Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (127)

Search Parameters:
Keywords = W-Cu alloy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2764 KiB  
Article
AlxCoCrFeNi High-Entropy Alloys Enable Simultaneous Electrical and Mechanical Robustness at Thermoelectric Interfaces
by Xiaoxia Zou, Wangjie Zhou, Xinxin Li, Yuzeng Gao, Jingyi Yu, Linglu Zeng, Guangteng Yang, Li Liu, Wei Ren and Yan Sun
Materials 2025, 18(15), 3688; https://doi.org/10.3390/ma18153688 - 6 Aug 2025
Abstract
The interface between high-performance thermoelectric materials and electrodes critically governs the conversion efficiency and long-term reliability of thermoelectric generators under high-temperature operation. Here, we propose AlxCoCrFeNi high-entropy alloys (HEA) as barrier layers to bond Cu-W electrodes with p-type skutterudite (p-SKD) thermoelectric [...] Read more.
The interface between high-performance thermoelectric materials and electrodes critically governs the conversion efficiency and long-term reliability of thermoelectric generators under high-temperature operation. Here, we propose AlxCoCrFeNi high-entropy alloys (HEA) as barrier layers to bond Cu-W electrodes with p-type skutterudite (p-SKD) thermoelectric materials. The HEA/p-SKD interface exhibited excellent chemical bonding with a stable and controllable reaction layer, forming a dense, defect-free (Fe,Ni,Co,Cr)Sb phase (thickness of ~2.5 μm) at the skutterudites side. The interfacial resistivity achieved a low value of 0.26 μΩ·cm2 and remained at 7.15 μΩ·cm2 after aging at 773 K for 16 days. Moreover, the interface demonstrated remarkable mechanical stability, with an initial shear strength of 88 MPa. After long-term aging for 16 days at 773 K, the shear strength retained 74 MPa (only 16% degradation), ranking among the highest reported for thermoelectric materials/metal joints. Remarkably, the joint maintained a shear strength of 29 MPa even after 100 continuous thermal cycles (623–773 K), highlighting its outstanding thermo-mechanical stability. These results validate the AlxCoCrFeNi high-entropy alloys as an ideal interfacial material for thermoelectric generators, enabling simultaneous optimization of electrical and mechanical performance in harsh environments. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

29 pages, 14647 KiB  
Article
Precipitation Processes in Sanicro 25 Steel at 700–900 °C: Experimental Study and Digital Twin Simulation
by Grzegorz Cempura and Adam Kruk
Materials 2025, 18(15), 3594; https://doi.org/10.3390/ma18153594 - 31 Jul 2025
Viewed by 278
Abstract
Sanicro 25 (X7NiCrWCuCoNb25-23-3-3-2) steel is specifically designed for use in superheater components within the latest generation of conventional power plants. These power plants operate under conditions often referred to as super-ultra-supercritical, with steam parameters that can reach up to 30 MPa and temperatures [...] Read more.
Sanicro 25 (X7NiCrWCuCoNb25-23-3-3-2) steel is specifically designed for use in superheater components within the latest generation of conventional power plants. These power plants operate under conditions often referred to as super-ultra-supercritical, with steam parameters that can reach up to 30 MPa and temperatures of 653 °C for fresh steam and 672 °C for reheated steam. While last-generation supercritical power plants still rely on fossil fuels, they represent a significant step forward in more sustainable energy production. The most sophisticated facilities of this kind can achieve thermodynamic efficiencies exceeding 47%. This study aimed to conduct a detailed analysis of the initial precipitation processes occurring in Sanicro 25 steel within the temperature range of 700–900 °C. The temperature of 700 °C corresponds to the operational conditions of this material, particularly in secondary steam superheaters in thermal power plants that operate under ultra-supercritical parameters. Understanding precipitation processes is crucial for optimizing mechanical performance, particularly in terms of long-term strength and creep resistance. To accurately assess the microstructural changes that occur during the early stages of service, a digital twin approach was employed, which included CALPHAD simulations and experimental heat treatments. Experimental annealing tests were conducted in air within the temperature range of 700–900 °C. Precipitation behavior was simulated using the Thermo-Calc 2025a with Dictra software package. The results from Prisma simulations correlated well with the experimental data related to the kinetics of phase transformations; however, it was noted that the predicted sizes of the precipitates were generally smaller than those observed in experiments. Additionally, computational limitations were encountered during some simulations due to the complexity arising from the numerous alloying elements present in Sanicro 25 steel. The microstructural evolution was investigated using various methods, including light microscopy (LM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Full article
Show Figures

