management for Numerical Optimization Problems
by Tongzheng Li, Hongchi Meng, Dong Wang, Bin Fu, Yuanyuan Shao and Zhenzhong Liu
Biomimetics 2025, 10(8), 504; https://doi.org/10.3390/biomimetics10080504 (registering DOI) - 1 Aug 2025
Abstract
The Slime Mould Algorithm (SMA) is a widely used swarm intelligence algorithm. Encouraged by the theory of no free lunch and the inherent shortcomings of the SMA, this work proposes a new variant of the SMA, called the BWSMA, in which three improvement [...] Read more.
The Slime Mould Algorithm (SMA) is a widely used swarm intelligence algorithm. Encouraged by the theory of no free lunch and the inherent shortcomings of the SMA, this work proposes a new variant of the SMA, called the BWSMA, in which three improvement mechanisms are integrated. The adaptive greedy mechanism is used to accelerate the convergence of the algorithm and avoid ineffective updates. The best–worst management strategy improves the quality of the population and increases its search capability. The stagnant replacement mechanism prevents the algorithm from falling into a local optimum by replacing stalled individuals. In order to verify the effectiveness of the proposed method, this paper conducts a full range of experiments on the CEC2018 test suite and the CEC2022 test suite and compares BWSMA with three derived algorithms, eight SMA variants, and eight other improved algorithms. The experimental results are analyzed using the Wilcoxon rank-sum test, the Friedman test, and the Nemenyi test. The results indicate that the BWSMA significantly outperforms these compared algorithms. In the comparison with the SMA variants, the BWSMA obtained average rankings of 1.414, 1.138, 1.069, and 1.414. In comparison with other improved algorithms, the BWSMA obtained average rankings of 2.583 and 1.833. Finally, the applicability of the BWSMA is further validated through two structural optimization problems. In conclusion, the proposed BWSMA is a promising algorithm with excellent search accuracy and robustness. Full article
(This article belongs to the Special Issue Nature-Inspired Metaheuristic Optimization Algorithms 2025)
Show Figures

