Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (113)

Search Parameters:
Keywords = West Nile vaccine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1413 KiB  
Article
Sensitivity and Cross-Reactivity Analysis of Serotype-Specific Anti-NS1 Serological Assays for Dengue Virus Using Optical Modulation Biosensing
by Sophie Terenteva, Linoy Golani-Zaidie, Shira Avivi, Yaniv Lustig, Victoria Indenbaum, Ravit Koren, Tran Mai Hoa, Tong Thi Kim Tuyen, Ma Thi Huyen, Nguyen Minh Hoan, Le Thi Hoi, Nguyen Vu Trung, Eli Schwartz and Amos Danielli
Biosensors 2025, 15(7), 453; https://doi.org/10.3390/bios15070453 - 14 Jul 2025
Viewed by 535
Abstract
Dengue virus (DENV) poses a major global health concern, with over 6.5 million cases and 7300 deaths reported in 2023. Accurate serological assays are essential for tracking infection history, evaluating disease severity, and guiding vaccination strategies. However, existing assays are limited in their [...] Read more.
Dengue virus (DENV) poses a major global health concern, with over 6.5 million cases and 7300 deaths reported in 2023. Accurate serological assays are essential for tracking infection history, evaluating disease severity, and guiding vaccination strategies. However, existing assays are limited in their specificity, sensitivity, and cross-reactivity. Using optical modulation biosensing (OMB) technology and non-structural protein 1 (NS1) antigens from DENV-1–3, we developed highly sensitive and quantitative serotype-specific anti-DENV NS1 IgG serological assays. The OMB-based assays offered a wide dynamic range (~4-log), low detection limits (~400 ng/L), fast turnaround (1.5 h), and a simplified workflow. Using samples from endemic (Vietnam) and non-endemic (Israel) regions, we assessed intra-DENV and inter-Flavivirus cross-reactivity. Each assay detected DENV infection with a 100% sensitivity for the corresponding serotype and 64% to 90% for other serotypes. Cross-reactivity with Zika, Japanese encephalitis, and West Nile viruses ranged from 21% to 65%, reflecting NS1 antigen conservation. Our study provides valuable insights into the cross-reactivity of DENV NS1 antigens widely used in research and highlights the potential of OMB-based assays for quantitative and epidemiological studies. Ongoing efforts should aim to minimize cross-reactivity while maintaining sensitivity and explore integration with complementary platforms for improved diagnostic precision. Full article
Show Figures

Figure 1

10 pages, 411 KiB  
Communication
Cervids as a Promising Pillar of an Integrated Surveillance System for Emerging Infectious Diseases in Hungary: A Pilot Study
by István Lakatos, Péter Malik, Kornélia Bodó, Zsuzsanna Szőke, Farkas Sükösd, Zsófia Lanszki, László Szemethy, Kornélia Kurucz, Krisztián Bányai, Gábor Kemenesi and Brigitta Zana
Animals 2025, 15(13), 1948; https://doi.org/10.3390/ani15131948 - 2 Jul 2025
Viewed by 983
Abstract
Wildlife serves as a significant reservoir for various pathogens transmissible to domestic animals and humans. Vector-borne diseases represent an increasing concern in Europe, affecting both animal and human health. This pilot study investigated the circulation of endemic and emerging vector-borne viruses in wild [...] Read more.
Wildlife serves as a significant reservoir for various pathogens transmissible to domestic animals and humans. Vector-borne diseases represent an increasing concern in Europe, affecting both animal and human health. This pilot study investigated the circulation of endemic and emerging vector-borne viruses in wild ungulates in Hungary, utilizing a One Health approach. Serum samples were obtained from European fallow deer (Dama dama), red deer (Cervus elaphus), and roe deer (Capreolus capreolus) during routine national game management activities between 2020 and 2023. Samples were analyzed for antibodies against the Bluetongue virus (BTV), West Nile virus (WNV), and Epizootic hemorrhagic disease virus (EHDV) using ELISA and neutralization tests. The results revealed a WNV seroprevalence of 22.3% in fallow deer and 31.8% in red deer, while BTV seroprevalence was 2.5% in fallow deer. All samples were negative for EHDV antibodies. These findings confirm the circulation of WNV and BTV in Hungarian wild ungulates. While the study’s design precludes statistical analysis due to non-random sampling, it demonstrates the potential of integrating wild ungulate serosurveillance into disease monitoring programs, leveraging established wildlife management activities for a cost-effective and complementary approach to One Health surveillance, particularly considering the ongoing spread of EHDV in Europe and the importance of BTV serotype monitoring for effective vaccination strategies. Full article
(This article belongs to the Section Wildlife)
Show Figures

Figure 1

21 pages, 574 KiB  
Review
A Scoping Review of Preclinical Research on Monoclonal Antibody Development for Prophylaxis and Treatment of West Nile Virus Infections
by Amanda E. Calvert, Kerri L. Miazgowicz, Bailey Atkinson, Audrey H. Long, Elisa Thrasher, Aaron C. Brault and Randall J. Nett
Viruses 2025, 17(6), 845; https://doi.org/10.3390/v17060845 - 12 Jun 2025
Viewed by 794
Abstract
West Nile virus (WNV) causes thousands of arboviral infections in the United States each year. Patients with immune-compromising conditions and elderly people are at higher risk of severe WNV neuroinvasive disease (WNND). Despite its broad endemicity nationwide, no U.S. Food and Drug Administration-approved [...] Read more.
West Nile virus (WNV) causes thousands of arboviral infections in the United States each year. Patients with immune-compromising conditions and elderly people are at higher risk of severe WNV neuroinvasive disease (WNND). Despite its broad endemicity nationwide, no U.S. Food and Drug Administration-approved vaccine or therapeutic treatments exist. We summarized existing peer-reviewed literature on the preclinical development of monoclonal antibody (MAb) prophylaxis and therapeutics for the prevention and treatment of WNND. Five bibliographical databases (CINAHL, Cochrane Library, Embase, MEDLINE, and Scopus) were searched for applicable research studies performed from 1 January 1998 to 1 May 2025. In total, 2347 titles and abstracts were screened, 263 full-text publications reviewed, and 25 studies included. Studies included detailed preclinical development and evaluations of MAbs targeting the envelope (E) protein (n = 13), other viral proteins (n = 3), flaviviral cross-protective monoclonal antibodies (n = 4), and novel antibody configurations or delivery methods (n = 5). The most well-studied MAb, E16, targeting E- Domain III (E-DIII), was effective at inhibiting and treating WNND in experimental animal models. No work investigated ways to traffic therapeutic antibodies across the blood–brain barrier. This review summarizes the current research in the development of monoclonal antibody therapeutics for WNV and addresses gaps in the knowledge for future consideration. Full article
Show Figures

Figure 1

16 pages, 3144 KiB  
Review
The Emerging Role of Circulating T Follicular Helper Cells in Dengue Virus Immunity: Balancing Protection and Pathogenesis
by Paola N. Flores-Pérez, José A. Collazo-Llera, Fabiola A. Rodríguez-Alvarado and Vanessa Rivera-Amill
Viruses 2025, 17(5), 652; https://doi.org/10.3390/v17050652 - 30 Apr 2025
Viewed by 3083
Abstract
Flaviviruses are a group of viruses transmitted mainly by mosquitoes and ticks, causing severe diseases in humans. Examples include dengue, Zika, West Nile virus, and yellow fever. They primarily affect individuals in tropical and subtropical regions, causing public health problems such as epidemic [...] Read more.
Flaviviruses are a group of viruses transmitted mainly by mosquitoes and ticks, causing severe diseases in humans. Examples include dengue, Zika, West Nile virus, and yellow fever. They primarily affect individuals in tropical and subtropical regions, causing public health problems such as epidemic outbreaks and significant economic burdens due to hospitalizations and treatments. They share antigens, leading to cross-reactivity where antibodies generated against one flavivirus can react with others, complicating the accurate diagnosis of individual infections and making the development of treatments or vaccines more challenging. The role of T cells in the immune response to flaviviruses is a complex topic debated by scientists. On one hand, T cells help control infection by eliminating infected cells and protecting against disease. However, there is evidence that an excessive or dysregulated T cell response can cause tissue damage and worsen the disease, as seen in severe dengue cases. This duality underscores the complexity of the immune response to flavivirus infections, posing a significant challenge for researchers. Gaining a deeper understanding of the immune response at the cellular level, particularly the role of T follicular helper cells, can reveal new avenues of investigation that could lead to novel strategies for disease management. This review explores the dynamics of T cell responses, focusing on circulatory T follicular helper cells (cTFH), to enhance our understanding of flavivirus immunity and inform future interventions. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