Figure 1

14 pages, 15625 KiB  
Article
Preparation of GRCop-42 Cu Alloy by Laser-Directed Energy Deposition: Role of Laser Power on Densification, Microstructure, and Mechanical Properties
by Chao Liu, Ping Han, Hongwei Sun and Yun Zhao
Crystals 2025, 15(6), 547; https://doi.org/10.3390/cryst15060547 - 7 Jun 2025
Viewed by 823
Abstract
This study addresses critical challenges in manufacturing GRCop-42 Cu alloy (Cu-4Cr-2Nb) components via laser-directed energy deposition (LDED). We systematically establish process–microstructure–property correlation for this alloy, demonstrating that laser power critically governs defect formation and mechanical performance. The alloy exhibited optimal microstructure and properties [...] Read more.
This study addresses critical challenges in manufacturing GRCop-42 Cu alloy (Cu-4Cr-2Nb) components via laser-directed energy deposition (LDED). We systematically establish process–microstructure–property correlation for this alloy, demonstrating that laser power critically governs defect formation and mechanical performance. The alloy exhibited optimal microstructure and properties at a laser power of 2000 W, with a room temperature tensile strength of 319 ± 6.5 MPa and an elongation of 25.42 ± 1.9%. The tensile strength in the high-temperature tensile test at 600 °C was measured at 98 ± 3.1 MPa, with an elongation of 15.83 ± 1.5%. The comprehensive performance reaches the optimal value of the processing window. Through cross-scale characterization techniques, the differences in fracture mechanisms at different temperatures are clarified for the first time: at room temperature, a microporous aggregation-type ductile fracture is observed, with plastic deformation primarily dominated by dislocation slip; in a high-temperature environment, due to the weakening of grain boundary strength, the fracture mode shifts to intergranular fracture, and the deformation mechanism evolves into a synergistic effect of dislocation slip and twinning. The findings of this study not only provide valuable insights into optimizing the LDED process parameters for the GRCop-42 alloy but also shed light on the relationship between its microstructure and mechanical properties under different temperature conditions, offering a solid foundation for the further application of this alloy in complex aerospace components. Full article
(This article belongs to the Special Issue Design, Microstructure and Mechanical Properties of Cu-Based Alloys)
Show Figures

Figure 1

17 pages, 16925 KiB  
Article
Microstructure and Mechanical Properties of Toughened Seven-Wire Electrogas Welding
by Yong Chen, Yulang Xu, Xianrui Zhao, Yefang Wang, Wangwang Yu, Tao Zhang and Chenfu Fang
Materials 2025, 18(7), 1581; https://doi.org/10.3390/ma18071581 - 31 Mar 2025
Viewed by 265
Abstract
Based on the flexible adjustment of the seven-wire, this study will assemble a new toughened seven-wire which is combined with a common single welding wire and the existing welding wire containing ductile alloy element (Ni element), and the microstructure properties, mechanical properties and [...] Read more.
Based on the flexible adjustment of the seven-wire, this study will assemble a new toughened seven-wire which is combined with a common single welding wire and the existing welding wire containing ductile alloy element (Ni element), and the microstructure properties, mechanical properties and toughening mechanism of the welding seams were studied. The results show that the microstructure of the four combinatorial seven-wire welding seams is mainly composed of coarse proeutectoid ferrite (PF) and fine acicular ferrite (AF). Among them, the core of inclusions that induce AF nucleation and growth are mainly composed of Al, Ti, Si, and Mn-based oxides, and the edge of inclusions is mainly composed of Mn and Cu sulfides (MnS, CuS). The addition of Ti compounds further promotes AF nucleation. This is also a reason why the impact toughness of the combinatorial seven-wire W2/W3 welding seams is higher than that of other combinatorial seven-wire welding seams, but the impact toughness of the rich Ni seven-wire can meet the standard requirements of the China Classification Society (CCS). Among the four combinatorial seven-wire welding seams, the proportions of large angle grain boundaries (grain orientation difference ≥ 15°) that improve the ability of materials to prevent brittle fracture are 65.9%, 68.8%, 66.0%, 61.7%, respectively, that is, the larger proportion of large angle grain boundaries in combinatorial seven-wire W2 welding seams (Ni content is 0.0897%) is one of the reasons for the higher impact toughness of the welding seams. With the increase of Ni content in the welding seam, the AF content first increased and then decreased, the yield strength and tensile strength increased, and the elongation and section shrinkage first increased and then decreased. When the combinatorial seven-wire W2/W3 was used, the welding seam plasticity was the best. Full article
(This article belongs to the Special Issue Advanced Welding in Alloys and Composites)
Show Figures

Figure 1

12 pages, 6733 KiB  
Article
Optical Properties and Thermal Stability of Ag-In-Cu Film on Aluminum Alloy Substrate Deposited by Magnetron Sputtering
by Xiaojun Zhao, Xinyue Wang, Ke Liu, Yuxiang Jiang, Zhenwu Peng, Yuchi Zhou, Zhonglin Qian, Wei Li, Lekang Lu, Lairong Xiao and Zhenyang Cai
Materials 2025, 18(6), 1318; https://doi.org/10.3390/ma18061318 - 17 Mar 2025
Viewed by 474
Abstract
High-reflectivity metallic films on aluminum substrates are crucial in advanced aerospace and military applications due to their excellent reflectivity and workability. In order to further improve the reflectivity and thermal stability of films, this study investigated the deposition of AgInCux (x = [...] Read more.
High-reflectivity metallic films on aluminum substrates are crucial in advanced aerospace and military applications due to their excellent reflectivity and workability. In order to further improve the reflectivity and thermal stability of films, this study investigated the deposition of AgInCux (x = 1, 3, and 5 wt.%) films on Al 6061 alloy substrates using magnetron sputtering, exploring the impact of deposition parameters and composition on their optical properties and thermal stability. Increased copper content improved thermal stability, while it compromised reflectivity. Additionally, increasing deposition power and time initially enhanced reflectivity, but beyond an optimal point, it decreased. Therefore, the AgInCu films deposited at 30 W for 2 min exhibited the highest reflectivity of 99.8% in the near-infrared range, making them promising candidates for reflective films in next-generation optical applications. Full article
Show Figures

Figure 1

13 pages, 3850 KiB  
Article
Laser-Cladding Cu-Cr-X Coating on Cu Alloy for Longer Service Life in Electrical Applications
by Xing Li, Lekang Lu, Jiashu Fang, Junjia Liang, Yesong Yang, Xiaojun Zhao, Sainan Liu, Lairong Xiao and Zhenyang Cai
Materials 2025, 18(5), 1103; https://doi.org/10.3390/ma18051103 - 28 Feb 2025
Viewed by 755
Abstract
Advancements in electrical components have intensified the challenges for copper alloy wear resistance and high-temperature performance in electrical applications. The surface coating preparation of Cu alloys is crucial for enhancing their lifespan and promoting sustainable resource development. This study explored the microstructure and [...] Read more.
Advancements in electrical components have intensified the challenges for copper alloy wear resistance and high-temperature performance in electrical applications. The surface coating preparation of Cu alloys is crucial for enhancing their lifespan and promoting sustainable resource development. This study explored the microstructure and properties of Cu-Cr-X coatings (X = Mo/W, Al2O3/TiO2) on Cu alloy substrates via laser-cladding to improve wear resistance and hardness, vital for electrical component reliability and switching capacity. The process involved adjusting the power and reinforcing the phase particle size. The results showed hardness > 110 HV for all coatings (vs. 67.4 HV for the substrate). Cu-Cr-W achieved the highest hardness at 179 HV due to W dispersion and WCr precipitate reinforcement. It also maintained a stable CoF and the lowest wear rate (1.87 mg/km), with a fivefold wear resistance compared to the substrate alone. Cu-Cr-W excelled in lifespan extension and material loss reduction due to superior hardness, wear resistance, and conductivity. Full article
(This article belongs to the Special Issue Corrosion Resistance and Protection of Metal Alloys)
Show Figures

Figure 1

14 pages, 4098 KiB  
Article
Thermal Stability and Irradiation Resistance of (CrFeTiTa)70W30 and VFeTiTaW High Entropy Alloys
by André Pereira, Ricardo Martins, Bernardo Monteiro, José B. Correia, Andrei Galatanu, Norberto Catarino, Petra J. Belec and Marta Dias
Materials 2025, 18(5), 1030; https://doi.org/10.3390/ma18051030 - 26 Feb 2025
Viewed by 586
Abstract
Nuclear fusion is a promising energy source. The International Thermonuclear Experimental Reactor aims to study the feasibility of tokamak-type reactors and test technologies and materials for commercial use. One major challenge is developing materials for the reactor’s divertor, which supports high thermal flux. [...] Read more.
Nuclear fusion is a promising energy source. The International Thermonuclear Experimental Reactor aims to study the feasibility of tokamak-type reactors and test technologies and materials for commercial use. One major challenge is developing materials for the reactor’s divertor, which supports high thermal flux. Tungsten was chosen as the plasma-facing material, while a CuCrZr alloy will be used in the cooling pipes. However, the gradient between the working temperatures of these materials requires the use of a thermal barrier interlayer between them. To this end, refractory high-entropy (CrFeTiTa)70W30 and VFeTiTaW alloys were prepared by mechanical alloying and sintering, and their thermal and irradiation resistance was evaluated. Both alloys showed phase growth after annealing at 1100 °C for 8 days, being more pronounced for higher temperatures (1300 °C and 1500 °C). The VFeTiTaW alloy presented greater phase growth, suggesting lower microstructural stability, however, no new phases were formed. Both (as-sintered) alloys were irradiated with Ar+ (150 keV) with a fluence of 2.4 × 1020 at/m2, as well as He+ (10 keV) and D+ (5 keV) both with a fluence of 5 × 1021 at/m2. The morphology of the surface of both samples was analyzed before and after irradiation showing no severe morphologic changes, indicating high irradiation resistance. Additionally, the VFeTiTaW alloy presented a lower deuterium retention (8.58%) when compared to (CrFeTiTa)70W30 alloy (14.41%). Full article
(This article belongs to the Special Issue High-Entropy Alloys: Synthesis, Characterization, and Applications)
Show Figures

Figure 1

18 pages, 3619 KiB  
Article
Effect of Grain Size on Thermophysical Properties in Twinning-Induced Plasticity Steel
by Joong-Ki Hwang
Materials 2025, 18(4), 890; https://doi.org/10.3390/ma18040890 - 18 Feb 2025
Viewed by 666
Abstract
This study investigated the thermophysical properties of TWIP steel with respect to grain size. The coefficient of thermal expansion (β) of TWIP steel was approximately 22.4 × 10−6 °C−1, and this value was hardly affected by the grain [...] Read more.
This study investigated the thermophysical properties of TWIP steel with respect to grain size. The coefficient of thermal expansion (β) of TWIP steel was approximately 22.4 × 10−6 °C−1, and this value was hardly affected by the grain size. Therefore the density of TWIP steel was also unaffected by grain size within the tested range. The β in TWIP steel was higher than that of plain carbon steels (13–15 × 10−6 °C−1) such as interstitial free (IF) steel and low-carbon steel, and stainless steels (18–21 × 10−6 °C−1) such as X10NiCrMoTiB1515 steel and 18Cr-9Ni-2.95Cu-0.58Nb-0.1C steel. The specific heat capacity (cp) increased with temperature because the major factor affecting cp is the lattice vibrations. As the temperature increases, atomic vibrations become more active, allowing the material to store more thermal energy. Meanwhile, cp slightly increased with increasing grain size since grain boundaries can suppress lattice vibrations and reduce the material’s ability to store thermal energy. The thermal conductivity (k) in TWIP steel gradually increased with temperature, consistent with the behavior observed in other high-alloy metals. k slightly increased with grain size, especially at lower temperatures, due to the increased grain boundary scattering of free electrons and phonons. This trend aligns with the Kapitza resistance model. While TWIP steel with refined grains exhibited higher yield and tensile strengths, this came with a decrease in total elongation and k. Thus, optimizing grain size to enhance both mechanical and thermal properties presents a challenge. The k in TWIP steel was substantially lower compared with that of plain carbon steels such as AISI 4340 steel, especially at low temperatures, due to its higher alloy content. At room temperature, the k of TWIP steels and plain carbon steels were approximately 13 W/m°C and 45 W/m°C, respectively. However, in higher temperature ranges where face centered cubic structures are predominant, the difference in k of the two steels became less pronounced. At 800 °C, for example, TWIP and plain carbon steels exhibited k values of approximately 24 W/m°C and 29 W/m°C, respectively. Full article
Show Figures

Figure 1

19 pages, 11601 KiB  
Article
Micro-Size Layers Evaluation of CIGSe Solar Cells on Flexible Substrates by Two-Segment Process Improved for Overall Efficiencies
by Jiajer Ho, Da-Ming Yu, Jen-Chuan Chang and Jyh-Jier Ho
Molecules 2025, 30(3), 562; https://doi.org/10.3390/molecules30030562 - 26 Jan 2025
Viewed by 821
Abstract
This paper details the enhancement of the optoelectronic properties of Cu-(In, Ga)-Se2 (CIGSe) solar cells through a two-segment process in the ultraviolet (UV)–visible spectral range. These include fine-tuning the DC sputtering power of the absorber layer (ranging from 20 to 40 W [...] Read more.
This paper details the enhancement of the optoelectronic properties of Cu-(In, Ga)-Se2 (CIGSe) solar cells through a two-segment process in the ultraviolet (UV)–visible spectral range. These include fine-tuning the DC sputtering power of the absorber layer (ranging from 20 to 40 W at segment I) and thoroughly checking the trace micro-chemistry composition of the absorber layer (CdS, ZnO/CdS, ZnMgO/CdS, and ZnMgO at segment II). After segment I of treatment, the optimal 30 W CIGSe absorber layer (i.e., with a 0.95 CGI ratio) can be obtained, it can be seen that the Cu-rich film exhibits the ability to significantly promote grain growth and can effectively reduce its trap state density. After the segment II process aimed at replacing toxic CdS, the optimal metal alloy (Zn0.9Mg0.1O) composition (buffer layer) achieved the highest conversion efficiency (η) of 8.70%, also emphasizing its role in environmental protection. Especially within the tunable bandgap range (2.48–3.62 eV), the developed overall internal and external quantum efficiency (IQE/EQE) is significantly improved by 13.15% at shorter wavelengths. A photovoltaic (PV) module designed with nine optimal CIGSe cells demonstrated commendable stability. Variation remained within ±5% throughout the 60-day experiment. The PV modules in this study represent a breakthrough benchmark toward a significant advance in the scientific understanding of renewable energy. Furthermore, this research clearly promotes the practical application of PV modules, harmonizes with sustainable goals, and actively contributes to the creation of eco-friendly communities. Full article
(This article belongs to the Section Nanochemistry)
Show Figures

Figure 1

13 pages, 4942 KiB  
Article
Effect of Interface Relief on the Occurrence of Cracks at the Contact Point of Laser-Direct-Energy-Deposited Copper Alloy and Nickel Base Superalloy
by Alexander Khaimovich, Andrey Balyakin, Ekaterina Nosova, Maria Kudryashova, Vitaliy Smelov, Evgeny Zemlyakov and Anton Kovchik
Crystals 2025, 15(2), 121; https://doi.org/10.3390/cryst15020121 - 23 Jan 2025
Viewed by 729
Abstract
The relevance of the study is related to the need to join dissimilar copper and nickel alloys by laser direct energy and material deposition (LDED). The purpose of research is studying the distribution of elements, structure, and properties of contact zone of nickel-based [...] Read more.
The relevance of the study is related to the need to join dissimilar copper and nickel alloys by laser direct energy and material deposition (LDED). The purpose of research is studying the distribution of elements, structure, and properties of contact zone of nickel-based super alloy and CuCr1 bronze obtained by direct energy and material deposition with preliminary formation of relief of contact surface. For the purposes of research, samples were made from UNS C18200 copper alloy CuCr1 without relief, with a relief of 0.5 mm depth, and with a relief of 1 mm depth. The Ni50Cr33W4.5Mo2.8TiAlNb (EP648) alloy powder was deposited onto the bronze samples with a micro-relief. The deposition was produced by direct injection of energy and material. The influence of interphase interaction of CuCr-chromium carbide system on the possibility of initiation of a crack in the area of carbide secretions is not significant and does not exceed 3.1% according to CIC criterion from the background level for CuCr1 (CIC = 1.54% for CuCr1-Al4C3 interface and CIC = 3.1% for CuCr1-Cr23C6 interface). An X-ray analysis revealed the presence of tensile residual macro-stresses, arising from differences in thermal expansion coefficients in the CuCr1-EP648 interface area, which may be the main cause of crack formation. Cracks are generated and run along the grain boundaries, on which traces of excretion are visible. The contact surface in the CuCr1-EP648 interface area has no visible defects, which indicates the good adhesion of materials when applying an initial layer of EP648 by LDED. The presence of a 0.5-mm micro-relief on CuCr1 has a positive effect on the strength of the connection, as it increases the surface area of the contact CuCr1-EP648 and therefore reduces the contact stress of the breakout. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

14 pages, 3853 KiB  
Article
A Near-Ultraviolet Photodetector Based on the TaC: Cu/4 H Silicon Carbide Heterostructure
by Salah Abdo, Khalil As’ham, Ambali Alade Odebowale, Sanjida Akter, Amer Abdulghani, Ibrahim A. M. Al Ani, Haroldo Hattori and Andrey E. Miroshnichenko
Appl. Sci. 2025, 15(2), 970; https://doi.org/10.3390/app15020970 - 20 Jan 2025
Cited by 1 | Viewed by 1077
Abstract
Photodetectors (PDs) based on 4H silicon carbide (SiC) have garnered significant interest due to their exceptional optoelectronic properties. However, their photoresponse is typically restricted to the ultraviolet (UV) region, with limited light absorption beyond 380 nm, which constrains their utility in visible light [...] Read more.
Photodetectors (PDs) based on 4H silicon carbide (SiC) have garnered significant interest due to their exceptional optoelectronic properties. However, their photoresponse is typically restricted to the ultraviolet (UV) region, with limited light absorption beyond 380 nm, which constrains their utility in visible light detection applications. To overcome this limitation, an efficient photodetector was developed using an alloy with TaC (80%) and Cu (20%) on a 4H n-type SiC substrate, enabling effective light detection at 405 nm. The device exhibited high performance with a high photoresponsivity of 1.66 AW1 and a specific detectivity of 2.69×108 Jones at 405 nm. The superior performance of the device is ascribed to the enhanced electrical conductivity and optical absorption of the TaC: Cu layer on the 4H SiC substrate, particularly in the near-ultraviolet region. This photodetector combines ease of fabrication with significant performance improvements, expanding the potential applications of 4H SiC in high-temperature optoelectronics. It also introduces a promising pathway for enhancing 4H SiC-based photodetection capabilities across broader spectral ranges. Full article
Show Figures

