Advancing Volcanic Activity Monitoring: A Near-Real-Time Approach with Remote Sensing Data Fusion for Radiative Power Estimation
Abstract
:1. Introduction
2. Materials
2.1. Case Studies: Etna and Stromboli Volcanoes
2.2. Satellite Sensors
2.3. SLSTR and MODIS Level 2 Products and Fire Radiative Power
3. Methods
3.1. Spectral Analysis
3.2. Spatial Analysis
3.3. Statistical Mask
3.4. Gabor Image
3.5. Spatial Weighted
3.6. Statistical Mask
3.7. Calculation of VRP
3.8. Eruptive Parameters
3.9. Uncertainties and Limits
4. Results
4.1. Etna
4.2. Stromboli
4.3. VRE (Volcanic Radiated Energy)
5. Discussion
5.1. Performances
5.2. Combining SEVIRI, MODIS, SLSTR, and VIIRS
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FRP | Fire Radiative Power |
MIR | Medium Infrared |
MODIS | Moderate Resolution Imaging Spectroradiometer |
NTI | Normal Thermal Index |
NVA | Non-Volcanic Area |
RSDF | Remote Sensing Data Fusion |
SEVIRI | Spinning Enhanced Visible And Infrared Imager |
SLSTR | Sea And Land Surface Temperature Radiometer |
SSD | Spatial Standard Deviation |
TIR | Thermal Infrared |
VA | Volcanic Area |
VRE | Volcanic Radiative Energy |
VRP | Volcanic Radiative Power |
References
- Corradino, C.; Malaguti, A.B.; Ramsey, M.S.; Del Negro, C. Quantitative Assessment of Volcanic Thermal Activity from Space Using an Isolation Forest Machine Learning Algorithm. Remote Sens. 2024, 16, 2001. [Google Scholar] [CrossRef]
- Torrisi, F.; Corradino, C.; Cariello, S.; Del Negro, C. Enhancing detection of volcanic ash clouds from space with convolutional neural networks. J. Volcanol. Geotherm. Res. 2024, 448, 108046. [Google Scholar] [CrossRef]
- Coppola, D.; Cardone, D.; Laiolo, M.; Aveni, S.; Campus, A.; Massimetti, F. Global radiant flux from active volcanoes: The 2000–2019 MIROVA database. Front. Earth Sci. 2023, 11, 1240107. [Google Scholar] [CrossRef]
- Williams, D.B.; Ramsey, M.S. Infraredspectroscopy of volcanoes: From laboratoryto orbital scale. Front. Earth Sci. 2024, 12, 1308103. [Google Scholar] [CrossRef]
- Mia, M.B.; Fujimitsu, Y.; Nishijima, J. Thermal activity monitoring of an active volcano using Landsat 8/OLI-TIRS sensor images: A case study at the Aso volcanic area in southwest Japan. Geosciences 2017, 7, 118. [Google Scholar] [CrossRef]
- Corradino, C.; Amato, E.; Torrisi, F.; Del Negro, C. Data-Driven Random Forest Models for Detecting Volcanic Hot Spots in Sentinel-2 MSI Images. Remote Sens. 2022, 14, 4370. [Google Scholar] [CrossRef]
- Marchese, F.; Genzano, N.; Nolde, M.; Falconieri, A.; Pergola, N.; Plank, S. