Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = Volcanic Radiative Power

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2049 KiB  
Article
Tracking Lava Flow Cooling from Space: Implications for Erupted Volume Estimation and Cooling Mechanisms
by Simone Aveni, Gaetana Ganci, Andrew J. L. Harris and Diego Coppola
Remote Sens. 2025, 17(15), 2543; https://doi.org/10.3390/rs17152543 - 22 Jul 2025
Viewed by 1010
Abstract
Accurate estimation of erupted lava volumes is essential for understanding volcanic processes, interpreting eruptive cycles, and assessing volcanic hazards. Traditional methods based on Mid-Infrared (MIR) satellite imagery require clear-sky conditions during eruptions and are prone to sensor saturation, limiting data availability. Here, we [...] Read more.
Accurate estimation of erupted lava volumes is essential for understanding volcanic processes, interpreting eruptive cycles, and assessing volcanic hazards. Traditional methods based on Mid-Infrared (MIR) satellite imagery require clear-sky conditions during eruptions and are prone to sensor saturation, limiting data availability. Here, we present an alternative approach based on the post-eruptive Thermal InfraRed (TIR) signal, using the recently proposed VRPTIR method to quantify radiative energy loss during lava flow cooling. We identify thermally anomalous pixels in VIIRS I5 scenes (11.45 µm, 375 m resolution) using the TIRVolcH algorithm, this allowing the detection of subtle thermal anomalies throughout the cooling phase, and retrieve lava flow area by fitting theoretical cooling curves to observed VRPTIR time series. Collating a dataset of 191 mafic eruptions that occurred between 2010 and 2025 at (i) Etna and Stromboli (Italy); (ii) Piton de la Fournaise (France); (iii) Bárðarbunga, Fagradalsfjall, and Sundhnúkagígar (Iceland); (iv) Kīlauea and Mauna Loa (United States); (v) Wolf, Fernandina, and Sierra Negra (Ecuador); (vi) Nyamuragira and Nyiragongo (DRC); (vii) Fogo (Cape Verde); and (viii) La Palma (Spain), we derive a new power-law equation describing mafic lava flow thickening as a function of time across five orders of magnitude (from 0.02 Mm3 to 5.5 km3). Finally, from knowledge of areas and episode durations, we estimate erupted volumes. The method is validated against 68 eruptions with known volumes, yielding high agreement (R2 = 0.947; ρ = 0.96; MAPE = 28.60%), a negligible bias (MPE = −0.85%), and uncertainties within ±50%. Application to the February-March 2025 Etna eruption further corroborates the robustness of our workflow, from which we estimate a bulk erupted volume of 4.23 ± 2.12 × 106 m3, in close agreement with preliminary estimates from independent data. Beyond volume estimation, we show that VRPTIR cooling curves follow a consistent decay pattern that aligns with established theoretical thermal models, indicating a stable conductive regime during the cooling stage. This scale-invariant pattern suggests that crustal insulation and heat transfer across a solidifying boundary govern the thermal evolution of cooling basaltic flows. Full article
Show Figures

Figure 1

18 pages, 3896 KiB  
Article
The Contribution of Meteosat Third Generation–Flexible Combined Imager (MTG-FCI) Observations to the Monitoring of Thermal Volcanic Activity: The Mount Etna (Italy) February–March 2025 Eruption
by Carolina Filizzola, Giuseppe Mazzeo, Francesco Marchese, Carla Pietrapertosa and Nicola Pergola
Remote Sens. 2025, 17(12), 2102; https://doi.org/10.3390/rs17122102 - 19 Jun 2025
Viewed by 522
Abstract
The Flexible Combined Imager (FCI) instrument aboard the Meteosat Third Generation (MTG-I) geostationary satellite, launched in December 2022 and operational since September 2024, by providing shortwave infrared (SWIR), medium infrared (MIR) and thermal infrared (TIR) data, with an image refreshing time of 10 [...] Read more.
The Flexible Combined Imager (FCI) instrument aboard the Meteosat Third Generation (MTG-I) geostationary satellite, launched in December 2022 and operational since September 2024, by providing shortwave infrared (SWIR), medium infrared (MIR) and thermal infrared (TIR) data, with an image refreshing time of 10 min and a spatial resolution ranging between 500 m in the high-resolution (HR) and 1–2 km in the normal-resolution (NR) mode, may represent a very promising instrument for monitoring thermal volcanic activity from space, also in operational contexts. In this work, we assess this potential by investigating the recent Mount Etna (Italy, Sicily) eruption of February–March 2025 through the analysis of daytime and night-time SWIR observations in the NR mode. The time series of a normalized hotspot index retrieved over Mt. Etna indicates that the effusive eruption started on 8 February at 13:40 UTC (14:40 LT), i.e., before information from independent sources. This observation is corroborated by the analysis of the MIR signal performed using an adapted Robust Satellite Technique (RST) approach, also revealing the occurrence of less intense thermal activity over the Mt. Etna area a few hours before (10.50 UTC) the possible start of lava effusion. By analyzing changes in total SWIR radiance (TSR), calculated starting from hot pixels detected using the preliminary NHI algorithm configuration tailored to FCI data, we inferred information about variations in thermal volcanic activity. The results show that the Mt. Etna eruption was particularly intense during 17–19 February, when the radiative power was estimated to be around 1–3 GW from other sensors. These outcomes, which are consistent with Multispectral Instrument (MSI) and Operational Land Imager (OLI) observations at a higher spatial resolution, providing accurate information about areas inundated by the lava, demonstrate that the FCI may provide a relevant contribution to the near-real-time monitoring of Mt. Etna activity. The usage of FCI data, in the HR mode, may further improve the timely identification of high-temperature features in the framework of early warning contexts, devoted to mitigating the social, environmental and economic impacts of effusive eruptions, especially over less monitored volcanic areas. Full article
Show Figures

Figure 1

18 pages, 4853 KiB  
Article
Exploring the Potential of a Normalized Hotspot Index in Supporting the Monitoring of Active Volcanoes Through Sea and Land Surface Temperature Radiometer Shortwave Infrared (SLSTR SWIR) Data
by Alfredo Falconieri, Francesco Marchese, Emanuele Ciancia, Nicola Genzano, Giuseppe Mazzeo, Carla Pietrapertosa, Nicola Pergola, Simon Plank and Carolina Filizzola
Sensors 2025, 25(6), 1658; https://doi.org/10.3390/s25061658 - 7 Mar 2025
Cited by 2 | Viewed by 754
Abstract
Every year about fifty volcanoes erupt on average, posing a serious threat for populations living in the neighboring areas. To mitigate the volcanic risk, many satellite monitoring systems have been developed. Information from the medium infrared (MIR) and thermal infrared (TIR) bands of [...] Read more.
Every year about fifty volcanoes erupt on average, posing a serious threat for populations living in the neighboring areas. To mitigate the volcanic risk, many satellite monitoring systems have been developed. Information from the medium infrared (MIR) and thermal infrared (TIR) bands of sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Visible Infrared Imaging Radiometer Suite (VIIRS) is commonly exploited for this purpose. However, the potential of daytime shortwave infrared (SWIR) observations from the Sea and Land Surface Temperature Radiometer (SLSTR) aboard Sentinel-3 satellites in supporting the near-real-time monitoring of thermal volcanic activity has not been fully evaluated so far. In this work, we assess this potential by exploring the contribution of a normalized hotspot index (NHI) in the monitoring of the recent Home Reef (Tonga Islands) eruption. By analyzing the time series of the maximum NHISWIR value, computed over the Home Reef area, we inferred information about the waxing/waning phases of lava effusion during four distinct subaerial eruptions. The results indicate that the first eruption phase (September–October 2022) was more intense than the second one (September–November 2023) and comparable with the fourth eruptive phase (June–August 2024) in terms of intensity level; the third eruption phase (January 2024) was more difficult to investigate because of cloudy conditions. Moreover, by adapting the NHI algorithm to daytime SLSTR SWIR data, we found that the detected thermal anomalies complemented those in night-time conditions identified and quantified by the operational Level 2 SLSTR fire radiative power (FRP) product. This study demonstrates that NHI-based algorithms may contribute to investigating active volcanoes located even in remote areas through SWIR data at 500 m spatial resolution, encouraging the development of an automated processing chain for the near-real-time monitoring of thermal volcanic activity by means of night-time/daytime Sentinel-3 SLSTR data. Full article
(This article belongs to the Special Issue Feature Papers in Remote Sensors 2024–2025)
Show Figures

Figure 1

24 pages, 6993 KiB  
Article
Advancing Volcanic Activity Monitoring: A Near-Real-Time Approach with Remote Sensing Data Fusion for Radiative Power Estimation
by Giovanni Salvatore Di Bella, Claudia Corradino, Simona Cariello, Federica Torrisi and Ciro Del Negro
Remote Sens. 2024, 16(16), 2879; https://doi.org/10.3390/rs16162879 - 7 Aug 2024
Cited by 9 | Viewed by 3113
Abstract
The global, near-real-time monitoring of volcano thermal activity has become feasible through thermal infrared sensors on various satellite platforms, which enable accurate estimations of volcanic emissions. Specifically, these sensors facilitate reliable estimation of Volcanic Radiative Power (VRP), representing the heat radiated during volcanic [...] Read more.
The global, near-real-time monitoring of volcano thermal activity has become feasible through thermal infrared sensors on various satellite platforms, which enable accurate estimations of volcanic emissions. Specifically, these sensors facilitate reliable estimation of Volcanic Radiative Power (VRP), representing the heat radiated during volcanic activity. A critical factor influencing VRP estimates is the identification of hotspots in satellite imagery, typically based on intensity. Different satellite sensors employ unique algorithms due to their distinct characteristics. Integrating data from multiple satellite sources, each with different spatial and spectral resolutions, offers a more comprehensive analysis than using individual data sources alone. We introduce an innovative Remote Sensing Data Fusion (RSDF) algorithm, developed within a Cloud Computing environment that provides scalable, on-demand computing resources and services via the internet, to monitor VRP locally using data from various multispectral satellite sensors: the polar-orbiting Moderate Resolution Imaging Spectroradiometer (MODIS), the Sea and Land Surface Temperature Radiometer (SLSTR), and the Visible Infrared Imaging Radiometer Suite (VIIRS), along with the geostationary Spinning Enhanced Visible and InfraRed Imager (SEVIRI). We describe and demonstrate the operation of this algorithm through the analysis of recent eruptive activities at the Etna and Stromboli volcanoes. The RSDF algorithm, leveraging both spatial and intensity features, demonstrates heightened sensitivity in detecting high-temperature volcanic features, thereby improving VRP monitoring compared to conventional pre-processed products available online. The overall accuracy increased significantly, with the omission rate dropping from 75.5% to 3.7% and the false detection rate decreasing from 11.0% to 4.3%. The proposed multi-sensor approach markedly enhances the ability to monitor and analyze volcanic activity. Full article
(This article belongs to the Special Issue Application of Remote Sensing Approaches in Geohazard Risk)
Show Figures

Graphical abstract

15 pages, 3421 KiB  
Technical Note
A Year of Volcanic Hot-Spot Detection over Mediterranean Europe Using SEVIRI/MSG
by Catarina Alonso, Rita Durão and Célia M. Gouveia
Remote Sens. 2023, 15(21), 5219; https://doi.org/10.3390/rs15215219 - 3 Nov 2023
Cited by 2 | Viewed by 1913
Abstract
Volcano eruption identification and watching is crucial to better understanding volcano dynamics, namely the near real-time identification of the eruption start, end, and duration. Eruption watching allows hazard assessment, eruption forecasting and warnings, and also risk mitigation during periods of unrest, to enhance [...] Read more.
Volcano eruption identification and watching is crucial to better understanding volcano dynamics, namely the near real-time identification of the eruption start, end, and duration. Eruption watching allows hazard assessment, eruption forecasting and warnings, and also risk mitigation during periods of unrest, to enhance public safety and reduce losses from volcanic events. The near real-time fire radiative power (FRP) product retrieved using information from the SEVIRI sensor onboard the Meteosat Second Generation (MSG) satellite are used to identify and follow up volcanic activity at the pan-European level, namely the Mount Etna and Cumbre Vieja eruptions which occurred during 2021. The FRP product is designed to record information on the location, timing, and fire radiative power output of wildfires. Measuring FRP from SEVIRI/MSG and integrating it over the lifetime of a fire provides an estimate of the total Fire Radiative Energy (FRE) released. Together with FRP data analysis, SO2 data from the Copernicus Atmosphere Monitoring Service (CAMS) is used to assess the relationship between daily emitted concentrations of SO2 and the radiative energy released during volcanic eruptions. Results show that the FRE data allows us to evaluate the amount of energy released and is related to the pollutant concentrations from volcanic emissions during the considered events. A good agreement between FRP detection and SO2 atmospheric concentrations was found for the considered eruption occurrences. The adopted methodology, due to its simplicity and near real-time availability, shows potential to be used as a management tool to help authorities monitor and manage resources during ongoing volcanic events. Full article
(This article belongs to the Special Issue Earth Observation Using Satellite Global Images of Remote Sensing)
Show Figures