Figure 1

26 pages, 16648 KiB  
Article
Compositional Design, Microstructure, and Thermal Processing of Aluminum-Based Complex Concentrated Alloys
by Spyridon Chaskis, Constantinos Tiktopoulos, Evangelos Gavalas, Marianthi Bouzouni, Fotis Tsiolis and Spyros Papaefthymiou
Crystals 2025, 15(1), 88; https://doi.org/10.3390/cryst15010088 - 17 Jan 2025
Viewed by 1126
Abstract
Three lightweight aluminum-based complex concentrated alloys with chemical compositions that have not been previously studied were manufactured and studied: Al52Mg9.6Zn16Cu15.5Si6.9 w.t.% or Al63Mg13Zn8Cu8Si8 a.t.% (alloy [...] Read more.
Three lightweight aluminum-based complex concentrated alloys with chemical compositions that have not been previously studied were manufactured and studied: Al52Mg9.6Zn16Cu15.5Si6.9 w.t.% or Al63Mg13Zn8Cu8Si8 a.t.% (alloy A), Al44Mg18Zn19Cu19 w.t.% or Al55Mg25Zn10Cu10 a.t.% (alloy B), and Al47Mg21.4Zn12Cu9.7Si9.7 w.t.% or Al52.7Mg26.6Zn5.6Cu4.6Si10.4 a.t.% (alloy AM), with low densities of 3.15 g/cm3, 3.18 g/cm3 and 2.73 g/cm3, respectively. During alloy design, the CALPHAD method was used to calculate a variety of phase diagrams for the various chemical compositions and to predict possible phases that may form in the alloy. The CALPHAD methodology results showed good agreement with the experimental results. The potential of the designed alloys to be used in some industrial applications was examined by manufacturing them using standard industrial techniques, something that is a rarity in this field. The alloys were produced using an induction furnace and pour mold casting process, while industrial-grade raw materials were utilized. Heat treatments with different soaking times were performed in order to evaluate the possibility of improving the mechanical properties of the alloys. Alloys A and AM were characterized by a multiphase microstructure with a dendritic FCC-Al matrix phase and various secondary phases (Q-AlCuMgSi, Al2Cu and Mg2Si), while alloy B consisted of a parent phase T-Mg32(Al,Zn)49 and the secondary phases α-Al and Mg2Si. The microstructure of the cast alloys did not appear to be affected by the heat treatments compared to the corresponding as-cast specimens. However, alterations were observed in terms of the elemental composition of the phases in alloy A. In order to investigate and evaluate the mechanical properties of the as-cast and heat-treated alloys, hardness testing along with electrical conductivity measurements were conducted at room temperature. Among the as-cast samples, alloy AM had the highest hardness (246 HV4), while among the heat-treated ones, alloy A showed the highest value (256 HV4). The electrical conductivity of all the alloys increased after the heat treatment, with the highest increase occurring during the first 4 h of the heat treatment. Full article
(This article belongs to the Special Issue Advances in Processing, Simulation and Characterization of Alloys)
Show Figures

Figure 1

13 pages, 6921 KiB  
Article
Effect of Ultrasonic Power on the Microstructure and Properties of a Semi-Solid Slurry of SnSbCu11-6 Alloy
by Lei Wang, Xiaobin Luo, Yuanwei Jia, Yongkun Li, Rongfeng Zhou, Hao Zhang, Dingdong Huo and Yao Li
Crystals 2025, 15(1), 19; https://doi.org/10.3390/cryst15010019 - 27 Dec 2024
Viewed by 657
Abstract
In this paper, the ultrasonic vibration treatment (UVT) technique was used to prepare a SnSbCu11-6 alloy semi-solid slurry, and the effects of ultrasonic power on its microstructure size, distribution and properties were studied. The results show that the UVT technique significantly refines the [...] Read more.
In this paper, the ultrasonic vibration treatment (UVT) technique was used to prepare a SnSbCu11-6 alloy semi-solid slurry, and the effects of ultrasonic power on its microstructure size, distribution and properties were studied. The results show that the UVT technique significantly refines the Cu6Sn5 phase and SnSb phase and improves their distribution uniformity. Interestingly, the second SnSb phase is also well refined to nearly 100 °C below the melting point; furthermore, the morphology is transformed from coarse petal-like to fine regular cubic, and the average grain size is refined to 48.8 ± 8.8 μm. The alloy’s comprehensive properties are best when the ultrasonic power is 1200 W. The yield strength, tensile strength, elongation and microhardness reach 60.6 MPa, 70.3 MPa, 4.9% and 27.4 HV, respectively, which represent increases of 4.7%, 6.0%, 113% and 23.4%, respectively, compared with conventional liquid casting. This may be attributed to the grain size refinement and distribution uniformity enhancement of the Cu6Sn5 phase and the SnSb phase. This work provides a feasible and effective method for the preparation of high-performance tin-based babbitt alloys by UVT technology. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

