Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,323)

Search Parameters:
Keywords = Whole-Exome Sequencing (WES)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 888 KiB  
Article
Identification of Candidate Genes for Endometriosis in a Three-Generation Family with Multiple Affected Members Using Whole-Exome Sequencing
by Carla Lintas, Alessia Azzarà, Vincenzo Panasiti and Fiorella Gurrieri
Biomedicines 2025, 13(8), 1922; https://doi.org/10.3390/biomedicines13081922 - 6 Aug 2025
Abstract
Background: Endometriosis is a chronic inflammatory condition affecting 10–15% of women of reproductive age. Genome-wide association studies (GWASs) have accounted for only a fraction of its high heritability, indicating the need for alternative approaches to identify rare genetic variants contributing to its [...] Read more.
Background: Endometriosis is a chronic inflammatory condition affecting 10–15% of women of reproductive age. Genome-wide association studies (GWASs) have accounted for only a fraction of its high heritability, indicating the need for alternative approaches to identify rare genetic variants contributing to its etiology. To this end, we performed whole-exome sequencing (WES) in a multi-affected family. Methods: A multigenerational family was studied, comprising three sisters, their mother, grandmother, and a daughter, all diagnosed with endometriosis. WES was conducted on the three sisters and their mother. We used the enGenome-Evai and Varelect software to perform our analysis, which mainly focused on rare, missense, frameshift, and stop variants. Results: Bioinformatic analysis identified 36 co-segregating rare variants. Six missense variants in genes associated with cancer growth were prioritized. The top candidates were c.3319G>A (p.Gly1107Arg) in the LAMB4 gene and c.1414G>A (p.Gly472Arg) in the EGFL6 gene. Variants in NAV3, ADAMTS18, SLIT1, and MLH1 may also contribute to disease onset through a synergistic and additive model. Conclusions: We identified novel candidate genes for endometriosis in a multigenerational affected family, supporting a polygenic model of the disease. Our study is an exploratory family-based WES study, and replication and functional studies are warranted to confirm these preliminary findings. Full article
(This article belongs to the Section Molecular Genetics and Genetic Diseases)
Show Figures

Figure 1

15 pages, 3830 KiB  
Article
ZNF496 as Candidate Gene for Neurodevelopmental Disorders: Identification of a Pathogenic De Novo Frameshift Variant
by Francesco Calì, Miriam Virgillito, Simone Treccarichi, Antonino Musumeci, Pinella Failla, Carla Papa, Rosanna Galati Rando, Concetta Federico, Salvatore Saccone and Mirella Vinci
Int. J. Mol. Sci. 2025, 26(15), 7586; https://doi.org/10.3390/ijms26157586 - 5 Aug 2025
Abstract
Zinc finger proteins are frequently implicated in a wide range of neurodevelopmental disorders (NDDs). In this study, we report a case of mild intellectual disability (ID), global developmental delay (GDD), and developmental coordination disorder (DCD) in an individual with unaffected parents. Trio-based whole-exome [...] Read more.
Zinc finger proteins are frequently implicated in a wide range of neurodevelopmental disorders (NDDs). In this study, we report a case of mild intellectual disability (ID), global developmental delay (GDD), and developmental coordination disorder (DCD) in an individual with unaffected parents. Trio-based whole-exome sequencing (WES) identified a de novo variant (c.1530dup, p.Glu511ArgfsTer16) in the ZNF496 gene of the proband. According to ACMG guidelines, this novel variant is classified as pathogenic. It creates a frameshift that introduces a premature stop codon, resulting in a truncated protein of 525 amino acids (compared to the wild-type 587 residues). Notably, NMDEscPredictor analysis predicted that the transcript escapes nonsense-mediated decay (NMD) despite the frameshift. Computational analyses suggest the potential pathogenetic effects of the identified variant. As documented, ZNF496 interacts with JARID2, a gene associated with NDDs, ID and facial dysmorphism (MIM: #620098). In silico analyses suggest that the identified mutation disrupts this interaction by deleting ZNF496’s C2H2 domain, potentially dysregulating JARID2 target genes. To our knowledge, this is the first reported association between ZNF496 and NDDs, and the variant has been submitted to the ClinVar database (SCV006100880). Functional studies are imperative to validate ZNF496’s role in NDDs and confirm the mutation’s impact on ZNF496-JARID2 interactions. Full article
Show Figures