Figure 1

13 pages, 239 KiB  
Article
Haglund’s Deformity with Preoperative Achilles Tendon Rupture: A Retrospective Comparative Study
by Kevin A. Wu, Alexandra N. Krez, Katherine M. Kutzer, Albert T. Anastasio, Zoe W. Hinton, Kali J. Morrissette, Andrew E. Hanselman, Karl M. Schweitzer, Samuel B. Adams, Mark E. Easley, James A. Nunley and Annunziato Amendola
Complications 2025, 2(3), 19; https://doi.org/10.3390/complications2030019 (registering DOI) - 1 Aug 2025
Abstract
Introduction: Haglund’s deformity, characterized by bony enlargement at the back of the heel, often coincides with Achilles tendon pathology due to impingement on the retrocalcaneal bursa and tendon insertion. Surgical management of Haglund’s deformity with a preexisting Achilles tendon rupture is complex, and [...] Read more.
Introduction: Haglund’s deformity, characterized by bony enlargement at the back of the heel, often coincides with Achilles tendon pathology due to impingement on the retrocalcaneal bursa and tendon insertion. Surgical management of Haglund’s deformity with a preexisting Achilles tendon rupture is complex, and understanding the outcomes of this subset of patients is essential for optimizing treatment strategies. Methods: This retrospective study reviewed patients undergoing open surgical management for Haglund’s syndrome between January 2015 and December 2023. Patients with chronic degenerative changes secondary to Haglund’s deformity and a preoperative Achilles tendon rupture were compared to those without. Data on demographics, surgical techniques, weightbearing protocols, and complications were collected. Univariate analysis was performed using χ2 or Fisher’s exact test for categorical variables, and the T-test or Wilcoxon rank-sum test for continuous and ordinal variables, with normality assessed via the Shapiro–Wilk test. Results: Four hundred and three patients were included, with 13 having a preoperative Achilles tendon rupture. There was a higher incidence of preoperative ruptures among males. Surgical repair techniques and postoperative weightbearing protocols varied, though were not randomized. Complications included persistent pain, wound breakdown, infection, plantar flexion weakness, and revision surgery. While patients with Haglund’s deformity and a preoperative Achilles tendon rupture demonstrated a trend toward higher complication rates, including postoperative rupture and wound breakdown, these differences were not statistically significant in our analysis. Conclusions: A cautious approach is warranted in managing these patients, with careful consideration of surgical planning and postoperative rehabilitation. While our findings provide valuable insights into managing patients with Haglund’s deformity and preoperative Achilles tendon rupture, the retrospective design, limited sample size of the rupture group, and short duration of follow-up restrict generalizability and the strength of the conclusions by limiting the power of the analysis and underestimating the incidence of long-term complications. Therefore, the results of this study should be interpreted with caution. Further studies with larger patient cohorts, validated functional outcome measures, and comparable follow-up durations between groups are needed to confirm these results and optimize treatment approaches. Full article
28 pages, 746 KiB  
Article
Comparing Microprocessor-Controlled and Non-Microprocessor-Controlled Prosthetic Knees Across All Classified Domains of the ICF Model: A Pragmatic Clinical Trial
by Charlotte E. Bosman, Bregje L. Seves, Jan H. B. Geertzen, Behrouz Fard, Irene E. Newsum, Marieke A. Paping, Aline H. Vrieling and Corry K. van der Sluis
Prosthesis 2025, 7(4), 89; https://doi.org/10.3390/prosthesis7040089 (registering DOI) - 1 Aug 2025
Abstract
Background: The use of lower limb prosthesis can impact all aspects of daily life, activities and participation. Various studies have compared the microprocessor-controlled knee (MPK) to the non-microprocessor-controlled knee (NMPK) using a variety of different outcome measures, but results are inconsistent and raise [...] Read more.
Background: The use of lower limb prosthesis can impact all aspects of daily life, activities and participation. Various studies have compared the microprocessor-controlled knee (MPK) to the non-microprocessor-controlled knee (NMPK) using a variety of different outcome measures, but results are inconsistent and raise the question of which type of knee is most effective. Therefore, we aimed to assess the effect of MPKs compared to NMPKs across all classified ICF domains in adult prosthesis users. Methods: Participants performed baseline measurements with the NMPK (T0). One week later, they started a four-to-six-week trial period with the MPK. Afterward, measurements were repeated with the MPK (T1). Functional tests (6MWT, TUG-test and activity monitor) and questionnaires (ABC, SQUASH, USER-P and PEQ) were used. For statistical analyses, paired t-tests, Wilcoxon signed-rank tests and Chi2 test were applied. The Benjamini–Hochberg procedure was applied to correct for multiple testing. Results: Twenty-five participants were included. Using an MPK compared to an NMPK significantly resulted in improvements in balance and walking confidence, safety, walking distance and self-reported walking ability, as well as a decrease in number of stumbles and falls. Additionally, participants using an MPK were significantly more satisfied with their participation, experienced fewer restrictions, reported greater satisfaction with the appearance and utility of the MPK, experienced less social burden and reported better well-being, compared to using an NMPK. Conclusions: Using an MPK instead of an NMPK can lead to significant improvements in all classified ICF domains, such as improved walking ability, confidence and satisfaction and reduced fall risk. Full article
(This article belongs to the Section Orthopedics and Rehabilitation)
Show Figures

Figure 1

12 pages, 1472 KiB  
Article
Furosemide Reduces Radionuclide Activity in the Bladder in 18F-PSMA-1007-PET/CT: A Single-Center Retrospective Intra-Individual Comparative Study
by Martin A. Cahenzli, Andreas S. Kreusch, Philipp Huber, Marco Dressler, Janusch P. Blautzik and Gregor Sommer
Diagnostics 2025, 15(15), 1931; https://doi.org/10.3390/diagnostics15151931 - 31 Jul 2025
Abstract
Background/Objectives: 18F-PSMA-1007 is one of the more widely used radioligands in prostate cancer imaging with PET/CT. Its major advantage lies in the low urinary tracer activity due to primarily hepatobiliary clearance, but unexpectedly high tracer accumulation in the bladder can occur, [...] Read more.
Background/Objectives: 18F-PSMA-1007 is one of the more widely used radioligands in prostate cancer imaging with PET/CT. Its major advantage lies in the low urinary tracer activity due to primarily hepatobiliary clearance, but unexpectedly high tracer accumulation in the bladder can occur, potentially hindering assessment of lesions near the prostate bed. This study assesses the impact of furosemide on 18F-PSMA-1007 tracer accumulation in the bladder. Methods: In this single-center, retrospective, intra-individual comparative analysis, 18 patients undergoing two consecutive 18F-PSMA-1007 PET/CT scans for biochemical relapse (BCR) or persistence (BCP)—one with and one without prior furosemide administration—were included. Images were acquired 60 min post-injection of 250 MBq of tracer activity. Standardized Uptake Values (SUVmax, SUVpeak, SUVmean) were measured in the bladder and in tissues with physiological uptake by three readers. Differences were analyzed using Wilcoxon signed-rank tests. The inter-reader agreement was assessed using intraclass correlation coefficient. Results: Furosemide significantly decreased bladder SUVmax, SUVpeak, and SUVmean (all p < 0.001). Mean bladder SUVmax decreased from 13.20 ± 10.40 to 3.92 ± 3.47, SUVpeak from 10.94 ± 8.02 to 3.47 ± 3.13, and SUVmean from 8.74 ± 6.66 to 2.81 ± 2.56, representing a large effect size (r ≈ 0.55). Physiological tracer uptake in most organs was not significantly influenced by furosemide (all p > 0.05). Conclusions: Despite the predominantly hepatobiliary clearance of 18F-PSMA-1007, furosemide-induced forced diuresis leads to a significant reduction in tracer activity in the bladder, which in clinical practice could help in early detection of tumor recurrence. Full article
(This article belongs to the Special Issue Research Update on Nuclear Medicine)
Show Figures

Figure 1

18 pages, 3493 KiB  
Article
Red-Billed Blue Magpie Optimizer for Modeling and Estimating the State of Charge of Lithium-Ion Battery
by Ahmed Fathy and Ahmed M. Agwa
Electrochem 2025, 6(3), 27; https://doi.org/10.3390/electrochem6030027 (registering DOI) - 31 Jul 2025
Viewed by 31
Abstract
The energy generated from renewable sources has an intermittent nature since solar irradiation and wind speed vary continuously. Hence, their energy should be stored to be utilized throughout their shortage. There are various forms of energy storage systems while the most widespread technique [...] Read more.
The energy generated from renewable sources has an intermittent nature since solar irradiation and wind speed vary continuously. Hence, their energy should be stored to be utilized throughout their shortage. There are various forms of energy storage systems while the most widespread technique is the battery storage system since its cost is low compared to other techniques. Therefore, batteries are employed in several applications like power systems, electric vehicles, and smart grids. Due to the merits of the lithium-ion (Li-ion) battery, it is preferred over other kinds of batteries. However, the accuracy of the Li-ion battery model is essential for estimating the state of charge (SOC). Additionally, it is essential for consistent simulation and operation throughout various loading and charging conditions. Consequently, the determination of real battery model parameters is vital. An innovative application of the red-billed blue magpie optimizer (RBMO) for determining the model parameters and the SOC of the Li-ion battery is presented in this article. The Shepherd model parameters are determined using the suggested optimization algorithm. The RBMO-based modeling approach offers excellent execution in determining the parameters of the battery model. The suggested approach is compared to other programmed algorithms, namely dandelion optimizer, spider wasp optimizer, barnacles mating optimizer, and interior search algorithm. Moreover, the suggested RBMO is statistically evaluated using Kruskal–Wallis, ANOVA tables, Friedman rank, and Wilcoxon rank tests. Additionally, the Li-ion battery model estimated via the RBMO is validated under variable loading conditions. The fetched results revealed that the suggested approach achieved the least errors between the measured and estimated voltages compared to other approaches in two studied cases with values of 1.4951 × 10−4 and 2.66176 × 10−4. Full article
Show Figures

Figure 1

30 pages, 13783 KiB  
Article
Daily Reference Evapotranspiration Derived from Hourly Timestep Using Different Forms of Penman–Monteith Model in Arid Climates
by A A Alazba, Mohamed A. Mattar, Ahmed El-Shafei, Farid Radwan, Mahmoud Ezzeldin and Nasser Alrdyan
Water 2025, 17(15), 2272; https://doi.org/10.3390/w17152272 - 30 Jul 2025
Viewed by 116
Abstract
In arid and semi-arid climates, where water scarcity is a persistent challenge, accurately estimating reference evapotranspiration (ET) becomes essential for sustainable water management and agricultural planning. The objectives of this study are to compare hourly ET among P–M ASCE, P–M FAO, and P–M [...] Read more.
In arid and semi-arid climates, where water scarcity is a persistent challenge, accurately estimating reference evapotranspiration (ET) becomes essential for sustainable water management and agricultural planning. The objectives of this study are to compare hourly ET among P–M ASCE, P–M FAO, and P–M KSA mathematical models. In addition to the accuracy assessment of daily ET derived from hourly timestep calculations for the P–M ASCE, P–M FAO, and P–M KSA. To achieve these goals, a total of 525,600-min data points from the Riyadh region, KSA, were used to compute the reference ET at multiple temporal resolutions: hourly, daily, hourly averaged over 24 h, and daily as the sum of 24 h values, across all selected Penman–Monteith (P–M) models. For hourly investigation, the comparison between reference ET computed as average hourly values and as daily/24 h values revealed statistically and practically significant differences. The Wilcoxon test confirmed a statistically significant difference (p < 0.0001) with R2 of 94.75% for ASCE, 94.87% for KSA at hplt = 50 cm, 92.41% for FAO, and 92.44% for KSA at hplt = 12 cm. For daily investigation, comparing the sum of 24 h ET computations to daily ET measurements revealed an underestimation of daily ET values. The Wilcoxon test confirmed a statistically significant difference (p < 0.0001), with R2 exceeding 90% for all studied reference ET models. This comprehensive approach enabled a rigorous evaluation of reference ET dynamics under hyper-arid climatic conditions, which are characteristic of central Saudi Arabia. The findings contribute to the growing body of literature emphasizing the importance of high-frequency meteorological data for improving ET estimation accuracy in arid and semi-arid regions. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

14 pages, 1173 KiB  
Article
Biomechanical Alterations in the Unweight Phase of the Single-Leg Countermovement Jump After ACL Reconstruction
by Roberto Ricupito, Marco Bravi, Fabio Santacaterina, Giandomenico Campardo, Riccardo Guarise, Rosalba Castellucci, Ismail Bouzekraoui Alaoui and Florian Forelli
J. Funct. Morphol. Kinesiol. 2025, 10(3), 296; https://doi.org/10.3390/jfmk10030296 - 30 Jul 2025
Viewed by 140
Abstract
Background: Anterior cruciate ligament reconstruction (ACLr) often leads to asymmetries between limbs, with variable return-to-performance rates in athletes. The single-leg countermovement jump (SLCMJ) is commonly used to assess postoperative knee function. However, limited research has explored deficits specifically during the unweighting phase of [...] Read more.
Background: Anterior cruciate ligament reconstruction (ACLr) often leads to asymmetries between limbs, with variable return-to-performance rates in athletes. The single-leg countermovement jump (SLCMJ) is commonly used to assess postoperative knee function. However, limited research has explored deficits specifically during the unweighting phase of the jump. Methods: This study assessed 53 recreational athletes (11 females, 42 males) between 6 and 9 months post-ACLr using a dual force plate system (1000 Hz). Each participant performed three maximal-effort SLCMJs per limb. Outcome measures included jump height, negative peak velocity, minimum force, and center of mass (COM) displacement. Paired t-tests and Wilcoxon tests were used to compare the ACLr limb with the contralateral limb. Results: Compared to the healthy limb, the ACLr limb showed significantly lower negative peak velocity (−0.80 ± 0.40 m/s vs. −0.94 ± 0.40 m/s, p < 0.001), higher minimum force (36.75 ± 17.88 kg vs. 32.05 ± 17.25 kg, p < 0.001), and reduced COM displacement (−17.62 ± 6.25 cm vs. −19.73 ± 5.34 cm, p = 0.014). Eccentric phase duration did not differ significantly. Conclusions: Athletes post-ACLr demonstrate altered neuromuscular control during the early SLCMJ phase. These findings highlight the importance of rehabilitation strategies targeting eccentric strength and symmetry restoration. Full article
(This article belongs to the Special Issue Movement Analysis in Sports and Physical Therapy)
Show Figures

Figure 1

8 pages, 374 KiB  
Communication
Analyzing 8-Oxoguanine in Exhaled Breath Condensate: A Novel Within-Subject Laboratory Experimental Study on Waterpipe Smokers
by Natasha Shaukat, Tarana Ferdous, Simanta Roy, Sharika Ferdous, Sreshtha Chowdhury, Leonardo Maya, Anthony Paul DeCaprio, Wasim Maziak and Taghrid Asfar
Antioxidants 2025, 14(8), 929; https://doi.org/10.3390/antiox14080929 - 29 Jul 2025
Viewed by 144
Abstract
Introduction: This study aimed to analyze exhaled breath condensate (EBC) for 8-oxoguanine (8-oxoGua), an oxidative stress biomarker among waterpipe (WP) smokers. Methods: In a within-subject pre-post exposure design, thirty waterpipe smokers completed two 45 min laboratory sessions. EBC was analyzed for 8-oxoGua before [...] Read more.
Introduction: This study aimed to analyze exhaled breath condensate (EBC) for 8-oxoguanine (8-oxoGua), an oxidative stress biomarker among waterpipe (WP) smokers. Methods: In a within-subject pre-post exposure design, thirty waterpipe smokers completed two 45 min laboratory sessions. EBC was analyzed for 8-oxoGua before and after WP smoking. Median differences between time points (pre vs. post) were assessed using the Wilcoxon sign rank test, with significance defined as p < 0.05. Results: The analysis included 59 WP smoking sessions. Participants had a median age of 24 years (IQR: 21–25), with 62.1% being female. Most had a bachelor’s degree or less (62.1%), and over half were students (55.2%), while 34.5% were employed. The average age for first WP use was 18.6 years, with participants reporting a median of three WP smoking sessions per month. Results indicate a median increase in 8-oxoGua among participants from 5.4 ng/mL (IQR: 8.8) before the smoking session to 7.6 ng/mL after (IQR: 15.7; p < 0.001). Conclusions: This study is the first to examine 8-oxoGua in EBC. Findings provide strong evidence of WP smoking’s contribution to oxidative stress in the airways. It justifies the use of EBC to study the exposure to markers of oxidative stress with emerging tobacco use methods such as the waterpipe. Full article
(This article belongs to the Special Issue Cigarette Smoke and Oxidative Stress)
Show Figures

Figure 1

19 pages, 3117 KiB  
Article
Feasibility and Accuracy of a Dual-Function AR-Guided System for PSI Positioning and Osteotomy Execution in Pelvic Tumour Surgery: A Cadaveric Study
by Tanya Fernández-Fernández, Javier Orozco-Martínez, Carla de Gregorio-Bermejo, Elena Aguilera-Jiménez, Amaia Iribar-Zabala, Lydia Mediavilla-Santos, Javier Pascau, Mónica García-Sevilla, Rubén Pérez-Mañanes and José Antonio Calvo-Haro
Bioengineering 2025, 12(8), 810; https://doi.org/10.3390/bioengineering12080810 - 28 Jul 2025
Viewed by 236
Abstract
Objectives: Pelvic tumor resections demand high surgical precision to ensure clear margins while preserving function. Although patient-specific instruments (PSIs) improve osteotomy accuracy, positioning errors remain a limitation. This study evaluates the feasibility, accuracy, and usability of a novel dual-function augmented reality (AR) [...] Read more.
Objectives: Pelvic tumor resections demand high surgical precision to ensure clear margins while preserving function. Although patient-specific instruments (PSIs) improve osteotomy accuracy, positioning errors remain a limitation. This study evaluates the feasibility, accuracy, and usability of a novel dual-function augmented reality (AR) system for intraoperative guidance in PSI positioning and osteotomy execution using a head-mounted display (HMD). The system provides dual-function support by assisting both PSI placement and osteotomy execution. Methods: Ten fresh-frozen cadaveric hemipelves underwent AR-assisted internal hemipelvectomy, using customized 3D-printed PSIs and a new in-house AR software integrated into an HMD. Angular and translational deviations between planned and executed osteotomies were measured using postoperative CT analysis. Absolute angular errors were computed from plane normals; translational deviation was assessed as maximum error at the osteotomy corner point in both sagittal (pitch) and coronal (roll) planes. A Wilcoxon signed-rank test and Bland–Altman plots were used to assess intra-workflow cumulative error. Results: The mean absolute angular deviation was 5.11 ± 1.43°, with 86.66% of osteotomies within acceptable thresholds. Maximum pitch and roll deviations were 4.53 ± 1.32 mm and 2.79 ± 0.72 mm, respectively, with 93.33% and 100% of osteotomies meeting translational accuracy criteria. Wilcoxon analysis showed significantly lower angular error when comparing final executed planes to intermediate AR-displayed planes (p < 0.05), supporting improved PSI positioning accuracy with AR guidance. Surgeons rated the system highly (mean satisfaction ≥ 4.0) for usability and clinical utility. Conclusions: This cadaveric study confirms the feasibility and precision of an HMD-based AR system for PSI-guided pelvic osteotomies. The system demonstrated strong accuracy and high surgeon acceptance, highlighting its potential for clinical adoption in complex oncologic procedures. Full article
Show Figures

Figure 1

26 pages, 2330 KiB  
Article
Enhanced Dung Beetle Optimizer-Optimized KELM for Pile Bearing Capacity Prediction
by Bohang Chen, Mingwei Hai, Gaojian Di, Bin Zhou, Qi Zhang, Miao Wang and Yanxiu Guo
Buildings 2025, 15(15), 2654; https://doi.org/10.3390/buildings15152654 - 27 Jul 2025
Viewed by 208
Abstract
The safety associated with the bearing capacity of pile foundations is intrinsically linked to the overall safety, stability, and economic viability of structural systems. In response to the need for rapid and precise predictions of pile bearing capacity, this study introduces a kernel [...] Read more.
The safety associated with the bearing capacity of pile foundations is intrinsically linked to the overall safety, stability, and economic viability of structural systems. In response to the need for rapid and precise predictions of pile bearing capacity, this study introduces a kernel extreme learning machine (KELM) prediction model optimized through a multi-strategy improved beetle optimization algorithm (IDBO), referred to as the IDBO-KELM model. The model utilizes the pile length, pile diameter, average effective vertical stress, and undrained shear strength as input variables, with the bearing capacity serving as the output variable. Initially, experimental data on pile bearing capacity was gathered from the existing literature and subsequently normalized to facilitate effective integration into the model training process. A detailed introduction of the multi-strategy improved beetle optimization algorithm (IDBO) is provided, with its superior performance validated through 23 benchmark functions. Furthermore, the Wilcoxon rank sum test was employed to statistically assess the experimental outcomes, confirming the IDBO algorithm’s superiority over other prevalent metaheuristic algorithms. The IDBO algorithm was then utilized to optimize the hyperparameters of the KELM model for predicting pile bearing capacity. In conclusion, the statistical metrics for the IDBO-KELM model demonstrated a root mean square error (RMSE) of 4.7875, a coefficient of determination (R2) of 0.9313, and a mean absolute percentage error (MAPE) of 10.71%. In comparison, the baseline KELM model exhibited an RMSE of 6.7357, an R2 of 0.8639, and an MAPE of 18.47%. This represents an improvement exceeding 35%. These findings suggest that the IDBO-KELM model surpasses the KELM model across all evaluation metrics, thereby confirming its superior accuracy in predicting pile bearing capacity. Full article
Show Figures

Figure 1

17 pages, 1448 KiB  
Article
A Pilot EEG Study on the Acute Neurophysiological Effects of Single-Dose Astragaloside IV in Healthy Young Adults
by Aynur Müdüroğlu Kırmızıbekmez, Mustafa Yasir Özdemir, Alparslan Önder, Ceren Çatı and İhsan Kara
Nutrients 2025, 17(15), 2425; https://doi.org/10.3390/nu17152425 - 24 Jul 2025
Viewed by 299
Abstract
Objective: This study aimed to explore the acute neurophysiological effects of a single oral dose of Astragaloside IV (AS-IV) on EEG-measured brain oscillations and cognitive-relevant spectral markers in healthy young adults. Methods: Twenty healthy adults (8 females, 12 males; mean age: [...] Read more.
Objective: This study aimed to explore the acute neurophysiological effects of a single oral dose of Astragaloside IV (AS-IV) on EEG-measured brain oscillations and cognitive-relevant spectral markers in healthy young adults. Methods: Twenty healthy adults (8 females, 12 males; mean age: 23.4±2.1) underwent eyes-closed resting-state EEG recordings before and approximately 90 min after oral intake of 150 mg AS-IV. EEG data were collected using a 21-channel 10–20 system and cleaned via Artifact Subspace Reconstruction and Independent Component Analysis. Data quality was confirmed using a signal-to-noise ratio and 1/f spectral slope. Absolute and relative power values, band ratios, and frontal alpha asymmetry were computed. Statistical comparisons were made using paired t-tests or Wilcoxon signed-rank tests. Results: Absolute power decreased in delta, theta, beta, and gamma bands (p < 0.05) but remained stable for alpha. Relative alpha power increased significantly (p = 0.002), with rises in relative beta, theta, and delta and a drop in relative gamma (p = 0.003). Alpha/beta and theta/beta ratios increased, while delta/alpha decreased. Frontal alpha asymmetry was unchanged. Sex differences were examined in all measures that showed significant changes; however, no sex-dependent effects were found. Conclusions: A single AS-IV dose may acutely modulate brain oscillations, supporting its potential neuroactive properties. Larger placebo-controlled trials, including concurrent psychometric assessments, are needed to verify and contextualize these findings. A single AS-IV dose may acutely modulate brain oscillations, supporting its potential neuroactive properties. Full article
(This article belongs to the Special Issue Dietary Factors and Interventions for Cognitive Neuroscience)
Show Figures

Graphical abstract

15 pages, 3892 KiB  
Article
Zero and Ultra-Short Echo Time Sequences at 3-Tesla Can Accurately Depicts the Normal Anatomy of the Human Achilles Tendon Enthesis Organ In Vivo
by Amandine Crombé, Benjamin Dallaudière, Marie-Camille Bohand, Claire Fournier, Paolo Spinnato, Nicolas Poursac, Michael Carl, Julie Poujol and Olivier Hauger
J. Clin. Med. 2025, 14(15), 5251; https://doi.org/10.3390/jcm14155251 - 24 Jul 2025
Viewed by 222
Abstract
Background/Objectives: Accurate visualization of the Achilles tendon enthesis is critical for distinguishing mechanical, degenerative, and inflammatory pathologies. Although ultrasonography is the first-line modality for suspected enthesis disease, recent technical advances may expand the role of magnetic resonance imaging (MRI). This study evaluated [...] Read more.
Background/Objectives: Accurate visualization of the Achilles tendon enthesis is critical for distinguishing mechanical, degenerative, and inflammatory pathologies. Although ultrasonography is the first-line modality for suspected enthesis disease, recent technical advances may expand the role of magnetic resonance imaging (MRI). This study evaluated the utility of ultra-short echo time (UTE) and zero echo time (ZTE) sequences versus proton density-weighted imaging (PD-WI) for depicting the enthesis organ in healthy volunteers. Methods: In this institutional review board (IRB)-approved prospective single-center study, 50 asymptomatic adult volunteers underwent 3-Tesla hindfoot MRI with fat-suppressed PD-WI, UTE, and ZTE between 2018 and 2023. Four radiologists assessed image quality, signal-to-noise ratio, visibility, and abnormal high signal intensities (SIs) of the periost, sesamoid, and enthesis fibrocartilages (PCa, SCa, and ECa, respectively). Statistical tests included Chi-square, McNemar, paired Wilcoxon, and Benjamini–Hochberg adjustments for multiple comparisons. Results: The median age was 36 years (range: 20–51); 58% women were included. PD-WI and ZTE sequences were always available while UTE was unavailable in 24% of patients. PD-WI consistently failed to concomitantly visualize all fibrocartilages. ZTE and UTE visualized all fibrocartilages in 72% and 92.1% of volunteers, respectively, with significant differences favoring ZTE and UTE over PD-WI (p < 0.0001) and UTE over ZTE (p = 0.027). Inter-rater agreement exceeded 80% except for SCa on ZTE (68%, 95%CI: 53.2–80.1). Abnormal SCa findings in asymptomatic patients were more frequent with UTE (23.7%) and ZTE (34%) than with PD-WI (2%) (p = 0.0045). Conclusions: At 3-Tesla, UTE and ZTE sequences reliably depict the enthesis organ of the Achilles tendon, outperforming PD-WI. However, the high sensitivity of these sequences also presents challenges in interpretation. Full article
Show Figures

Figure 1

14 pages, 1909 KiB  
Article
Evaluating the Suitability of Perfusion-Based PD Probes for Use in Altered Gravity Environments
by Madelyn MacRobbie, Vanessa Z. Chen, Cody Paige, David Otuya, Aleksandra Stankovic and Guillermo Tearney
Biosensors 2025, 15(8), 478; https://doi.org/10.3390/bios15080478 - 24 Jul 2025
Viewed by 304
Abstract
Measurable changes in electrophysiology have been documented in spaceflight, creating a pathway for disease genesis and progression in astronauts. These electrophysiology changes can be measured using potential difference (PD). A probe to measure PD was developed and is used clinically on Earth; this [...] Read more.
Measurable changes in electrophysiology have been documented in spaceflight, creating a pathway for disease genesis and progression in astronauts. These electrophysiology changes can be measured using potential difference (PD). A probe to measure PD was developed and is used clinically on Earth; this probe relies on fluid perfusion to establish an electrical connection to make PD measurements. The changes to fluid behavior in microgravity and partial gravity (including lunar and Martian gravity) drives the need to test this probe in a spaceflight environment. Here, we test the PD probe in a novel nasal cavity phantom in parabolic flight, simulating microgravity, lunar gravity, Martian gravity, and hypergravity conditions across 37 parabolas. The results are evaluated across gravity conditions using the Wilcoxon Rank Sum test. We record no statistically significant difference in probe PD measurements in 1 g, microgravity, lunar gravity, and hypergravity (approximately 1.8 g) conditions, reaching a NASA Technology Readiness Level 6. Martian gravity findings are inconclusive. Perfusion-based PD probes are therefore successfully demonstrated for use in spaceflight operation in microgravity, lunar gravity, and hypergravity environments; this establishes a foundation for moving towards the in-space testing of perfusion-based probes in astronauts. Full article
(This article belongs to the Section Biosensor and Bioelectronic Devices)
Show Figures

Figure 1

16 pages, 1068 KiB  
Article
Protective Effects of Regular Physical Activity: Differential Expression of FGF21, GDF15, and Their Receptors in Trained and Untrained Individuals
by Paulina Małkowska, Patrycja Tomasiak, Marta Tkacz, Katarzyna Zgutka, Maciej Tarnowski, Agnieszka Maciejewska-Skrendo, Rafał Buryta, Łukasz Rosiński and Marek Sawczuk
Int. J. Mol. Sci. 2025, 26(15), 7115; https://doi.org/10.3390/ijms26157115 - 23 Jul 2025
Viewed by 173
Abstract
According to the World Health Organization (WHO), a healthy lifestyle is defined as a way of living that lowers the risk of becoming seriously ill or dying prematurely. Physical activity, as a well-known contributor to overall health, plays a vital role in supporting [...] Read more.
According to the World Health Organization (WHO), a healthy lifestyle is defined as a way of living that lowers the risk of becoming seriously ill or dying prematurely. Physical activity, as a well-known contributor to overall health, plays a vital role in supporting such a lifestyle. Exercise induces complex molecular responses that mediate both acute metabolic stress and long-term physiological adaptations. FGF21 (fibroblast growth factor 21) and GDF15 (growth differentiation factor 15) are recognized as metabolic stress markers, while their receptors play critical roles in cellular signaling. However, the differential gene expression patterns of these molecules in trained and untrained individuals following exhaustive exercise remain poorly understood. This study aimed to examine the transcriptional and protein-level responses in trained and untrained individuals performed a treadmill maximal exercise test to voluntary exhaustion. Blood samples were collected at six time points (pre-exercise, immediately post-exercise, and 0.5 h, 6 h, 24 h, and 48 h post-exercise). Gene expression of FGF21, GDF15, FGFR1 (fibroblast growth factor receptors), FGFR3, FGFR4, KLB (β-klotho), and GFRAL (glial cell line-derived neurotrophic factor receptor alpha-like) was analyzed using RT-qPCR, while plasma protein levels of FGF21 and GDF15 were quantified via ELISA. The results obtained were statistically analyzed by using Shapiro–Wilk, Mann–Whitney U, and Wilcoxon tests in Statistica 13 software. Untrained individuals demonstrated significant post-exercise upregulation of FGFR3, FGFR4, KLB, and GFRAL. FGF21 and GDF15 protein levels were consistently lower in trained individuals (p < 0.01), with no significant correlations between gene and protein expression. Trained individuals showed more stable expression of genes, while untrained individuals exhibited transient upregulation of genes after exercise. Full article
(This article belongs to the Special Issue Cytokines in Inflammation and Health)
Show Figures

Figure 1

15 pages, 2256 KiB  
Article
In Vivo Wear Analysis of Leucite-Reinforced Ceramic Inlays/Onlays After 14 Years
by Ragai-Edward Matta, Lara Berger, Oleksandr Sednyev, Dennis Bäuerle, Eva Maier, Werner Adler and Michael Taschner
Materials 2025, 18(15), 3446; https://doi.org/10.3390/ma18153446 - 23 Jul 2025
Viewed by 280
Abstract
Material wear significantly impacts the clinical success and longevity of dental ceramic restorations. This in vivo study aimed to assess the wear behavior of IPS Empress® glass-ceramic inlays and onlays over 14 years, considering the influence of different antagonist materials. Fifty-four indirect [...] Read more.
Material wear significantly impacts the clinical success and longevity of dental ceramic restorations. This in vivo study aimed to assess the wear behavior of IPS Empress® glass-ceramic inlays and onlays over 14 years, considering the influence of different antagonist materials. Fifty-four indirect restorations of 21 patients were available for comprehensive wear analysis, with complete follow-up data for up to 14 years. Three-dimensional measurements relied on digitized epoxy resin models produced immediately post-insertion (baseline) and subsequently at 2, 4, and 14 years. The occlusal region on the baseline model was delineated for comparative analysis. Three-dimensional superimpositions with models from subsequent time points were executed to assess wear in terms of average linear wear and volumetric loss. Statistical analyses were conducted in R (version 4.4.1), employing Mann–Whitney U tests (material comparisons) and Wilcoxon signed rank tests (time point comparisons), with a significance threshold of p ≤ 0.05. During the entire study period, an increase in wear was observed at each assessment interval, gradually stabilizing over time. Significant differences in substance loss were found between the follow-up time points, both for mean (−0.536 ± 0.249 mm after 14a) and integrated distance (−18,935 ± 11,711 mm3 after 14a). In addition, significantly higher wear was observed after 14 years with gold as antagonist compared to other materials (p ≤ 0.03). The wear behavior of IPS Empress® ceramics demonstrates clinically acceptable long-term outcomes, with abrasion characteristics exhibiting stabilization over time. Full article
(This article belongs to the Special Issue Advanced Dental Materials: From Design to Application, Second Volume)
Show Figures

Figure 1

Back to TopTop