14 pages, 2687 KiB  
Article
Baseline Seroprevalence of Arboviruses in Liberia Using a Multiplex IgG Immunoassay
by Albert To, Varney M. Kamara, Davidetta M. Tekah, Mohammed A. Jalloh, Salematu B. Kamara, Teri Ann S. Wong, Aquena H. Ball, Ludwig I. Mayerlen, Kyle M. Ishikawa, Hyeong Jun Ahn, Bode Shobayo, Julius Teahton, Brien K. Haun, Wei-Kung Wang, John M. Berestecky, Vivek R. Nerurkar, Peter S. Humphrey and Axel T. Lehrer
Trop. Med. Infect. Dis. 2025, 10(4), 92; https://doi.org/10.3390/tropicalmed10040092 - 3 Apr 2025
Viewed by 2266
Abstract
Insect-borne viruses may account for a significant proportion of non-malaria and non-bacterial febrile illnesses in Liberia. Although the presence of many arthropod vectors has been documented, the collective burden of arbovirus infections and baseline pre-existing immunity remains enigmatic. Our goal was to determine [...] Read more.
Insect-borne viruses may account for a significant proportion of non-malaria and non-bacterial febrile illnesses in Liberia. Although the presence of many arthropod vectors has been documented, the collective burden of arbovirus infections and baseline pre-existing immunity remains enigmatic. Our goal was to determine the seroprevalence of arbovirus exposure across the country using a resource-sparing, multiplex immunoassay to determine IgG responses to immunodominant antigens. 532 human serum samples, from healthy adults, collected from 10 counties across Liberia, were measured for IgG reactivity against antigens of eight common flavi-, alpha-, and orthobunya/nairoviruses suspected to be present in West Africa. Approximately 32.5% of our samples were reactive to alphavirus (CHIKV) E2, ~7% were reactive separately to West Nile (WNV) and Zika virus (ZIKV) NS1, while 4.3 and 3.2% were reactive to Rift Valley Fever virus (RVFV) N and Dengue virus-2 (DENV-2) NS1, respectively. Altogether, 21.6% of our samples were reactive to ≥1 flavivirus NS1s. Of the CHIKV E2 reactive samples, 8.5% were also reactive to at least one flavivirus NS1, and six samples were concurrently reactive to antigens of all three arbovirus groups, suggesting a high burden of multiple arbovirus infections for some participants. These insights suggest the presence of these four arbovirus families in Liberia with low and moderate rates of flavi- and alphavirus infections, respectively, in healthy adults. Further confirmational investigation, such as mosquito surveillance or other serological tests, is warranted and should be conducted before initiating additional flavivirus vaccination campaigns. The findings of these studies can help guide healthcare resource mobilization, vector control, and animal husbandry practices. Full article
(This article belongs to the Special Issue Beyond Borders—Tackling Neglected Tropical Viral Diseases)
Show Figures

Figure 1

18 pages, 1778 KiB  
Review
A Comprehensive Review of the Neglected and Emerging Oropouche Virus
by Fengwei Bai, Prince M. D. Denyoh, Cassandra Urquhart, Sabin Shrestha and Donald A. Yee
Viruses 2025, 17(3), 439; https://doi.org/10.3390/v17030439 - 19 Mar 2025
Cited by 3 | Viewed by 2672
Abstract
Oropouche virus (OROV) is a neglected and emerging arbovirus that infects humans and animals in South and Central America. OROV is primarily transmitted to humans through the bites of infected midges and possibly some mosquitoes. It is the causative agent of Oropouche fever, [...] Read more.
Oropouche virus (OROV) is a neglected and emerging arbovirus that infects humans and animals in South and Central America. OROV is primarily transmitted to humans through the bites of infected midges and possibly some mosquitoes. It is the causative agent of Oropouche fever, which has high morbidity but low mortality rates in humans. The disease manifests in humans as high fever, headache, myalgia, arthralgia, photophobia, and, in some cases, meningitis and encephalitis. Additionally, a recent report suggests that OROV may cause fetal death, miscarriage, and microcephaly in newborns when women are infected during pregnancy, similar to the issues caused by the Zika virus (ZIKV), another mosquito-borne disease in the same regions. OROV was first reported in the mid-20th century in the Amazon basin. Since then, over 30 epidemics and more than 500,000 infection cases have been reported. The actual case numbers may be much higher due to frequent misdiagnosis, as OROV infection presents similar clinical symptoms to other co-circulating viruses, such as dengue virus (DENV), chikungunya virus (CHIKV), ZIKV, and West Nile virus (WNV). Due to climate change, increased travel, and urbanization, OROV infections have occurred at an increasing pace and have spread to new regions, with the potential to reach North America. According to the World Health Organization (WHO), over 10,000 cases were reported in 2024, including in areas where it was not previously detected. There is an urgent need to develop vaccines, antivirals, and specific diagnostic tools for OROV diseases. However, little is known about this surging virus, and no specific treatments or vaccines are available. In this article, we review the most recent progress in understanding virology, transmission, pathogenesis, diagnosis, host–vector dynamics, and antiviral vaccine development for OROV, and provide implications for future research directions. Full article
(This article belongs to the Special Issue Oropouche Virus (OROV): An Emerging Peribunyavirus (Bunyavirus))
Show Figures

Figure 1

31 pages, 978 KiB  
Review
Functional Roles and Host Interactions of Orthoflavivirus Non-Structural Proteins During Replication
by Meghan K. Donaldson, Levi A. Zanders and Joyce Jose
Pathogens 2025, 14(2), 184; https://doi.org/10.3390/pathogens14020184 - 12 Feb 2025
Viewed by 2103
Abstract
Orthoflavivirus, a genus encompassing arthropod-borne, positive-sense, single-stranded RNA viruses in the Flaviviridae family, represents clinically relevant viruses that pose significant threats to human and animal health worldwide. With warming climates and persistent urbanization, arthropod vectors and the viruses they transmit continue to [...] Read more.
Orthoflavivirus, a genus encompassing arthropod-borne, positive-sense, single-stranded RNA viruses in the Flaviviridae family, represents clinically relevant viruses that pose significant threats to human and animal health worldwide. With warming climates and persistent urbanization, arthropod vectors and the viruses they transmit continue to widen their geographic distribution, expanding endemic zones. Flaviviruses such as dengue virus, Zika virus, West Nile virus, and tick-borne encephalitis virus cause debilitating and fatal infections globally. In 2024, the World Health Organization and the Pan American Health Organization declared the current dengue situation a Multi-Country Grade 3 Outbreak, the highest level. FDA-approved treatment options for diseases caused by flaviviruses are limited or non-existent, and vaccines are suboptimal for many flaviviruses. Understanding the molecular characteristics of the flavivirus life cycle, virus-host interactions, and resulting pathogenesis in various cells and model systems is critical for developing effective therapeutic intervention strategies. This review will focus on the virus-host interactions of mosquito- and tick-borne flaviviruses from the virus replication and assembly perspective, emphasizing the interplay between viral non-structural proteins and host pathways that are hijacked for their advantage. Highlighting interaction pathways, including innate immunity, intracellular movement, and membrane modification, emphasizes the need for rigorous and targeted antiviral research and development against these re-emerging viruses. Full article
Show Figures

Figure 1

16 pages, 4361 KiB  
Article
Serum-Free Suspension Culture of the Aedes albopictus C6/36 Cell Line for Chimeric Orthoflavivirus Vaccine Production
by Joshua S. Dawurung, Jessica J. Harrison, Naphak Modhiran, Roy A. Hall, Jody Hobson-Peters and Henry de Malmanche
Viruses 2025, 17(2), 250; https://doi.org/10.3390/v17020250 - 12 Feb 2025
Cited by 1 | Viewed by 1678
Abstract
Chimeric orthoflaviviruses derived from the insect-specific Binjari virus (BinJV) offer a promising basis for safe orthoflavivirus vaccines. However, these vaccines have so far only been produced using adherent C6/36 Aedes albopictus mosquito cell cultures grown in serum-supplemented media, limiting their scalable manufacture. To [...] Read more.
Chimeric orthoflaviviruses derived from the insect-specific Binjari virus (BinJV) offer a promising basis for safe orthoflavivirus vaccines. However, these vaccines have so far only been produced using adherent C6/36 Aedes albopictus mosquito cell cultures grown in serum-supplemented media, limiting their scalable manufacture. To address this, we adapted C6/36 cells for serum-free suspension culture using Sf900-III medium, achieving high peak cell densities (up to 2.5 × 107 cells/mL). Higher agitation rates reduced cell aggregation, and cryopreservation and direct-to-suspension revival were successful, confirming the adapted line’s stability for research and industrial applications. Despite this, BinJV-based chimeric orthoflaviviruses, including BinJV/WNVKUN, a candidate vaccine for West Nile virus, and similar vaccines (BinJV/DENV2 and BinJV/JEVNSW22) for dengue 2 virus and Japanese encephalitis virus, respectively, exhibited substantially reduced titres in C6/36 cultures infected in Sf900-III, a phenomenon attributed to the medium’s acidic pH. Switching to the more alkaline, serum-free CD-FortiCHO medium enhanced the replication of these chimeric viruses to peak titres between 1.7 × 107 and 7.6 × 109 infectious units per mL whilst preserving viral integrity. These findings suggest that suspension-adapted C6/36 cultures in CD-FortiCHO medium can support high-yield vaccine production for various orthoflaviviruses and highlight the important role of cell culture media pH for orthoflavivirus bioprocessing. This scalable mosquito cell-based system could reduce production costs and improve vaccine accessibility, supporting efforts to combat arbovirus-related public health challenges. Full article
(This article belongs to the Special Issue Arboviral Lifecycle 2025)
Show Figures

Figure 1

17 pages, 2733 KiB  
Article
Characterization of Novel Plantaricin-Derived Antiviral Peptides Against Flaviviruses
by Abubakr A. M. Omer, Sanjiv Kumar, Robert Selegård, Torbjörn Bengtsson and Hazem Khalaf
Int. J. Mol. Sci. 2025, 26(3), 1038; https://doi.org/10.3390/ijms26031038 - 25 Jan 2025
Cited by 1 | Viewed by 1276
Abstract
Flaviviruses, including West Nile virus, Zika virus, and Dengue virus, pose global health challenges due to their distribution, pathogenicity, and lack of effective treatments or vaccines. This study investigated the antiviral activity of novel truncated peptides derived from the two-peptide plantaricins PLNC8 αβ, [...] Read more.
Flaviviruses, including West Nile virus, Zika virus, and Dengue virus, pose global health challenges due to their distribution, pathogenicity, and lack of effective treatments or vaccines. This study investigated the antiviral activity of novel truncated peptides derived from the two-peptide plantaricins PLNC8 αβ, PlnEF, PlnJK, and PlnA. The antiviral potential was predicted using machine learning tools, followed by in vitro evaluation against the Kunjin virus using plaque reduction assays in Vero cells. Molecular docking assessed peptide interactions with KUNV and ZIKV. Full-length and truncated peptides from PlnA, PlnE, PlnF, PlnJ, and PlnK demonstrated limited antiviral efficacy against KUNV in vitro, despite in silico predictions suggesting antiviral potential for PlnA, PlnE, and PlnJ. Large discrepancies were observed between the predicted and experimentally determined activities. However, complementary two-peptide plantaricins PlnEF and PlnJK exhibited significant synergistic effects. Furthermore, the truncated peptides PLNC8 α1-15 and PLNC8 β1-20 reduced KUNV viral load by over 90%, outperforming their full-length counterparts. Molecular docking revealed interactions of PLNC8 α and PLNC8 β, and their truncated variants, with KUNV and ZIKV, suggesting a mechanism involving viral envelope disruption. These findings highlight the potential of plantaricin-derived peptides as promising antiviral candidates against flaviviruses, warranting further investigation into their mechanisms and applications. Full article
Show Figures

Figure 1

32 pages, 3920 KiB  
Review
Latin America’s Dengue Outbreak Poses a Global Health Threat
by Michelle Teixeira de Almeida, Davi Gabriel Salustiano Merighi, Aline Biazola Visnardi, Cauê Augusto Boneto Gonçalves, Vitor Martins de Freitas Amorim, Anielle Salviano de Almeida Ferrari, Anacleto Silva de Souza and Cristiane Rodrigues Guzzo
Viruses 2025, 17(1), 57; https://doi.org/10.3390/v17010057 - 1 Jan 2025
Cited by 8 | Viewed by 5603
Abstract
Dengue fever, caused by the dengue virus (DENV), poses a significant global health challenge, particularly in tropical and subtropical regions. Recent increases in indigenous DENV cases in Europe are concerning, reflecting rising incidence linked to climate change and the spread of Aedes albopictus [...] Read more.
Dengue fever, caused by the dengue virus (DENV), poses a significant global health challenge, particularly in tropical and subtropical regions. Recent increases in indigenous DENV cases in Europe are concerning, reflecting rising incidence linked to climate change and the spread of Aedes albopictus mosquitoes. These vectors thrive under environmental conditions like temperature and humidity, which are increasingly influenced by climate change. Additionally, global travel accelerates the cross-border spread of mosquito-borne diseases. DENV manifests clinically in a spectrum from asymptomatic cases to severe conditions like dengue hemorrhagic fever and dengue shock syndrome, influenced by viral serotype and host factors. In 2024, Brazil experienced a fourfold increase in dengue cases compared to 2023, accompanied by higher mortality. Conventional control measures, such as vector control, community engagement, and vaccination, proved insufficient as climate change exacerbated mosquito proliferation, challenging containment efforts. In this regard, our review analyzes prevention measures and therapeutic protocols during the outbreak while addressing DENV transmission dynamics, clinical presentations, and epidemiological shifts. It also evaluates diagnostic strategies combining clinical assessment with serological and molecular testing, providing information to improve diagnostic and preventive measures. The global expansion of dengue-endemic regions, including outbreaks in Europe, highlights the urgent need for enhanced surveillance, proactive interventions, and international collaboration to mitigate the growing threat of Dengue and other arboviruses like West Nile, Zika, Chikungunya, Oropouche, and Yellow Fever viruses. Full article
Show Figures

Figure 1

26 pages, 1669 KiB  
Review
Animal Models, Therapeutics, and Vaccine Approaches to Emerging and Re-Emerging Flaviviruses
by Thomas J. Baric and Z. Beau Reneer
Viruses 2025, 17(1), 1; https://doi.org/10.3390/v17010001 - 24 Dec 2024
Cited by 2 | Viewed by 2799
Abstract
Flaviviruses are arthropod-borne viruses primarily transmitted through the mosquito Aedes aegypti or Culex genus of mosquitos. These viruses are predominantly found in tropical and subtropical regions of the world with their geographical spread predicted to increase as global temperatures continue to rise. These [...] Read more.
Flaviviruses are arthropod-borne viruses primarily transmitted through the mosquito Aedes aegypti or Culex genus of mosquitos. These viruses are predominantly found in tropical and subtropical regions of the world with their geographical spread predicted to increase as global temperatures continue to rise. These viruses cause a variety of diseases in humans with the most prevalent being caused by dengue, resulting in hemorrhagic fever and associated sequala. Current approaches for therapeutic control of flavivirus infections are limited, and despite recent advances, there are no approved drugs. Vaccines, available for a few circulating flaviviruses, still have limited potential for controlling contemporary and future outbreaks. Mouse models provide us with a valuable tool to test the effectiveness of drugs and vaccines, yet for many flaviviruses, well-established mouse models are lacking. In this review, we highlight the current state of flavivirus vaccines and therapeutics, as well as our current understanding of mouse models for various flaviviruses. Full article
(This article belongs to the Special Issue Zoonotic and Vector-Borne Viral Diseases)
Show Figures

Figure 1

19 pages, 1531 KiB  
Review
West Nile Virus: An Update Focusing on Southern Europe
by Lara Carrasco, Maria Jose Utrilla, Beatriz Fuentes-Romero, Aitor Fernandez-Novo and Barbara Martin-Maldonado
Microorganisms 2024, 12(12), 2623; https://doi.org/10.3390/microorganisms12122623 - 18 Dec 2024
Cited by 4 | Viewed by 2930
Abstract
West Nile Virus (WNV) is a zoonotic, vector-borne pathogen affecting humans and animals, particularly in Europe. The virus is primarily transmitted through mosquitoes that infect birds, which serve as the main reservoirs. Humans and horses are incidental hosts. This review focuses on the [...] Read more.
West Nile Virus (WNV) is a zoonotic, vector-borne pathogen affecting humans and animals, particularly in Europe. The virus is primarily transmitted through mosquitoes that infect birds, which serve as the main reservoirs. Humans and horses are incidental hosts. This review focuses on the epidemiology of WNV in southern Europe, particularly its increasing prevalence. Methods included an extensive literature review and analysis of recent outbreaks. WNV is largely asymptomatic in humans, but a small percentage can develop West Nile neuroinvasive disease (WNND), leading to severe neurological symptoms and fatalities. Horses can also suffer from neurological complications, with high mortality rates. Climate change, migratory birds, and mosquito population dynamics contribute to the virus spread across Europe. Control efforts focus on vector management, and while vaccines are available for horses, none has been approved for humans. Surveillance, particularly of bird and mosquito populations, and further research into the virus molecular structure are crucial for understanding and mitigating future outbreaks. Full article
(This article belongs to the Section Virology)
Show Figures

Figure 1

17 pages, 505 KiB  
Article
An Inactivated West Nile Virus Vaccine Candidate Based on the Lineage 2 Strain
by Mikhail F. Vorovitch, Ksenia K. Tuchynskaya, Yuriy A. Kruglov, Nikita S. Peunkov, Guzal F. Mostipanova, Ivan S. Kholodilov, Alla L. Ivanova, Maria P. Fedina, Larissa V. Gmyl, Evgeny S. Morozkin, German V. Roev, Lyudmila S. Karan and Galina G. Karganova
Vaccines 2024, 12(12), 1398; https://doi.org/10.3390/vaccines12121398 - 12 Dec 2024
Viewed by 1719
Abstract
Background: West Nile virus (WNV) is a rapidly growing problem worldwide. The lack of emergency treatment and a safe licensed vaccine against WNV allows the virus to cause sporadic outbreaks of human disease, including fatal cases. Formalin-inactivated vaccines have been used for [...] Read more.
Background: West Nile virus (WNV) is a rapidly growing problem worldwide. The lack of emergency treatment and a safe licensed vaccine against WNV allows the virus to cause sporadic outbreaks of human disease, including fatal cases. Formalin-inactivated vaccines have been used for a long time and have been shown to be very safe and effective, especially in susceptible populations. Methods: By adapting tick-borne encephalitis vaccine production technology, we produced a laboratory-inactivated vaccine against WNV based on the strain SHUA, isolated from humans with a lethal WNV infection in the year 2021. Results: The potential vaccine was tested for safety in vitro and in vivo in outbred SHK mice of different ages, including PCR analysis of the brains of these mice to test for the absence of viral RNA after intracerebral injection. Conclusions: The inactivated whole-virion laboratory vaccine showed 100% seroconversion and immunogenicity against WNV strain SHUA-1, isolated from a lethal human case, and provided the mice with 100% protection from disease and death. Full article
(This article belongs to the Special Issue Vaccine Development for Emerging and Zoonotic Diseases)
Show Figures