Figure 1

15 pages, 9666 KiB  
Article
Hidden in the Genome: The First Italian Family with North Carolina Macular Dystrophy Carrying a Novel PRDM13 and CCNC Duplication
by Beatrice Spedicati, Domizia Pasquetti, Aurora Santin, Stefania Zampieri, Anna Morgan, Stefania Lenarduzzi, Giuseppe Giovanni Nardone, Elisa Paccagnella, Stefania Cappellani, Laura Diplotti, Stefano Pensiero, Fulvio Parentin, Paolo Gasparini, Maurizio Battaglia Parodi and Giorgia Girotto
Biomedicines 2025, 13(8), 1904; https://doi.org/10.3390/biomedicines13081904 - 5 Aug 2025
Abstract
Background: North Carolina Macular Dystrophy (NCMD) is a non-progressive inherited macular dystrophy characterized by marked phenotypic variability. The genetic etiology of NCMD remains largely unknown, and only a limited number of families have been reported in Europe. Methods: We performed an in-depth [...] Read more.
Background: North Carolina Macular Dystrophy (NCMD) is a non-progressive inherited macular dystrophy characterized by marked phenotypic variability. The genetic etiology of NCMD remains largely unknown, and only a limited number of families have been reported in Europe. Methods: We performed an in-depth investigation of an Italian family affected by NCMD using an integrated approach that combined SNP-array analysis, whole-exome sequencing, and long-read whole-genome sequencing. Additionally, we conducted a comprehensive review of NCMD-related literature. Results: We identified a novel 98 Kb duplication involving both PRDM13 and CCNC genes in a three-generation kindred, where the proband exhibited severe macular alterations, while all other affected family members presented with a milder clinical phenotype. A review of the literature suggests different genotype–phenotype correlations and similar penetrance for duplications and single-nucleotide variants (SNVs) in described families. Specifically, smaller duplications may be associated with more severe phenotypes, while SNVs exhibit high phenotypic variability. Conclusions: In this study, we describe the first NCMD Italian family, in which the integration of second- and third-generation sequencing methods enabled the identification of a novel pathogenic PRDM13 and CCNC duplication, thereby expanding the mutational spectrum of NCMD. Overall, these findings, together with the literature review, highlight the importance of selecting appropriate genetic testing approaches that allow the detection of non-coding variants and CNVs and thus enable accurate diagnosis and effective clinical management of patients and their families. Full article
(This article belongs to the Special Issue Ophthalmic Genetics: Unraveling the Genomics of Eye Disorders)
Show Figures

Figure 1

9 pages, 753 KiB  
Article
Combined Genetic and Transcriptional Study Unveils the Role of DGAT1 Gene Mutations in Congenital Diarrhea
by Jingqing Zeng, Jing Ma, Lan Wang, Zhaohui Deng and Ruen Yao
Biomedicines 2025, 13(8), 1897; https://doi.org/10.3390/biomedicines13081897 - 4 Aug 2025
Abstract
Background: Congenital diarrhea is persistent diarrhea that manifests during the neonatal period. Mutations in DGAT1, which is crucial for triglyceride synthesis and lipid absorption in the small intestine, are causal factors for congenital diarrhea. In this study, we aimed to determine [...] Read more.
Background: Congenital diarrhea is persistent diarrhea that manifests during the neonatal period. Mutations in DGAT1, which is crucial for triglyceride synthesis and lipid absorption in the small intestine, are causal factors for congenital diarrhea. In this study, we aimed to determine the value of tissue RNA sequencing (RNA-seq) for assisting with the clinical diagnosis of some genetic variants of uncertain significance. Methods: We clinically evaluated a patient with watery diarrhea, vomiting, severe malnutrition, and total parenteral nutrition dependence. Possible pathogenic variants were detected using whole-exome sequencing (WES). RNA-seq was utilized to explore the transcriptional alterations in DGAT1 variants identified by WES with unknown clinical significance, according to the American College of Medical Genetics guidelines. Systemic examinations, including endoscopic and histopathological examinations of the intestinal mucosa, were conducted to rule out other potential diagnoses. Results: We successfully diagnosed a patient with congenital diarrhea and protein-losing enteropathy caused by a DGAT1 mutation and reviewed the literature of 19 cases of children with DGAT defects. The missense mutation c.620A>G, p.Lys207Arg located in exon 15, and the intronic mutation c.1249-6T>G in DGAT1 were identified by WES. RNA-seq revealed two aberrant splicing events in the DGAT1 gene of the patient’s small intestinal tissue. Both variants lead to loss-of-function consequences and are classified as pathogenic variants of congenital diarrhea. Conclusions: Rare DGAT1 variants were identified as pathogenic evidence of congenital diarrhea, and the detection of tissue-specific mRNA splicing and transcriptional effects can provide auxiliary evidence. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

13 pages, 462 KiB  
Article
Genetic Landscape of Congenital Cataracts in a Swiss Cohort: Addressing Diagnostic Oversights in Nance–Horan Syndrome
by Flora Delas, Jiradet Gloggnitzer, Alessandro Maspoli, Lisa Kurmann, Beatrice E. Frueh, Ivanka Dacheva, Darius Hildebrand, Wolfgang Berger and Christina Gerth-Kahlert
Biomedicines 2025, 13(8), 1883; https://doi.org/10.3390/biomedicines13081883 - 2 Aug 2025
Viewed by 261
Abstract
Congenital cataracts (CCs) are a leading cause of preventable childhood blindness, with genetic factors playing a crucial role in their etiology. Nance–Horan syndrome (NHS) is a rare X-linked dominant disorder associated with CCs but is often underdiagnosed due to variable expressivity, particularly in [...] Read more.
Congenital cataracts (CCs) are a leading cause of preventable childhood blindness, with genetic factors playing a crucial role in their etiology. Nance–Horan syndrome (NHS) is a rare X-linked dominant disorder associated with CCs but is often underdiagnosed due to variable expressivity, particularly in female carriers. Objective: This study aimed to explore the genetic landscape of CCs in a Swiss cohort, focusing on two novel NHS and one novel GJA8 variants and their phenotypic presentation. Methods: Whole-exome sequencing (WES) was conducted on 20 unrelated Swiss families diagnosed with CCs. Variants were analyzed for pathogenicity using genetic databases, and segregation analysis was performed. Clinical data, including cataract phenotype and associated systemic anomalies, were assessed to establish genotype–phenotype correlations. Results: Potentially pathogenic DNA sequence variants were identified in 10 families, including three novel variants, one in GJA8 (c.584T>C) and two NHS variants (c.250_252insA and c.484del). Additional previously reported variants were detected in CRYBA1, CRYGC, CRYAA, MIP, EPHA2, and MAF, reflecting genetic heterogeneity in the cohort. Notably, NHS variants displayed significant phenotypic variability, suggesting dose-dependent effects and X-chromosome inactivation in female carriers. Conclusions: NHS remains underdiagnosed due to its variable expressivity and the late manifestation of systemic features, often leading to misclassification as isolated CC. This study highlights the importance of genetic testing in unexplained CC cases to improve early detection of syndromic forms. The identification of novel NHS and GJA8 variants provides new insights into the genetic complexity of CCs, emphasizing the need for further research on genotype–phenotype correlations. Full article
(This article belongs to the Special Issue Ophthalmic Genetics: Unraveling the Genomics of Eye Disorders)
Show Figures

Figure 1

11 pages, 1676 KiB  
Case Report
Familial MEN1 Syndrome with Atypical Renal Features and a Coexisting CLDN16 Variant: A Case Series
by Ioannis Petrakis, Eleni Drosataki, Dimitra Lygerou, Andreas Antonakis, Konstantina Kydonaki, Marinos Mitrakos, Christos Pleros, Maria Sfakiotaki, Paraskevi Xekouki and Kostas Stylianou
J. Clin. Med. 2025, 14(15), 5447; https://doi.org/10.3390/jcm14155447 - 2 Aug 2025
Viewed by 129
Abstract
Background and Clinical Significance: Multiple Endocrine Neoplasia type 1 (MEN1) is a rare autosomal dominant disorder caused by mutations in the MEN1 gene. Although primarily characterized by endocrine tumors, renal manifestations remain underreported. Case Presentation: We report a three-generation family carrying a pathogenic [...] Read more.
Background and Clinical Significance: Multiple Endocrine Neoplasia type 1 (MEN1) is a rare autosomal dominant disorder caused by mutations in the MEN1 gene. Although primarily characterized by endocrine tumors, renal manifestations remain underreported. Case Presentation: We report a three-generation family carrying a pathogenic MEN1 mutation (c.1351-3_1359del) with a co-occurring Claudin 16 (CLDN16) variant (c.324+13C>G). Genetic testing included MLPA and whole-exome sequencing (WES), with bioinformatics analysis validating variant pathogenicity. All three patients exhibited primary hyperparathyroidism, hypercalcemia, hypercalciuria, early nephrocalcinosis, and renal hypomagnesemia. The CLDN16 variant, previously considered benign, co-segregated with hypomagnesemia and renal involvement, suggesting a potential modifying role. Conclusions: These findings support the need for comprehensive genetic screening in MEN1 patients with atypical renal presentations. Concomitant genetic variations can alter the principal phenotype. Full article
(This article belongs to the Section Nephrology & Urology)
Show Figures

Figure 1

11 pages, 1914 KiB  
Case Report
Case Report of Nephrogenic Diabetes Insipidus with a Novel Mutation in the AQP2 Gene
by Alejandro Padilla-Guzmán, Vanessa Amparo Ochoa-Jiménez, Jessica María Forero-Delgadillo, Karen Apraez-Murillo, Harry Pachajoa and Jaime M. Restrepo
Int. J. Mol. Sci. 2025, 26(15), 7415; https://doi.org/10.3390/ijms26157415 - 1 Aug 2025
Viewed by 133
Abstract
Nephrogenic diabetes insipidus (NDI) is a rare hereditary disorder characterized by renal resistance to arginine vasopressin (AVP), resulting in the kidneys’ inability to concentrate urine. Approximately 90% of NDI cases follow an X-linked inheritance pattern and are associated with pathogenic variants in the [...] Read more.
Nephrogenic diabetes insipidus (NDI) is a rare hereditary disorder characterized by renal resistance to arginine vasopressin (AVP), resulting in the kidneys’ inability to concentrate urine. Approximately 90% of NDI cases follow an X-linked inheritance pattern and are associated with pathogenic variants in the AVPR2 gene, which encodes the vasopressin receptor type 2. The remaining 10% are attributed to mutations in the AQP2 gene, which encodes aquaporin-2, and may follow either autosomal dominant or recessive inheritance patterns. We present the case of a male infant, younger than nine months of age, who was clinically diagnosed with NDI at six months. The patient presented recurrent episodes of polydipsia, polyuria, dehydration, hypernatremia, and persistently low urine osmolality. Despite adjustments in pharmacologic treatment and strict monitoring of urinary output, the clinical response remained suboptimal. Given the lack of improvement and the radiological finding of an absent posterior pituitary (neurohypophysis), the possibility of coexistent central diabetes insipidus (CDI) was raised, prompting a therapeutic trial with desmopressin. Nevertheless, in the absence of clinical improvement, desmopressin was discontinued. The patient’s management was continued with hydrochlorothiazide, ibuprofen, and a high-calorie diet restricted in sodium and protein, resulting in progressive clinical stabilization. Whole-exome sequencing identified a novel homozygous missense variant in the AQP2 gene (c.398T > A; p.Val133Glu), classified as likely pathogenic according to the American College of Medical Genetics and Genomics (ACMG) criteria: PM2 (absent from population databases), PP2 (missense variant in a gene with a low rate of benign missense variation), and PP3 (multiple lines of computational evidence supporting a deleterious effect)]. NDI is typically diagnosed during early infancy due to the early onset of symptoms and the potential for severe complications if left untreated. In this case, although initial clinical suspicion included concomitant CDI, the timely initiation of supportive management and the subsequent incorporation of molecular diagnostics facilitated a definitive diagnosis. The identification of a previously unreported homozygous variant in AQP2 contributed to diagnostic confirmation and therapeutic decision-making. The diagnosis and comprehensive management of NDI within the context of polyuria-polydipsia syndrome necessitates a multidisciplinary approach, integrating clinical evaluation with advanced molecular diagnostics. The novel AQP2 c.398T > A (p.Val133Glu) variant described herein was associated with early and severe clinical manifestations, underscoring the importance of genetic testing in atypical or treatment-refractory presentations of diabetes insipidus. Full article
(This article belongs to the Special Issue A Molecular Perspective on the Genetics of Kidney Diseases)
Show Figures

Figure 1

13 pages, 1323 KiB  
Article
Genotypic and Phenotypic Characterization of Axonal Charcot–Marie–Tooth Disease in Childhood: Identification of One Novel and Four Known Mutations
by Rojan İpek, Büşra Eser Çavdartepe, Sevcan Tuğ Bozdoğan, Erman Altunışık, Akçahan Akalın, Mahmut Yaman, Alper Akın and Sefer Kumandaş
Genes 2025, 16(8), 917; https://doi.org/10.3390/genes16080917 - 30 Jul 2025
Viewed by 272
Abstract
Background: Charcot–Marie–Tooth disease (CMT) is a genetically and phenotypically heterogeneous hereditary neuropathy. Axonal CMT type 2 (CMT2) subtypes often exhibit overlapping clinical features, which makes molecular genetic analysis essential for accurate diagnosis and subtype differentiation. Methods: This retrospective study included five pediatric patients [...] Read more.
Background: Charcot–Marie–Tooth disease (CMT) is a genetically and phenotypically heterogeneous hereditary neuropathy. Axonal CMT type 2 (CMT2) subtypes often exhibit overlapping clinical features, which makes molecular genetic analysis essential for accurate diagnosis and subtype differentiation. Methods: This retrospective study included five pediatric patients who presented with gait disturbance, muscle weakness, and foot deformities and were subsequently diagnosed with axonal forms of CMT. Clinical data, electrophysiological studies, neuroimaging, and genetic analyses were evaluated. Whole exome sequencing (WES) was performed in three sporadic cases, while targeted CMT gene panel testing was used for two siblings. Variants were interpreted using ACMG guidelines, supported by public databases (ClinVar, HGMD, and VarSome), and confirmed by Sanger sequencing when available. Results: All had absent deep tendon reflexes and distal muscle weakness; three had intellectual disability. One patient was found to carry a novel homozygous frameshift variant (c.2568_2569del) in the IGHMBP2 gene, consistent with CMT2S. Other variants were identified in the NEFH (CMT2CC), DYNC1H1 (CMT2O), and MPV17 (CMT2EE) genes. Notably, a previously unreported co-occurrence of MPV17 mutation and congenital heart disease was observed in one case. Conclusions: This study expands the clinical and genetic spectrum of pediatric axonal CMT and highlights the role of early physical examination and molecular diagnostics in detecting rare variants. Identification of a novel IGHMBP2 variant and unique phenotypic associations provides new insights for future genotype–phenotype correlation studies. Full article
(This article belongs to the Special Issue Genetics of Neuromuscular and Metabolic Diseases)
Show Figures

Figure 1

11 pages, 654 KiB  
Case Report
Clinical and Genetic Management of a Patient with Rubinstein–Taybi Syndrome Type 1: A Case Report
by Victor Santos, Pedro Souza, Talyta Campos, Hiane Winterly, Thaís Vieira, Marc Gigonzac, Alex Honda, Irene Pinto, Raffael Zatarin, Fernando Azevedo, Anna Nascimento, Cláudio da Silva and Aparecido da Cruz
Genes 2025, 16(8), 910; https://doi.org/10.3390/genes16080910 - 29 Jul 2025
Viewed by 248
Abstract
Rubinstein–Taybi Syndrome type 1 (RSTS1) is an uncommon autosomal dominant genetic disorder associated with neurodevelopmental impairments and multiple congenital anomalies, with an incidence of 1:100,000–125,000 live births. The syndrome, caused by de novo mutations in the CREBBP gene, is characterized by phenotypic variability, [...] Read more.
Rubinstein–Taybi Syndrome type 1 (RSTS1) is an uncommon autosomal dominant genetic disorder associated with neurodevelopmental impairments and multiple congenital anomalies, with an incidence of 1:100,000–125,000 live births. The syndrome, caused by de novo mutations in the CREBBP gene, is characterized by phenotypic variability, including intellectual disability, facial dysmorphisms, and systemic abnormalities. The current case report describes a 15-year-old Brazilian female diagnosed with RSTS1 through whole-exome sequencing, which identified a de novo heterozygous missense mutation in the CREBBP gene (NM_004380.3; c.4393G > C; p.Gly1465Arg), classified as pathogenic. The patient’s clinical presentation included facial dysmorphisms, skeletal abnormalities, neurodevelopmental delay, psychiatric conditions, and other systemic manifestations. A comprehensive genetic counseling process facilitated the differential diagnosis and management strategies, emphasizing the importance of early and precise diagnosis for improving clinical outcomes. This report contributes to the growing knowledge of the genotype–phenotype correlations in RSTS1, aiding in the understanding and management of this uncommon condition. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Graphical abstract

8 pages, 1197 KiB  
Case Report
A Case of Infantile Epileptic Spasms Syndrome with the SPTBN1 Mutation and Review of βII-Spectrin Variants
by Han Na Jang, Juyeon Ryu, Seung Soo Kim and Jin-Hwa Moon
Genes 2025, 16(8), 904; https://doi.org/10.3390/genes16080904 - 29 Jul 2025
Viewed by 306
Abstract
Background: Spectrin proteins are critical cytoskeleton components that maintain cellular structure and mediate intracellular transport. Pathogenic variants in SPTBN1, encoding βII-spectrin, have been associated with various neurodevelopmental disorders, including developmental delay, intellectual disability, autism spectrum disorder, and epilepsy. Here we report [...] Read more.
Background: Spectrin proteins are critical cytoskeleton components that maintain cellular structure and mediate intracellular transport. Pathogenic variants in SPTBN1, encoding βII-spectrin, have been associated with various neurodevelopmental disorders, including developmental delay, intellectual disability, autism spectrum disorder, and epilepsy. Here we report a Korean infant with infantile epileptic spasms syndrome (IESS) and an SPTBN1 mutation and provide a review of this mutation. Methods: The genomic data of the patient were analyzed by whole exome sequencing. A comprehensive literature review was conducted to identify and analyze all reported SPTBN1 variants, resulting in a dataset of 60 unique mutations associated with neurodevelopmental phenotypes. Case Presentation: A 10-month-old Korean female presented with IESS associated with a de novo heterozygous SPTBN1 mutation (c.785A>T; p.Asp262Val). The patient exhibited global developmental delay, microcephaly, hypotonia, spasticity, and MRI findings of diffuse cerebral atrophy and corpus callosum hypoplasia. Electroencephalography revealed hypsarrhythmia, confirming the diagnosis of IESS. Seizures persisted despite initial treatment with vigabatrin and steroids. Genetic analysis identified a likely pathogenic variant within the calponin homology 2 (CH2) domain of SPTBN1. Conclusions: This is the first report of an association between IESS and an SPTBN1 CH2 domain mutation in a Korean infant. This finding expands the clinical spectrum of SPTBN1-related disorders and suggests domain-specific effects may critically influence phenotypic severity. Further functional studies are warranted to elucidate the pathogenic mechanisms of domain-specific variants. Full article
(This article belongs to the Special Issue Genetics of Neuropsychiatric Disorders)
Show Figures

Figure 1

11 pages, 242 KiB  
Article
Genetic Insights into Hemiplegic Migraine: Whole Exome Sequencing Highlights Vascular Pathway Involvement via Association Analysis
by Zizi Molaee, Robert A. Smith, Neven Maksemous and Lyn R. Griffiths
Genes 2025, 16(8), 895; https://doi.org/10.3390/genes16080895 - 28 Jul 2025
Viewed by 326
Abstract
Background: Hemiplegic migraine (HM) is a rare and severe subtype of migraine with a complex genetic basis. Although pathogenic variants in CACNA1A, ATP1A2, and SCN1A explain some familial cases, a significant proportion of patients remain genetically undiagnosed. Increasing evidence points [...] Read more.
Background: Hemiplegic migraine (HM) is a rare and severe subtype of migraine with a complex genetic basis. Although pathogenic variants in CACNA1A, ATP1A2, and SCN1A explain some familial cases, a significant proportion of patients remain genetically undiagnosed. Increasing evidence points to an overlap between migraine and cerebral small vessel disease (SVD), implicating vascular dysfunction in HM pathophysiology. Objective: This study aimed to identify rare or novel variants in genes associated with SVD in a cohort of patients clinically diagnosed with HM who tested negative for known familial hemiplegic migraine (FHM) pathogenic variants. Methods: We conducted a case-control association analysis of whole exome sequencing (WES) data from 184 unrelated HM patients. A targeted panel of 34 SVD-related genes was assessed. Variants were prioritised based on rarity (MAF ≤ 0.05), location (exonic/splice site), and predicted pathogenicity using in silico tools. Statistical comparisons to gnomAD’s Non-Finnish European population were made using chi-square tests. Results: Significant variants were identified in several SVD-related genes, including LRP1 (p.Thr4077Arg), COL4A1 (p.Pro54Leu), COL4A2 (p.Glu1123Gly), and TGFBR2 (p.Met148Leu and p.Ala51Pro). The LRP1 variant showed the strongest association (p < 0.001). All key variants demonstrated pathogenicity predictions in multiple computational models, implicating them in vascular dysfunction relevant to migraine mechanisms. Conclusions: This study provides new insights into the genetic architecture of hemiplegic migraine, identifying rare and potentially deleterious variants in SVD-related genes. These findings support the hypothesis that vascular and cellular maintenance pathways contribute to migraine susceptibility and may offer new targets for diagnosis and therapy. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
13 pages, 634 KiB  
Article
Rare Variant Burden and Behavioral Phenotypes in Children with Autism in Slovakia
by Gabriela Repiská, Michal Konečný, Gabriela Krasňanská, Hana Celušáková, Ivan Belica, Barbara Rašková, Mária Kopčíková, Petra Keményová, Daniela Ostatníková and Silvia Lakatošová
Genes 2025, 16(8), 893; https://doi.org/10.3390/genes16080893 - 28 Jul 2025
Viewed by 416
Abstract
Background: Autism spectrum disorder (ASD) is a heterogeneous group of neurodevelopmental disorders characterized by a complex, multifactorial etiology with a strong genetic contribution. Our study aimed to evaluate the link between the burden of rare genetic variants within a specific panel of ASD [...] Read more.
Background: Autism spectrum disorder (ASD) is a heterogeneous group of neurodevelopmental disorders characterized by a complex, multifactorial etiology with a strong genetic contribution. Our study aimed to evaluate the link between the burden of rare genetic variants within a specific panel of ASD and intellectual disability-associated genes and phenotypic variability in a cohort of children with autism in Slovakia. Methods: Gene burden scores were calculated based on pathogenic, likely pathogenic, and uncertain significance rare DNA variants identified by whole-exome sequencing. We then assessed the effect of three different scoring methods on the variance across 15 psycho-behavioral parameters describing the phenotypic profiles of 117 ASD probands. Results: The burden score showed a significant multivariate effect on the combination of psycho-behavioral parameters. This score was associated with the social affect of ADOS-2, as well as with the socialization domain, and total adaptive behavior scores from the Vineland Adaptive Behavior Scales-3 (VABS). While a score based solely on count of pathogenic and likely pathogenic variants did not show a multivariate effect, incorporating variants of uncertain significance revealed a multivariate effect on two adaptive behavior parameters: daily living skills and total adaptive behavior score (VABS). Conclusions: Our findings partially explain the variability in phenotypic manifestation in our ASD patient cohort, highlighting the importance of considering the cumulative effect of rare genetic variants, including those of uncertain significance, in shaping the diverse clinical presentation of ASD. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

9 pages, 666 KiB  
Case Report
Severe Elimination Disorders and Normal Intelligence in a Case of MAP1B Related Syndrome: A Case Report
by Aniel Jessica Leticia Brambila-Tapia, María Teresa Magaña-Torres, Luis E. Figuera, María Guadalupe Domínguez-Quezada, Thania Alejandra Aguayo-Orozco, Jesua Iván Guzmán-González, Hugo Ceja and Ingrid Patricia Dávalos-Rodríguez
Genes 2025, 16(8), 870; https://doi.org/10.3390/genes16080870 - 24 Jul 2025
Viewed by 325
Abstract
Pathogenic variants in the MAP1B gene have been associated with neurological impairment, including intellectual disability, attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder, brain malformations, cognitive hearing loss, short stature, and dysmorphic features. However, few cases with detailed clinical characterization have been reported. We describe [...] Read more.
Pathogenic variants in the MAP1B gene have been associated with neurological impairment, including intellectual disability, attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder, brain malformations, cognitive hearing loss, short stature, and dysmorphic features. However, few cases with detailed clinical characterization have been reported. We describe a 12-year-old boy carrying a loss-of-function MAP1B variant, presenting with severe elimination disorders despite normal intelligence. He was referred to the genetics service due to persistent elimination issues, including daytime urinary incontinence, nocturnal enuresis, and fecal incontinence. He had normal motor and cognitive development, with an IQ of 99; however, he also presented with ADHD, short stature, microcephaly, and myopia. Brain MRI revealed bilaterial subependymal periventricular nodular heterotopia (PVNH). Audiometry showed normal bilateral hearing. Testing fragile X syndrome (FXS) and karyotype analyses yielded normal results. Whole exome sequencing (WES) revealed a nonsense pathogenic variant in MAP1B (c.895 C>T; p.Arg299*). No other family members showed a similar phenotype; however, a great-uncle and a great-aunt had a history of nocturnal enuresis until age 10. The patient’s deceased mother had short stature and psychiatric disorders, and a history of consanguinity was reported on the maternal side. This case broadens the phenotypic spectrum associated with MAP1B syndrome, suggesting that elimination disorder, frequently reported in FXS, should also be evaluated in MAP1B pathogenic variant carriers. In addition, the presence of short stature also appears to be part of the syndrome. Full article
(This article belongs to the Special Issue Genetic Diagnostics: Precision Tools for Disease Detection)
Show Figures

Figure 1

13 pages, 1527 KiB  
Article
Ethnic-Specific and UV-Independent Mutational Signatures of Basal Cell Carcinoma in Koreans
by Ye-Ah Kim, Seokho Myung, Yueun Choi, Junghyun Kim, Yoonsung Lee, Kiwon Lee, Bark-Lynn Lew, Man S. Kim and Soon-Hyo Kwon
Int. J. Mol. Sci. 2025, 26(14), 6941; https://doi.org/10.3390/ijms26146941 - 19 Jul 2025
Viewed by 324
Abstract
Basal cell carcinoma (BCC), the most common skin cancer, is primarily driven by Hedgehog (Hh) and TP53 pathway alterations. Although additional pathways were implicated, the mutational landscape in Asian populations, particularly Koreans, remains underexplored. We performed whole-exome sequencing of BCC tumor tissues from [...] Read more.
Basal cell carcinoma (BCC), the most common skin cancer, is primarily driven by Hedgehog (Hh) and TP53 pathway alterations. Although additional pathways were implicated, the mutational landscape in Asian populations, particularly Koreans, remains underexplored. We performed whole-exome sequencing of BCC tumor tissues from Korean patients and analyzed mutations in 11 established BCC driver genes (PTCH1, SMO, GLI1, TP53, CSMD1/2, NOTCH1/2, ITIH2, DPP10, and STEAP4). Mutational profiles were compared with Caucasian cohort profiles to identify ethnicity-specific variants. Ultraviolet (UV)-exposed and non-UV-exposed tumor sites were compared; genes unique to non-UV-exposed tumors were further analyzed with protein–protein interaction analysis. BCCs in Koreans exhibited distinct features, including fewer truncating and more intronic variants compared to Caucasians. Korean-specific mutations in SMO, PTCH1, TP53, and NOTCH2 overlapped with oncogenic gain-of-function/loss-of-function (GOF/LOF) variants annotated in OncoKB, with some occurring at hotspot sites. BCCs in non-exposed areas showed recurrent mutations in CSMD1, PTCH1, and NOTCH1, suggesting a UV-independent mechanism. Novel mutations in TAS1R2 and ADCY10 were exclusive to non-exposed BCCs, with protein–protein interaction analysis linking them to TP53 and NOTCH2. We found unique ethnic-specific and UV-independent mutational profiles of BCCs in Koreans. TAS1R2 and ADCY10 may contribute to tumorigenesis of BCC in non-exposed areas, supporting the need for population-specific precision oncology. Full article
(This article belongs to the Special Issue Skin Cancer: From Molecular Pathophysiology to Novel Treatment)
Show Figures

Figure 1

16 pages, 1452 KiB  
Article
Genetic Landscape of Non-Remitting Neutropenia in Children and Chronic Idiopathic Neutropenia in Adults
by Alice Grossi, Grigorios Tsaknakis, Francesca Rosamilia, Marta Rusmini, Paolo Uva, Isabella Ceccherini, Maria Carla Giarratana, Diego Vozzi, Irene Mavroudi, Carlo Dufour, Helen A. Papadaki and Francesca Fioredda
Int. J. Mol. Sci. 2025, 26(14), 6929; https://doi.org/10.3390/ijms26146929 - 18 Jul 2025
Viewed by 263
Abstract
Non-remitting neutropenia in children and chronic idiopathic neutropenia (CIN) in adults have been described previously as peculiar subgroups of neutropenic patients carrying similar clinical and immunological features. The present collection comprising 25 subjects (16 adults and 9 children) mostly affected with mild (84%) [...] Read more.
Non-remitting neutropenia in children and chronic idiopathic neutropenia (CIN) in adults have been described previously as peculiar subgroups of neutropenic patients carrying similar clinical and immunological features. The present collection comprising 25 subjects (16 adults and 9 children) mostly affected with mild (84%) and moderate (16%) neutropenia aimed to identify the underlying (possibly common) genetic background. The phenotype of these patients resemble the one described previously: no severe infections, presence of rheumathological signs, leukopenia in almost all patients and lymphocytopenia in one-third of the cohort. The pediatric patients did not share common genes with the adults, based on the results of the multisample test, while some singular variants in neutropenia potentially associated with immune dysregulation likely consistent with the phenotype were found. SPINK5, RELA and CARD11 were retrieved and seem to be consistent with the clinical picture characterized by neutropenia associated to immune dysregulation. The enrichment and burden tests performed in comparison with a control group underline that the products of expression by the variants involved belong to the autoimmunity and immune regulation pathways (i.e., SPINK5, PTPN22 and PSMB9). Even with the limitation of this study’s low number of patients, these results may suggest that non-remitting neutropenia and CIN in adults deserve deep genetic study and enlarged consideration in comparison with classical neutropenia. Full article
(This article belongs to the Special Issue New Insights into Immune Dysregulation Disorders)
Show Figures

Figure 1

Back to TopTop