Graphical abstract

24 pages, 8617 KiB  
Article
The Capabilities of FY-3D/MERSI-II Sensor to Detect and Quantify Thermal Volcanic Activity: The 2020–2023 Mount Etna Case Study
by Simone Aveni, Marco Laiolo, Adele Campus, Francesco Massimetti and Diego Coppola
Remote Sens. 2023, 15(10), 2528; https://doi.org/10.3390/rs15102528 - 11 May 2023
Cited by 11 | Viewed by 3385
Abstract
Satellite data provide crucial information to better understand volcanic processes and mitigate associated risks. In recent years, exploiting the growing number of spaceborne polar platforms, several automated volcanic monitoring systems have been developed. These, however, rely on good geometrical and meteorological conditions, as [...] Read more.
Satellite data provide crucial information to better understand volcanic processes and mitigate associated risks. In recent years, exploiting the growing number of spaceborne polar platforms, several automated volcanic monitoring systems have been developed. These, however, rely on good geometrical and meteorological conditions, as well as on the occurrence of thermally detectable activity at the time of acquisition. A multiplatform approach can thus increase the number of volcanological-suitable scenes, minimise the temporal gap between acquisitions, and provide crucial information on the onset, evolution, and conclusion of both transient and long-lasting volcanic episodes. In this work, we assessed the capabilities of the MEdium Resolution Spectral Imager-II (MERSI-II) sensor aboard the Fengyun-3D (FY-3D) platform to detect and quantify heat flux sourced from volcanic activity. Using the Middle Infrared Observation of Volcanic Activity (MIROVA) algorithm, we processed 3117 MERSI-II scenes of Mount Etna acquired between January 2020 and February 2023. We then compared the Volcanic Radiative Power (VRP, in Watt) timeseries against those obtained by MODIS and VIIRS sensors. The remarkable agreement between the timeseries, both in trends and magnitudes, was corroborated by correlation coefficients (ρ) between 0.93 and 0.95 and coefficients of determination (R2) ranging from 0.79 to 0.84. Integrating the datasets of the three sensors, we examined the effusive eruption of Mount Etna started on 27 November 2022, and estimated a total volume of erupted lava of 8.15 ± 2.44 × 106 m3 with a Mean Output Rate (MOR) of 1.35 ± 0.40 m3 s−1. The reduced temporal gaps between acquisitions revealed that rapid variations in cloud coverage as well as geometrically unfavourable conditions play a major role in thermal volcano monitoring. Evaluating the capabilities of MERSI-II, we also highlight how a multiplatform approach is essential to enhance the efficiency of satellite-based systems for volcanic surveillance. Full article
(This article belongs to the Special Issue Volcano Thermal Activity Monitoring Using Remote Sensing)
Show Figures

Graphical abstract

15 pages, 7388 KiB  
Article
Observed Atmospheric Features for the 2022 Hunga Tonga Volcanic Eruption from Joint Polar Satellite System Science Data Products
by Lihang Zhou, Banghua Yan, Ninghai Sun, Jingfeng Huang, Quanhua Liu, Christopher Grassotti, Yong-Keun Lee, William Straka, Jianguo Niu, Amy Huff, Satya Kalluri and Mitch Goldberg
Atmosphere 2023, 14(2), 263; https://doi.org/10.3390/atmos14020263 - 28 Jan 2023
Cited by 4 | Viewed by 3175
Abstract
The Joint Polar Satellite System (JPSS) mission has provided over ten years of high-quality data products for environment forecasting and monitoring through the current Suomi National Polar-orbiting Partnership (S-NPP) and NOAA-20 satellites. Particularly, the sensor data record (SDR) and the derived environmental data [...] Read more.
The Joint Polar Satellite System (JPSS) mission has provided over ten years of high-quality data products for environment forecasting and monitoring through the current Suomi National Polar-orbiting Partnership (S-NPP) and NOAA-20 satellites. Particularly, the sensor data record (SDR) and the derived environmental data record (EDR) products from the Visible Infrared Imaging Radiometer Suite (VIIRS), the Cross-track Infrared Sounder (CrIS), the Advanced Technology Microwave Sounder (ATMS), and the Ozone Mapping and Profiler Suite (OMPS) offer an unprecedented opportunity to observe severe weather and environmental events over the Earth. This paper presents the observations about atmospheric features of the Hunga Tonga Volcanic eruption of January 2022, e.g., the gravity wave, volcanic cloud, and aerosol (sulfate) plume phenomena, by using the ATMS, CrIS, OMPS, and VIIRS SDR and EDR products. Powerful gravity waves ringing through the atmosphere after the eruption of the Hunga Tonga volcano are discovered at two CrIS upper sounding channels (670 cm−1 and 2320 cm−1) in the deviations of the observed brightness temperature (O) from the simulated baseline brightness temperature (B) using the Community Radiative Transfer Model (CRTM), i.e., O—B. A similar pattern is also observed in the ATMS global maps at channel 15, whose peak weighting function is around 40 km, showing the atmospheric disturbance caused by the eruption that reached 40 km above the surface. The Tonga volcanic cloud (plume) was also captured by the OMPS SO2 EDR product. The gravity wave features were also captured in the native resolution image of the S-NPP VIIRS I-5 band nighttime observations. In addition, the VIIRS Aerosol Optical Depth (AOD) captured and tracked the volcanic aerosol (sulfate) plume successfully. These discoveries demonstrate the scientific potential of the JPSS SDR and EDR products in monitoring and tracking the eruption of the Hunga Tonga volcano and its severe environmental impacts. This paper presents the atmospheric features of the Hunga Tonga volcano eruption that is uniquely captured by all four advanced sensors onboard JPSS satellites, with different spectral coverages and spatial resolutions. Full article
(This article belongs to the Special Issue Advanced Technologies in Satellite Observations)
Show Figures

Figure 1

23 pages, 8273 KiB  
Article
A Near Real-Time and Free Tool for the Preliminary Mapping of Active Lava Flows during Volcanic Crises: The Case of Hotspot Subaerial Eruptions
by Francisco Javier Vasconez, Juan Camilo Anzieta, Anais Vásconez Müller, Benjamin Bernard and Patricio Ramón
Remote Sens. 2022, 14(14), 3483; https://doi.org/10.3390/rs14143483 - 20 Jul 2022
Cited by 8 | Viewed by 3806
Abstract
Monitoring the evolution of lava flows is a challenging task for volcano observatories, especially in remote volcanic areas. Here we present a near real-time (every 12 h) and free tool for producing interactive thermal maps of the advance of lava flows over time [...] Read more.
Monitoring the evolution of lava flows is a challenging task for volcano observatories, especially in remote volcanic areas. Here we present a near real-time (every 12 h) and free tool for producing interactive thermal maps of the advance of lava flows over time by taking advantage of the free thermal data provided by FIRMS and the open-source R software. To achieve this, we applied two filters on the FIRMS datasets, one on the satellite layout (track) and another on the fire radiative power (FRP). To determine the latter, we carried out a detailed statistical analysis of the FRP values of nine hotspot subaerial eruptions that included Cumbre Vieja-2021 (Spain), Fagradalsfjall-2021 (Iceland), LERZ Kilauea-2018 (USA), and six eruptions on the Galápagos Archipelago (Ecuador). We found that an FRP filter of 35 ± 17 MW/pixel worked well at the onset and during the first weeks of an eruption. Afterward, once the cumulative statistical parameters had stabilized, a filter that better fit the investigated case could be obtained by running our statistical code. Using the suggested filters, the thermal maps resulting from our mapping code have an accuracy higher than 75% on average when compared with the official lava flow maps of each eruption and an offset of only 3% regarding the maximum lava flow extension. Therefore, our easy-to-use codes constitute an additional, novel, and simple tool for rapid preliminary mapping of lava fields during crises, especially when regular overflights and/or unoccupied aerial vehicle campaigns are out of budget. Full article
(This article belongs to the Section Earth Observation for Emergency Management)
Show Figures

Graphical abstract

13 pages, 4473 KiB  
Article
Investigating Phases of Thermal Unrest at Ambrym (Vanuatu) Volcano through the Normalized Hot Spot Indices Tool and the Integration with the MIROVA System
by Francesco Marchese, Diego Coppola, Alfredo Falconieri, Nicola Genzano and Nicola Pergola
Remote Sens. 2022, 14(13), 3136; https://doi.org/10.3390/rs14133136 - 29 Jun 2022
Cited by 6 | Viewed by 2419
Abstract
Ambrym is an active volcanic island, located in the Vanuatu archipelago, consisting of a 12 km-wide summit caldera. This open vent volcano is characterized by an almost persistent degassing activity which occurs in the Benbow and Marum craters, which were also the site [...] Read more.
Ambrym is an active volcanic island, located in the Vanuatu archipelago, consisting of a 12 km-wide summit caldera. This open vent volcano is characterized by an almost persistent degassing activity which occurs in the Benbow and Marum craters, which were also the site of recent lava lakes. On 15 December 2018, about three years after an intense lava effusion, the first recorded since 1989, a small-scale intra-caldera fissure eruption occurred. On 16 December, the eruption stopped, and the lava lakes at the Benbow and Marum craters were drained. In this work, we investigated the thermal activity of the Ambrym volcano, before, during, and after the 15 December 2018 eruption, using daytime Sentinel-2 (S2) Multispectral Instruments (MSI) and Landsat-8 (L8) Operational Land Imager (OLI) data, at a mid-high spatial resolution. The results were integrated with Moderate Resolution Imaging Spectroradiometer (MODIS) observations. Outputs of the Normalized Hotspot Indices (NHI) tool, retrieved from S2-MSI and L8-OLI data, show that the thermal activity at the Ambrym craters increased about three weeks before the 15 December 2018 lava effusion. This information is consistent with the estimates of volcanic radiative power (VRP), which were performed by the Middle Infrared Observation of Volcanic Activity (MIROVA) system, by analyzing the nighttime MODIS data. The latter revealed a significant increase of VRP, with values above 700 MW at the end of the October–November 2018 period. Moreover, the drastic reduction of thermal emissions at the craters, marked by the NHI tool since the day of the fissure eruption, is consistent with the drop in the lava lake level that was independently suggested in a previous study. These results demonstrate that the S2-MSI and L8-OLI time series, combined with infrared MODIS observations, may contribute to detecting increasing trends in lava lake activity, which may precede effusive eruptions at the open vent volcanoes. This study addresses some challenging scenarios regarding the definition of possible threshold levels (e.g., in terms of VRP and total Short Wave Infrared radiance) from the NHI and MIROVA datasets, which could require special attention from local authorities in terms of the occurrence of possible future eruptions. Full article
(This article belongs to the Special Issue Multi-Sensor Remote Sensing Data for Volcanic Hazards Monitoring)
Show Figures

Figure 1

24 pages, 8161 KiB  
Article
The Transition from MODIS to VIIRS for Global Volcano Thermal Monitoring
by Adele Campus, Marco Laiolo, Francesco Massimetti and Diego Coppola
Sensors 2022, 22(5), 1713; https://doi.org/10.3390/s22051713 - 22 Feb 2022
Cited by 27 | Viewed by 4765
Abstract
The Moderate Resolution Imaging Spectroradiometer (MODIS) is one of the most-used sensors for monitoring volcanoes and has been providing time series of Volcanic Radiative Power (VRP) on a global scale for two decades now. In this work, we analyzed the data provided by [...] Read more.
The Moderate Resolution Imaging Spectroradiometer (MODIS) is one of the most-used sensors for monitoring volcanoes and has been providing time series of Volcanic Radiative Power (VRP) on a global scale for two decades now. In this work, we analyzed the data provided by the Visible Infrared Imaging Radiometer Suite (VIIRS) by using the Middle Infrared Observation of Volcanic Activity (MIROVA) algorithm, originally developed to analyze MODIS data. The resulting VRP is compared with both the MIROVAMODIS data as well as with the Fire Radiative Power (FRP), distributed by the Fire Information for Resource Management System (FIRMS). The analysis on 9 active volcanoes reveals that VIIRS data analyzed with the MIROVA algorithm allows detecting ~60% more alerts than MODIS, due to a greater number of overpasses (+30%) and improved quality of VIIRS radiance data. Furthermore, the comparison with the nighttime FIRMS database indicates greater effectiveness of the MIROVA algorithm in detecting low-intensity (<10 MW) thermal anomalies (up to 90% more alerts than FIRMS). These results confirm the great potential of VIIRS to complement, replace and improve MODIS capabilities for global volcano thermal monitoring, because of the future end of Terra and Aqua Earth-observing satellite mission of National Aeronautics and Space Administration’s (NASA). Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

20 pages, 10527 KiB  
Article
Mt. Etna Paroxysms of February–April 2021 Monitored and Quantified through a Multi-Platform Satellite Observing System
by Francesco Marchese, Carolina Filizzola, Teodosio Lacava, Alfredo Falconieri, Mariapia Faruolo, Nicola Genzano, Giuseppe Mazzeo, Carla Pietrapertosa, Nicola Pergola, Valerio Tramutoli and Marco Neri
Remote Sens. 2021, 13(16), 3074; https://doi.org/10.3390/rs13163074 - 5 Aug 2021
Cited by 29 | Viewed by 5145 | Correction
Abstract
On 16 February 2021, an eruptive paroxysm took place at Mt. Etna (Sicily, Italy), after continuous Strombolian activity recorded at summit craters, which intensified in December 2020. This was the first of 17 short, but violent, eruptive events occurring during February–April 2021, mostly [...] Read more.
On 16 February 2021, an eruptive paroxysm took place at Mt. Etna (Sicily, Italy), after continuous Strombolian activity recorded at summit craters, which intensified in December 2020. This was the first of 17 short, but violent, eruptive events occurring during February–April 2021, mostly at a time interval of about 2–3 days between each other. The paroxysms produced lava fountains (up to 1000 m high), huge tephra columns (up to 10–11 km above sea level), lava and pyroclastic flows, expanding 2–4 km towards East and South. The last event, which was characterised by about 3 days of almost continuous eruptive activity (30 March–1 April), generated the most lasting lava fountain (8–9 h). During some paroxysms, volcanic ash led to the temporary closure of the Vincenzo Bellini Catania International Airport. Heavy ash falls then affected the areas surrounding the volcano, in some cases reaching zones located hundreds of kilometres away from the eruptive vent. In this study, we investigate the Mt. Etna paroxysms mentioned above through a multi-platform satellite system. Results retrieved from Advanced Very High Resolution Radiometer (AVHRR), Moderate Resolution Imaging Spectroradiometer (MODIS), starting from outputs of the Robust Satellite Techniques for Volcanoes (RSTVOLC), indicate that the 17th paroxysm (31 March–1 April) was the most intense in terms of radiative power, with values estimated around 14 GW. Moreover, by the analysis of SEVIRI data, we found that the 5th and 17th paroxysms were the most energetic. The Multispectral Instrument (MSI) and the Operational Land Imager (OLI), providing shortwave infrared (SWIR) data at 20/30 m spatial resolution, enabled an accurate localisation of active vents and the mapping of the areas inundated by lava flows. In addition, according to the Normalized Hotspot Indices (NHI) tool, the 2nd (17–18 February) and 7th (28 February) paroxysm generated the largest thermal anomaly at Mt. Etna after April 2013, when Landsat-8 OLI data became available. Despite the impact of clouds/plumes, pixel saturation, and other factors (e.g., satellite viewing geometry) on thermal anomaly identification, the used multi-sensor approach allowed us to retrieve quantitative information about the 17 paroxysms occurring at Mt. Etna. This approach could support scientists in better interpreting changes in thermal activity, which could lead to future and more dangerous eruptions. Full article
Show Figures

Graphical abstract

18 pages, 54809 KiB  
Article
Contribution to the Research of the Effects of Etna Volcano Activity on the Features of the Ionospheric Total Electron Content Behaviour
by Ivan Toman, David Brčić and Serdjo Kos
Remote Sens. 2021, 13(5), 1006; https://doi.org/10.3390/rs13051006 - 6 Mar 2021
Cited by 7 | Viewed by 3408
Abstract
This research represents a contribution to the theory on the coupling of the volcanic activity and the ionospheric dynamics, represented by total electron content (TEC) patterns and their behaviour. The ionospheric response to the activity of the Etna volcano has been analysed using [...] Read more.
This research represents a contribution to the theory on the coupling of the volcanic activity and the ionospheric dynamics, represented by total electron content (TEC) patterns and their behaviour. The ionospheric response to the activity of the Etna volcano has been analysed using global navigation satellite system (GNSS)-derived TEC values, employing data from International GNSS Service (IGS) reference station near the volcano and on two distant IGS locations. Volcanic activity has been modelled using volcanic radiative power (VRP) data obtained by the Middle InfraRed Observation of Volcanic Activity (MIROVA) system. The estimated minimal night TEC values have been averaged over defined index days of the VRP increase. During the analysed period of 19 years, the volcano activity was categorised according to pre-defined criteria. The influence of current space weather and short-term solar activity on TEC near the volcano was systematically minimised. The results showed mean/median TEC increases of approximately +3 standard deviations from the overall mean values, with peak values placed approximately 5 days before the VRP increase and followed by general TEC depletion around the time of the actual volcanic activity increase. Additionally, TEC oscillation pattern was found over the volcano site with a half-period of 6.25 days. The main interpretation of results indicates that the volcanic activity has modified the ionospheric dynamics within the nearby ionospheric region before the actual VRP increase, and that the residual impact in the volcano’s surrounding area refers to terrestrial endogenous processes and air–earth currents. Those changes can be detected during criteria predefined in the research: during quiet space weather conditions, observing night-time TEC values and within the limits of low short-term solar influence. Full article
(This article belongs to the Special Issue GNSS, Space Weather and TEC Special Features)
Show Figures

Figure 1

32 pages, 10356 KiB  
Article
Volcanic Anomalies Monitoring System (VOLCANOMS), a Low-Cost Volcanic Monitoring System Based on Landsat Images
by Susana Layana, Felipe Aguilera, Germán Rojo, Álvaro Vergara, Pablo Salazar, Juan Quispe, Pablo Urra and Diego Urrutia
Remote Sens. 2020, 12(10), 1589; https://doi.org/10.3390/rs12101589 - 16 May 2020
Cited by 18 | Viewed by 7173
Abstract
The practice of monitoring active volcanoes, includes several techniques using either direct or remote measurements, the latter being more important for volcanoes with limited accessibility. We present the Volcanic Anomalies Monitoring System (VOLCANOMS), a new, online, low-cost and semiautomatic system based on Landsat [...] Read more.
The practice of monitoring active volcanoes, includes several techniques using either direct or remote measurements, the latter being more important for volcanoes with limited accessibility. We present the Volcanic Anomalies Monitoring System (VOLCANOMS), a new, online, low-cost and semiautomatic system based on Landsat imagery. This system can detect permanent and/or temporal thermal anomalies in near-infrared (NIR), short-wave infrared (SWIR), and thermal infrared (TIR) bands. VOLCANOMS allows researchers to calculate several thermal parameters, such as thermal radiance, effective temperature, anomaly area, radiative, gas, convective, and total heat, and mass fluxes. We study the eruptive activity of five volcanoes including Krakatau, Stromboli, Fuego, Villarrica and Lascar volcanoes, comparing field and eruptive data with thermal radiance. In the case of Villarrica and Lascar volcanoes, we also compare the thermal radiance and eruptive activity with seismic data. The thermal radiance shows a concordance with the eruptive activity in all cases, whereas a correlation is observed between thermal and seismic data both, in Villarrica and Lascar volcanoes, especially in the case of long-period seismicity. VOLCANOMS is a new and powerful tool that, combined with other techniques, generates robust information for volcanic monitoring. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Graphical abstract

32 pages, 15233 KiB  
Article
Volcanic Hot-Spot Detection Using SENTINEL-2: A Comparison with MODIS–MIROVA Thermal Data Series
by Francesco Massimetti, Diego Coppola, Marco Laiolo, Sébastien Valade, Corrado Cigolini and Maurizio Ripepe
Remote Sens. 2020, 12(5), 820; https://doi.org/10.3390/rs12050820 - 3 Mar 2020
Cited by 47 | Viewed by 10922
Abstract
In the satellite thermal remote sensing, the new generation of sensors with high-spatial resolution SWIR data open the door to an improved constraining of thermal phenomena related to volcanic processes, with strong implications for monitoring applications. In this paper, we describe a new [...] Read more.
In the satellite thermal remote sensing, the new generation of sensors with high-spatial resolution SWIR data open the door to an improved constraining of thermal phenomena related to volcanic processes, with strong implications for monitoring applications. In this paper, we describe a new hot-spot detection algorithm developed for SENTINEL-2/MSI data that combines spectral indices on the SWIR bands 8a-11-12 (with a 20-meter resolution) with a spatial and statistical analysis on clusters of alerted pixels. The algorithm is able to detect hot-spot-contaminated pixels (S2Pix) in a wide range of environments and for several types of volcanic activities, showing high accuracy performances of about 1% and 94% in averaged omission and commission rates, respectively, underlining a strong reliability on a global scale. The S2-derived thermal trends, retrieved at eight key-case volcanoes, are then compared with the Volcanic Radiative Power (VRP) derived from MODIS (Moderate Resolution Imaging Spectroradiometer) and processed by the MIROVA (Middle InfraRed Observation of Volcanic Activity) system during an almost four-year-long period, January 2016 to October 2019. The presented data indicate an overall excellent correlation between the two thermal signals, enhancing the higher sensitivity of SENTINEL-2 to detect subtle, low-temperature thermal signals. Moreover, for each case we explore the specific relationship between S2Pix and VRP showing how different volcanic processes (i.e., lava flows, domes, lakes and open-vent activity) produce a distinct pattern in terms of size and intensity of the thermal anomaly. These promising results indicate how the algorithm here presented could be applicable for volcanic monitoring purposes and integrated into operational systems. Moreover, the combination of high-resolution (S2/MSI) and moderate-resolution (MODIS) thermal timeseries constitutes a breakthrough for future multi-sensor hot-spot detection systems, with increased monitoring capabilities that are useful for communities which interact with active volcanoes. Full article
(This article belongs to the Special Issue Satellite Remote Sensing of High-Temperature Thermal Anomalies)
Show Figures

Graphical abstract

Back to TopTop