Figure 1

26 pages, 450 KiB  
Review
Arbovirus in Solid Organ Transplants: A Narrative Review of the Literature
by Kiran Gajurel, Reshika Dhakal and Stan Deresinski
Viruses 2024, 16(11), 1778; https://doi.org/10.3390/v16111778 - 15 Nov 2024
Cited by 3 | Viewed by 1929 | Correction
Abstract
The incidence of arbovirus infections has increased in recent decades. Other than dengue, chikungunya, and West Nile viruses, the data on arbovirus in solid organ transplant (SOT) are limited to case reports, and infections in renal transplant recipients account for most of the [...] Read more.
The incidence of arbovirus infections has increased in recent decades. Other than dengue, chikungunya, and West Nile viruses, the data on arbovirus in solid organ transplant (SOT) are limited to case reports, and infections in renal transplant recipients account for most of the reported cases. Dengue and West Nile infections seem to be more severe with higher mortality in SOT patients than in the general population. Acute kidney injury is more frequent in patients with dengue and chikungunya although persistent arthralgia with the latter is less frequent. There is no clear relationship between arboviral infection and acute cellular rejection. Pre-transplant screening of donors should be implemented during increased arboviral activity but, despite donor screening and negative donor nucleic acid amplification test (NAT), donor derived infection can occur. NAT may be transiently positive. IgM tests lack specificity, and neutralizing antibody assays are more specific but not readily available. Other tests, such as immunohistochemistry, antigen tests, PCR, metagenomic assays, and viral culture, can also be performed. There are a few vaccines available against some arboviruses, but live vaccines should be avoided. Treatment is largely supportive. More data on arboviral infection in SOT are needed to understand its epidemiology and clinical course. Full article
(This article belongs to the Special Issue Viral Infections in Immunocompromised Hosts)
29 pages, 2170 KiB  
Review
The Flavivirus Non-Structural Protein 5 (NS5): Structure, Functions, and Targeting for Development of Vaccines and Therapeutics
by Jarvis Z. H. Goh, Lachlan De Hayr, Alexander A. Khromykh and Andrii Slonchak
Vaccines 2024, 12(8), 865; https://doi.org/10.3390/vaccines12080865 - 1 Aug 2024
Cited by 11 | Viewed by 5126
Abstract
Flaviviruses, including dengue (DENV), Zika (ZIKV), West Nile (WNV), Japanese encephalitis (JEV), yellow fever (YFV), and tick-borne encephalitis (TBEV) viruses, pose a significant global emerging threat. With their potential to cause widespread outbreaks and severe health complications, the development of effective vaccines and [...] Read more.
Flaviviruses, including dengue (DENV), Zika (ZIKV), West Nile (WNV), Japanese encephalitis (JEV), yellow fever (YFV), and tick-borne encephalitis (TBEV) viruses, pose a significant global emerging threat. With their potential to cause widespread outbreaks and severe health complications, the development of effective vaccines and antiviral therapeutics is imperative. The flaviviral non-structural protein 5 (NS5) is a highly conserved and multifunctional protein that is crucial for viral replication, and the NS5 protein of many flaviviruses has been shown to be a potent inhibitor of interferon (IFN) signalling. In this review, we discuss the functions of NS5, diverse NS5-mediated strategies adopted by flaviviruses to evade the host antiviral response, and how NS5 can be a target for the development of vaccines and antiviral therapeutics. Full article
Show Figures

Figure 1

Back to TopTop