Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,812)

Search Parameters:
Keywords = Wageningen

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2081 KiB  
Article
Rapid Soil Tests for Assessing Soil Health
by Jan Adriaan Reijneveld and Oene Oenema
Appl. Sci. 2025, 15(15), 8669; https://doi.org/10.3390/app15158669 - 5 Aug 2025
Abstract
Soil testing has long been used to optimize fertilization and crop production. More recently, soil health testing has emerged to reflect the growing interest in soil multifunctionality and ecosystem services. Soil health encompasses physical, chemical, and biological properties that support ecosystem functions and [...] Read more.
Soil testing has long been used to optimize fertilization and crop production. More recently, soil health testing has emerged to reflect the growing interest in soil multifunctionality and ecosystem services. Soil health encompasses physical, chemical, and biological properties that support ecosystem functions and sustainable agriculture. Despite its relevance to several United Nations Sustainable Development Goals (SDGs 1, 2, 3, 6, 12, 13, and 15), comprehensive soil health testing is not widely practiced due to complexity and cost. The aim of the study presented here was to contribute to the further development, implementation, and testing of an integrated procedure for soil health assessment in practice. We developed and tested a rapid, standardized soil health assessment tool that combines near-infrared spectroscopy (NIRS) and multi-nutrient 0.01 M CaCl2 extraction with Inductive Coupled Plasma Mass Spectroscopy analysis. The tool evaluates a wide range of soil characteristics with high accuracy (R2 ≥ 0.88 for most parameters) and has been evaluated across more than 15 countries, including those in Europe, China, New Zealand, and Vietnam. The results are compiled into a soil health indicator report with tailored management advice and a five-level ABCDE score. In a Dutch test set, 6% of soils scored A (optimal), while 2% scored E (degraded). This scalable tool supports land users, agrifood industries, and policymakers in advancing sustainable soil management and evidence-based environmental policy. Full article
(This article belongs to the Special Issue Soil Analysis in Different Ecosystems)
Show Figures

Figure 1

20 pages, 3390 KiB  
Article
Effects of cRG-I Prebiotic Treatment on Gut Microbiota Composition and Metabolic Activity in Dogs In Vitro
by Sue McKay, Helen Churchill, Matthew R. Hayward, Brian A. Klein, Lieven Van Meulebroek, Jonas Ghyselinck and Massimo Marzorati
Microorganisms 2025, 13(8), 1825; https://doi.org/10.3390/microorganisms13081825 - 5 Aug 2025
Viewed by 70
Abstract
Low-dose carrot rhamnogalacturonan-I (cRG-I) has shown consistent modulatory effects on the gut microbiota and immune function in humans. In this study we investigated its effects on the microbial composition and metabolite production of the gut microbiota of small (5–10 kg), medium-sized (10–27 kg), [...] Read more.
Low-dose carrot rhamnogalacturonan-I (cRG-I) has shown consistent modulatory effects on the gut microbiota and immune function in humans. In this study we investigated its effects on the microbial composition and metabolite production of the gut microbiota of small (5–10 kg), medium-sized (10–27 kg), and large (27–45 kg) dogs, using inulin and xanthan as comparators. Fecal samples from six dogs of each size group were evaluated. Overall microbiome composition, assessed using metagenomic sequencing, was shown to be driven mostly by dog size and not treatment. There was a clear segregation in the metabolic profile of the gut microbiota of small dogs versus medium-sized and large dogs. The fermentation of cRG-I specifically increased the levels of acetate/propionate-producing Phocaeicola vulgatus. cRG-I and inulin were fermented by all donors, while xanthan fermentation was donor-dependent. cRG-I and inulin increased acetate and propionate levels. The responses of the gut microbiota of different sized dogs to cRG-I were generally consistent across donors, and interindividual differences were reduced. This, together with the significant increase in P. vulgatus during fermentation in both this study and an earlier human ex vivo study, suggests that this abundant and prevalent commensal species has a core capacity to selectively utilize cRG-I. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

23 pages, 4510 KiB  
Article
Identification and Characterization of Biosecurity Breaches on Poultry Farms with a Recent History of Highly Pathogenic Avian Influenza Virus Infection Determined by Video Camera Monitoring in the Netherlands
by Armin R. W. Elbers and José L. Gonzales
Pathogens 2025, 14(8), 751; https://doi.org/10.3390/pathogens14080751 - 30 Jul 2025
Viewed by 478
Abstract
Biosecurity measures applied on poultry farms, with a recent history of highly pathogenic avian influenza virus infection, were monitored using 24 h/7 days-per-week video monitoring. Definition of biosecurity breaches were based on internationally acknowledged norms. Farms of four different production types (two broiler, [...] Read more.
Biosecurity measures applied on poultry farms, with a recent history of highly pathogenic avian influenza virus infection, were monitored using 24 h/7 days-per-week video monitoring. Definition of biosecurity breaches were based on internationally acknowledged norms. Farms of four different production types (two broiler, two layer, two breeder broiler, and one duck farm) were selected. Observations of entry to and exit from the anteroom revealed a high degree of biosecurity breaches in six poultry farms and good biosecurity practices in one farm in strictly maintaining the separation between clean and potentially contaminated areas in the anteroom. Hand washing with soap and water and/or using disinfectant lotion was rarely observed at entry to the anteroom and was almost absent at exit. Egg transporters did not disinfect fork-lift wheels when entering the egg-storage room nor change or properly disinfect footwear. The egg-storage room was not cleaned and disinfected after egg transport by the farmer. Similarly, footwear and trolley wheels were not disinfected when introducing young broilers or ducklings to the poultry unit. Biosecurity breaches were observed when introducing bedding material in the duck farm. This study shows a need for an engaging awareness and training campaign for poultry farmers and their co-workers as well as for transporters to promote good biosecurity practices. Full article
Show Figures

Figure 1

15 pages, 1837 KiB  
Article
Cost-Effectiveness of Youth-Friendly Health Services in Health Post Settings in Jimma Zone, Ethiopia
by Geteneh Moges Assefa, Muluken Dessalegn Muluneh, Sintayehu Abebe, Genetu Addisu and Wendemagegn Yeshanehe
Int. J. Environ. Res. Public Health 2025, 22(8), 1179; https://doi.org/10.3390/ijerph22081179 - 25 Jul 2025
Viewed by 251
Abstract
Background: Adolescents in Ethiopia, particularly in rural areas, face significant barriers to accessing comprehensive sexual and reproductive health (SRH) services, resulting in poor health outcomes. The youth-friendly health services (YFHS) initiative addresses these challenges by training Health Extension Workers (HEWs) to deliver tailored, [...] Read more.
Background: Adolescents in Ethiopia, particularly in rural areas, face significant barriers to accessing comprehensive sexual and reproductive health (SRH) services, resulting in poor health outcomes. The youth-friendly health services (YFHS) initiative addresses these challenges by training Health Extension Workers (HEWs) to deliver tailored, age-appropriate care at the primary care level. This study evaluates the cost-effectiveness of YFHS implementation in rural health posts in the Jimma Zone, Ethiopia. Methods: Using an ingredient-based costing approach, costs were analyzed across six health posts, three implementing YFHS and three offering routine services. Health outcomes were modeled using disability-adjusted life years (DALYs) averted, and incremental cost-effectiveness ratios (ICERs) were calculated. Results: Results showed that YFHS reached 9854 adolescents annually at a cost of USD 29,680, compared to 2012.5 adolescents and USD 7519 in control sites. The study showed the ICER of USD 25.50 per DALY averted. The intervention improved health outcomes, including a 27% increase in antenatal care uptake, a 34% rise in contraceptive use, and a 0.065% reduction in abortion-related mortality, averting 52.11 DALYs versus 26.42 in controls. Conclusions: The ICER was USD 25.50 per DALY averted, well below Ethiopia’s GDP per capita, making it highly cost-effective by WHO standards. Scaling YFHS through HEWs offers a transformative, cost-effective strategy to advance adolescent SRH equity and achieve universal health coverage in Ethiopia. Full article
Show Figures