12 pages, 3149 KiB  
Article
Fine-Grained High-Permeability Fe73.5−xB9Si14Cu1Nb2.5Mx (M = Mo or W) Nanocrystalline Alloys with Co-Added Heterogeneous Transition Metal Elements
by Su-Bong An, Hyun-Ah Im, Young-Tae Kwon, Jung-Woo Lee and Jae-Won Jeong
Metals 2024, 14(12), 1424; https://doi.org/10.3390/met14121424 - 12 Dec 2024
Cited by 2 | Viewed by 1055
Abstract
This study investigates the effects of multi-transition metals on the soft magnetic properties of Fe73.5−xB9Si14Cu1Nb2.5Mx (M = Nb, Mo, and W) nanocrystalline soft magnetic alloys. Nanocrystalline soft magnetic materials are [...] Read more.
This study investigates the effects of multi-transition metals on the soft magnetic properties of Fe73.5−xB9Si14Cu1Nb2.5Mx (M = Nb, Mo, and W) nanocrystalline soft magnetic alloys. Nanocrystalline soft magnetic materials are utilized in electronic components on the basis of their permeability and low core loss. In conventional alloys such as FINEMET, Nb inhibits nanocrystal growth and promotes amorphous formation. In this research, Mo and W were used as additional transition metals to control the size of nanocrystals and explore the potential for enhancing soft magnetic properties. We confirmed that the addition of Mo and W reduced the nanocrystal size, and the activation energy for nanocrystal formation and growth showed significant benefits for nanocrystalline alloys. Consequently, the soft magnetic properties of the alloys containing Mo and W exhibited higher permeability and lower coercivity. These results suggest that multi-transition metals are effective in improving soft magnetic properties by inhibiting nanocrystal formation and growth. Full article
(This article belongs to the Special Issue Metallic Magnetic Materials: Manufacture, Properties and Applications)
Show Figures

Figure 1

17 pages, 12866 KiB  
Article
Influence of Ag-18Cu-10Zn Filler Material on Microstructure and Properties of Laser-Welded Al/Cu Dissimilar Butt Joints
by Ziquan He, Fei Liu, Ping Gao, Lihui Pang and Yong Su
Materials 2024, 17(23), 5726; https://doi.org/10.3390/ma17235726 - 22 Nov 2024
Cited by 2 | Viewed by 1001
Abstract
Dissimilar welding between aluminum and copper poses significant challenges, primarily due to differences in their thermal and mechanical properties, resulting in brittle intermetallic compounds, limited joint strength, and high electrical resistivity. This study aims to overcome these issues by employing Ag-18Cu-10Zn filler material [...] Read more.
Dissimilar welding between aluminum and copper poses significant challenges, primarily due to differences in their thermal and mechanical properties, resulting in brittle intermetallic compounds, limited joint strength, and high electrical resistivity. This study aims to overcome these issues by employing Ag-18Cu-10Zn filler material and optimizing laser power with a focus on improving joint strength and electrical conductivity. The results indicate that the incorporation of silver and zinc enhances the phase composition and microstructure of the weld. By forming solid solution phases such as Ag2Al and Cu5Zn8, the brittle Al2Cu phase commonly found in traditional Al/Cu welding is replaced. This not only promotes the heterogeneous nucleation of fine silver-rich grains but also restricts the excessive growth of silver-poor grains, resulting in a uniform distribution of fine grains throughout the weld. These modifications contribute to both fine-grain strengthening and dispersion strengthening. At an optimal laser power of 750 W, joint strength reaches 109 MPa, while joint resistivity decreases to 3.19 μΩ·cm, 12.6% lower than that of the aluminum alloy base material. This study proposes a process for achieving highly conductive, reliable Al/Cu dissimilar metal joints, potentially impacting the aluminum–copper connections in battery modules for new energy vehicles. Full article
Show Figures

Figure 1

Back to TopTop