Figure 1

12 pages, 1597 KiB  
Article
Effects of Anthropogenic Vibratory Noise on Plant Development and Herbivory
by Estefania Velilla, Laura Bellato, Eleanor Collinson and Wouter Halfwerk
Acoustics 2025, 7(3), 45; https://doi.org/10.3390/acoustics7030045 - 25 Jul 2025
Viewed by 297
Abstract
Anthropogenic infrastructure, such as inland wind turbines commonly found in agricultural fields, has substantially increased subterranean vibratory noise in the past decades. Plants, being rooted in soil, are continuously exposed to these vibrations, yet we have little understanding of how vibrational noise affects [...] Read more.
Anthropogenic infrastructure, such as inland wind turbines commonly found in agricultural fields, has substantially increased subterranean vibratory noise in the past decades. Plants, being rooted in soil, are continuously exposed to these vibrations, yet we have little understanding of how vibrational noise affects plant development and, consequently, plant–insect interactions. Here, we examine the impact of windmill-like vibrational noise on the growth of Pisum sativum and its full-factorial interaction with the generalist herbivore Spodoptera exigua. Plants were exposed to either high or low vibrational noise from seed germination to the seed production stage. We recorded germination, flowering, fruiting time, and daily shoot length. Additionally, we measured herbivory intensity by Spodoptera exigua caterpillars placed on a subset of plants. Plants exposed to high vibrational noise grew significantly faster and taller than those in the low-noise treatment. Additionally, we found a marginally significant trend for earlier flowering in plants exposed to high noise. We did not find a significant effect of vibrational noise on herbivory. Our results suggest that underground vibrational noise can influence plant growth rates, which may potentially have ecological and agricultural implications. Faster growth may alter interspecific competition and shift trade-offs between growth and defense. Understanding these effects is important in assessing the broader ecological consequences of renewable energy infrastructure. Full article
Show Figures

Figure 1

18 pages, 2943 KiB  
Article
Urban Precipitation Scavenging and Meteorological Influences on BTEX Concentrations: Implications for Environmental Quality
by Kristina Kalkan, Vitaly Efremov, Dragan Milošević, Mirjana Vukosavljev, Nikolina Novakov, Kristina Habschied, Kresimir Mastanjević and Brankica Kartalović
Chemosensors 2025, 13(8), 274; https://doi.org/10.3390/chemosensors13080274 - 24 Jul 2025
Viewed by 358
Abstract
This study provides an assessment of BTEX compounds—benzene, toluene, ethylbenzene, and xylene isomers—in urban precipitation collected in the city of Novi Sad, Republic of Serbia, during autumn and winter 2024, analyzed by gas chromatography-mass spectrometry (GC-MS). By combining chemical analysis with meteorological observations [...] Read more.
This study provides an assessment of BTEX compounds—benzene, toluene, ethylbenzene, and xylene isomers—in urban precipitation collected in the city of Novi Sad, Republic of Serbia, during autumn and winter 2024, analyzed by gas chromatography-mass spectrometry (GC-MS). By combining chemical analysis with meteorological observations and HYSPLIT backward trajectory modeling, the study considers the mechanisms of BTEX removal from the atmosphere via wet scavenging and highlights the role of local weather conditions and long-range atmospheric transport in pollutant concentrations. During the early observation period (September to late November), average concentrations were 0.45 µg/L benzene, 3.45 µg/L ethylbenzene, 4.0 µg/L p-xylene, 2.31 µg/L o-xylene, and 1.32 µg/L toluene. These values sharply dropped to near-zero levels in December for benzene, ethylbenzene, and xylenes, while toluene persisted at 1.12 µg/L. A pronounced toluene spike exceeding 6 µg/L on 28 November was likely driven by transboundary air mass transport from Central Europe, as confirmed by trajectory modeling. The environmental risks posed by BTEX deposition, especially from toluene and xylenes, underline the need for regulatory frameworks to include precipitation as a pathway for pollutant deposition. It should be clarified that the identified risk primarily concerns aquatic organisms, due to the potential for BTEX infiltration into surface waters and subsequent ecotoxicological impacts. Incorporating such monitoring into EU policies can improve protection of air, water, and ecosystems. Full article
Show Figures

Figure 1

20 pages, 4182 KiB  
Article
Beyond White-Nose Syndrome: Mitochondrial Rearrangements and Functional Genomics of Pseudogymnoascus destructans
by Ilia V. Popov, Svetoslav D. Todorov, Michael L. Chikindas, Koen Venema, Alexey M. Ermakov and Igor V. Popov
J. Fungi 2025, 11(8), 550; https://doi.org/10.3390/jof11080550 - 24 Jul 2025
Viewed by 485
Abstract
White-Nose Syndrome (WNS) has devastated insectivorous bat populations, particularly in North America, leading to severe ecological and economic consequences. Despite extensive research, many aspects of the evolutionary history, mitochondrial genome organization, and metabolic adaptations of its etiological agent, Pseudogymnoascus destructans, remain unexplored. [...] Read more.
White-Nose Syndrome (WNS) has devastated insectivorous bat populations, particularly in North America, leading to severe ecological and economic consequences. Despite extensive research, many aspects of the evolutionary history, mitochondrial genome organization, and metabolic adaptations of its etiological agent, Pseudogymnoascus destructans, remain unexplored. Here, we present a multi-scale genomic analysis integrating pangenome reconstruction, phylogenetic inference, Bayesian divergence dating, comparative mitochondrial genomics, and refined functional annotation. We show that P. destructans exhibits extensive mitochondrial genome rearrangements absent in its nonpathogenic relatives from the Leotiomycetes class, suggesting a potential link between mitochondrial evolution and pathogenic adaptation. Our divergence dating analysis reveals that P. destructans separated from its Antarctic relatives approximately 141 million years ago, before adapting to bat hibernacula in the Northern Hemisphere. Additionally, our refined functional annotation significantly expands the known functional landscape of P. destructans, revealing an extensive repertoire of previously uncharacterized proteins involved in carbohydrate metabolism and secondary metabolite biosynthesis—key processes that likely contribute to its pathogenic success. By providing new insights into the genomic basis of P. destructans adaptation and pathogenicity, our study refines the evolutionary framework of this fungal pathogen and creates the foundation for future research on WNS mitigation strategies. Full article
(This article belongs to the Special Issue Diversity, Taxonomy and Ecology of Ascomycota, 2nd Edition)
Show Figures

Figure 1

27 pages, 4152 KiB  
Article
Recent Advances in the EAGLE Concept—Monitoring the Earth’s Surface Based on a New Land Characterisation Approach
by Stephan Arnold, Geoffrey Smith, Geir-Harald Strand, Gerard Hazeu, Michael Bock, Barbara Kosztra, Christoph Perger, Gebhard Banko, Tomas Soukup, Nuria Valcarcel Sanz, Stefan Kleeschulte, Julián Delgado Hernández and Emanuele Mancosu
Land 2025, 14(8), 1525; https://doi.org/10.3390/land14081525 - 24 Jul 2025
Viewed by 302
Abstract
The demand for land monitoring information continues to increase, but the range and diversity of the available products to date have made their integrated use challenging and, at times, counterproductive. There has therefore been a growing need to enhance and harmonise the practice [...] Read more.
The demand for land monitoring information continues to increase, but the range and diversity of the available products to date have made their integrated use challenging and, at times, counterproductive. There has therefore been a growing need to enhance and harmonise the practice of land monitoring on a pan-European level with the formulation of a more consistent and standardised set of modelling criteria. The outcome has been a paradigm shift away from a “paper map”-based world where features are given a single, fixed label to one where features have a rich characterisation which is more informative, flexible and powerful. The approach allows the characteristics to be dynamic so that, over time, a feature may only change part of its description (i.e., a forest can be felled, but it may remain as forestry if replanted) or it can have multiple descriptors (i.e., a forest may be used for both timber production and recreation). The concept proposed by the authors has evolved since 2008 from first drafts to a comprehensive and powerful tool adopted by the European Union’s Copernicus programme. It provides for the semantic decomposition of existing nomenclatures, as well as supports a descriptive approach to the mapping of all landscape features in a flexible and object-oriented manner. In this way, the key move away from classification towards the characterisation of the Earth’s surface represents a novel and innovate approach to handling complex land surface information more suited to the age of distributed databases, cloud computing and object-oriented data modelling. In this paper, the motivation for and technical approach of the EAGLE concept with its matrix and UML model implementation are explained. This is followed by an update of the latest developments and the presentation of a number of experimental and operational use cases at national and European levels, and it then concludes with thoughts on the future outlook. Full article
Show Figures

Figure 1

16 pages, 3034 KiB  
Article
Identification of Avocado Fruit Disease Caused by Diaporthe phaseolorum and Colletotrichum fructicola in China
by Aosiqi Ma, Yuhang Xu, Hongxing Feng, Yanyuan Du, Huan Liu, Song Yang, Jie Chen and Xin Hao
J. Fungi 2025, 11(8), 547; https://doi.org/10.3390/jof11080547 - 23 Jul 2025
Viewed by 454
Abstract
Persea americana (avocado) is a healthy fruit, rich in unsaturated fatty acids, various minerals, and vitamins. As avocado cultivation continues to expand globally, its development is increasingly constrained by concomitant diseases, among which fruit rot and anthracnose have emerged as significant threats to [...] Read more.
Persea americana (avocado) is a healthy fruit, rich in unsaturated fatty acids, various minerals, and vitamins. As avocado cultivation continues to expand globally, its development is increasingly constrained by concomitant diseases, among which fruit rot and anthracnose have emerged as significant threats to fruit quality. Menglian in Yunnan Province is the largest avocado production area in China. In November 2024, fruit rot was observed on avocado fruits in Yunnan, China, characterized by reddish-brown discoloration, premature ripening, softening, and pericarp decay, with a field infection rate of 22%. Concurrently, anthracnose was detected in avocado fruits, presenting as small dark brown spots that developed into irregular rust-colored lesions, followed by dry rot depressions, ultimately leading to soft rot, peeling, or hardened dry rot, with a field infection rate of 15%. Infected fruit samples were collected, and fungal strains were isolated, purified, and inoculated via spore suspension, followed by re-isolation. The strains were conclusively identified as Diaporthe phaseolorum (SWFU20, SWFU21) and Colletotrichum fructicola (SWFU12, SWFU13) through an integrated approach combining DNA extraction, polymerase chain reaction (PCR), sequencing, phylogenetic reconstruction, and morphological characterization. This is the first report of D. phaseolorum causing fruit rot and C. fructicola causing anthracnose on avocado in China. In future research, we will test methods for the control of D. phaseolorum and C. fructicola. The identification of these pathogens provides a foundation for future disease management research, supporting the sustainable development of the avocado industry. Full article
Show Figures

Figure 1

11 pages, 811 KiB  
Systematic Review
Rat Hepatitis E Virus (Rocahepevirus ratti): A Systematic Review of Its Presence in Water, Food-Related Matrices, and Potential Risks to Human Health
by Sérgio Santos-Silva, Helena M. R. Gonçalves, Wim H. M. Van der Poel, Maria S. J. Nascimento and João R. Mesquita
Foods 2025, 14(14), 2533; https://doi.org/10.3390/foods14142533 - 19 Jul 2025
Viewed by 304
Abstract
Rat hepatitis E virus (rat HEV) is an emerging zoonotic virus detected in rodents worldwide, with increasing evidence of presence in environmental sources such as surface water, wastewater and bivalves. This systematic review compiles and analyzes all the published research on rat HEV [...] Read more.
Rat hepatitis E virus (rat HEV) is an emerging zoonotic virus detected in rodents worldwide, with increasing evidence of presence in environmental sources such as surface water, wastewater and bivalves. This systematic review compiles and analyzes all the published research on rat HEV contamination in these matrices, as well as its implications for human health. A comprehensive literature search was conducted using databases such as PubMed, Scopus, Web of Science, and Mendeley, including studies published up until 27 May 2025. Studies were included if they evaluated rat HEV in water- or food-related matrices using molecular detection. The risk of bias was not assessed. The certainty of evidence was not formally evaluated. Limitations include reliance on PCR methods without infectivity confirmation. Following PRISMA inclusion and exclusion criteria, eight eligible studies were analyzed. The results show high detection rates of rat HEV RNA in influent wastewater samples from several high-income European countries, namely Sweden, France, Italy, Spain and Portugal. Lower detection rates were found in effluent wastewater and surface waters in Sweden. In bivalve mollusks sampled in Brazil, rat HEV RNA was detected in 2.2% of samples. These findings show the widespread environmental presence of rat HEV, particularly in urban wastewater systems. While human infections by rat HEV have been documented, the true extent of rat HEV zoonotic potential remains unclear. Given the risks associated with this environmental rat HEV contamination, enhanced surveillance, standardized detection methods, and targeted monitoring programs in food production and water management systems are essential to mitigate potential public health threats. Establishing such programs will be crucial for understanding the impact of rat HEV on human health. Full article
(This article belongs to the Section Food Toxicology)
Show Figures

Figure 1

16 pages, 3840 KiB  
Article
Automated Body Condition Scoring in Dairy Cows Using 2D Imaging and Deep Learning
by Reagan Lewis, Teun Kostermans, Jan Wilhelm Brovold, Talha Laique and Marko Ocepek
AgriEngineering 2025, 7(7), 241; https://doi.org/10.3390/agriengineering7070241 - 18 Jul 2025
Viewed by 636
Abstract
Accurate body condition score (BCS) monitoring in dairy cows is essential for optimizing health, productivity, and welfare. Traditional manual scoring methods are labor-intensive and subjective, driving interest in automated imaging-based systems. This study evaluated the effectiveness of 2D imaging and deep learning for [...] Read more.
Accurate body condition score (BCS) monitoring in dairy cows is essential for optimizing health, productivity, and welfare. Traditional manual scoring methods are labor-intensive and subjective, driving interest in automated imaging-based systems. This study evaluated the effectiveness of 2D imaging and deep learning for BCS classification using three camera perspectives—front, back, and top-down—to identify the most reliable viewpoint. The research involved 56 Norwegian Red milking cows at the Center for Livestock Experiments (SHF) of Norges Miljo-og Biovitenskaplige Universitet (NMBU) in Norway. Images were classified into BCS categories of 2.5, 3.0, and 3.5 using a YOLOv8 model. The back view achieved the highest classification precision (mAP@0.5 = 0.439), confirming that key morphological features for BCS assessment are best captured from this angle. Challenges included misclassification due to overlapping features, especially in Class 2.5 and background data. The study recommends improvements in algorithmic feature extraction, dataset expansion, and multi-view integration to enhance accuracy. Integration with precision farming tools enables continuous monitoring and early detection of health issues. This research highlights the potential of 2D imaging as a cost-effective alternative to 3D systems, particularly for small and medium-sized farms, supporting more effective herd management and improved animal welfare. Full article
(This article belongs to the Special Issue Precision Farming Technologies for Monitoring Livestock and Poultry)
Show Figures

Figure 1

15 pages, 1732 KiB  
Article
Differentiating Zeranol Implant Abuse and Fusarium spp. Toxin-Contaminated Corn Intake by Detection and Quantification of Resorcylic Acid Lactones in Bovine Urine
by Rafael Silva Gomes, Vanessa Gonçalves dos Santos, Carlos Juliano da Silva, Amanda Martinez Nagato Simões, Eliene Alves dos Santos, Mary Ane Gonçalves Lana, Kelly Moura Keller, Marco Blokland, Ane Arrizabalaga-Larrañaga, Rafael Romero Nicolino, Marcelo Resende de Souza, Tadeu Chaves de Figueiredo, Saskia Sterk and Silvana de Vasconcelos Cançado
Toxins 2025, 17(7), 347; https://doi.org/10.3390/toxins17070347 - 11 Jul 2025
Viewed by 417
Abstract
Resorcylic acid lactones (RALs) are fungal metabolites with known biological activity. Zeranol, a synthetic RAL, has been used as an estrogenic growth promoter in cattle; however, its use is prohibited in several countries. Zearalenone, a mycotoxin produced by Fusarium spp., is commonly found [...] Read more.
Resorcylic acid lactones (RALs) are fungal metabolites with known biological activity. Zeranol, a synthetic RAL, has been used as an estrogenic growth promoter in cattle; however, its use is prohibited in several countries. Zearalenone, a mycotoxin produced by Fusarium spp., is commonly found in contaminated animal feed and can be metabolized into other RALs, which are subsequently excreted in urine. To differentiate between natural contamination from feed and the illegal administration of zeranol, the European Union Reference Laboratory for Growth Promoters (EURL) developed a mathematical equation. This study aims to evaluate the detection and quantification of RALs in bovine urine from animals fed zearalenone-contaminated diets, implanted with zeranol, or subjected to both conditions. RALs were detected and quantified in the urine of cattle consuming contaminated corn, while zeranol and taleranol were identified in the urine of implanted animals. The EURL equation proved to be a valuable tool for determining the origin of RALs in bovine urine and holds significant potential for monitoring and enforcing regulations regarding the illegal use of zeranol. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Graphical abstract

21 pages, 10356 KiB  
Article
Autonomous Greenhouse Cultivation of Dwarf Tomato: Performance Evaluation of Intelligent Algorithms for Multiple-Sensor Feedback
by Stef C. Maree, Pinglin Zhang, Bart M. van Marrewijk, Feije de Zwart, Monique Bijlaard and Silke Hemming
Sensors 2025, 25(14), 4321; https://doi.org/10.3390/s25144321 - 10 Jul 2025
Viewed by 431
Abstract
Greenhouse horticulture plays an important role globally by producing nutritious fruits and vegetables with high resource use efficiency. Modern greenhouses are large-scale high-tech production factories that are increasingly data-driven, and where climate and irrigation control are gradually becoming more autonomous. This is enabled [...] Read more.
Greenhouse horticulture plays an important role globally by producing nutritious fruits and vegetables with high resource use efficiency. Modern greenhouses are large-scale high-tech production factories that are increasingly data-driven, and where climate and irrigation control are gradually becoming more autonomous. This is enabled by technological developments and driven by shortages in skilled labor and the demand for improved resource use efficiency. In the Autonomous Greenhouse Challenge, it has been shown that controlling greenhouse cultivation can be done efficiently with intelligent algorithms. For an optimal strategy, however, it is essential that control algorithms properly account for crop responses, which requires appropriate sensors, reliable data, and accurate models. This paper presents the results of the 4th Autonomous Greenhouse Challenge, in which international teams developed six intelligent algorithms that fully controlled a dwarf tomato cultivation, a crop that is well-suited for robotic harvesting, but for which little prior cultivation data exists. Nevertheless, the analysis of the experiment showed that all teams managed to obtain a profitable strategy, and the best algorithm resulted a production equivalent to 45 kg/m2/year, higher than in the commercial practice of high-wire cherry tomato growing. The predominant factor was found to be the much higher plant density that can be achieved in the applied growing system. More difficult challenges were found to be related to measuring crop status to determine the harvest moment. Finally, this experiment shows the potential for novel greenhouse cultivation systems that are inherently well-suited for autonomous control, and results in a unique and rich dataset to support future research. Full article
(This article belongs to the Special Issue AI, IoT and Smart Sensors for Precision Agriculture: 2nd Edition)
Show Figures

Figure 1

25 pages, 5591 KiB  
Article
Towards a Comprehensive Hydrodynamic Model for the Feasibility Study of Motor Yachts
by Francesco Mauro, Ermina Begovic, Enrico Della Valentina, Antonino Dell’Acqua, Barbara Rinauro, Gennaro Rosano and Roberto Tonelli
J. Mar. Sci. Eng. 2025, 13(7), 1319; https://doi.org/10.3390/jmse13071319 - 9 Jul 2025
Viewed by 496
Abstract
The design process for motor yachts primarily relies on the experience of designers, who draw upon their knowledge gained from working on similar hull forms. However, when a new concept is to be developed, the experience garnered from standard platforms may not suffice [...] Read more.
The design process for motor yachts primarily relies on the experience of designers, who draw upon their knowledge gained from working on similar hull forms. However, when a new concept is to be developed, the experience garnered from standard platforms may not suffice for achieving a successful design within a short timeframe. Designing a motor yacht involves considering multiple aspects of ship hydrodynamics, including resistance, propulsion, seakeeping, and maneuverability. While these factors have been extensively discussed for different types of ships, a comprehensive joint investigation of hulls, such as those of motor yachts, is noticeably absent in the available literature. This paper aims to fill that gap by providing guidelines for the design of motor yachts with lengths ranging from 20 to 40 m. As part of a preliminary study, a series of 15 yacht hulls were developed, starting from a reference hull form. The resistance, seakeeping and maneuverability performance of these hulls were assessed under specified environmental conditions and speeds, following the ISO 22834:2022 guidelines for comfort assessment. The calculations produced response surfaces detailing the hydrodynamic properties for this series of yachts as functions of the main dimensions of the hulls. Ultimately, these responses assist in identifying optimal design solutions for the main dimensions of a new motor yacht within the 20 to 40 m length range. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

31 pages, 1097 KiB  
Project Report
Assessment of Knowledge Gaps Related to Soil Literacy
by Roger Roca Vallejo, Anna Krzywoszynska, Loukas Katikas, Karen Naciph Mora, Marie Husseini, Sónia Morais Rodrigues, Roos van de Logt, Karen Johnson, Borut Vrščaj, Camilla Ramezzano, Katja Črnec and Almut Ballstaedt
Land 2025, 14(7), 1372; https://doi.org/10.3390/land14071372 - 30 Jun 2025
Viewed by 509
Abstract
Soil literacy, defined as the combination of attitudes, behaviours, and competencies necessary to make informed decisions that promote soil health, is increasingly recognised as a crucial element for sustainable development. This article presents the outcomes of the Soil Literacy Think Tank established under [...] Read more.
Soil literacy, defined as the combination of attitudes, behaviours, and competencies necessary to make informed decisions that promote soil health, is increasingly recognised as a crucial element for sustainable development. This article presents the outcomes of the Soil Literacy Think Tank established under the Soils for Europe (SOLO) project, which aims to identify research and innovation knowledge gaps to strengthen soil literacy in Europe. Drawing on literature reviews, stakeholder engagement, and interdisciplinary dialogue, the paper highlights 18 prioritised knowledge gaps across different topics. These include a lack of integrated pedagogical strategies, limited outreach to specific social groups, and underdeveloped communication methods linking soil knowledge to stewardship actions. The article proposes adaptive and inclusive approaches to soil education that respect multiple knowledge systems and values and emphasises the importance of embedding soil literacy into sustainability agendas and governance processes. By addressing these challenges, the paper contributes to broader efforts supporting the EU Soil Mission and the goals of World Soil Day by promoting public awareness, citizen engagement, and responsible soil care. Full article
(This article belongs to the Special Issue Celebrating World Soil Day)
Show Figures

Figure 1

Back to TopTop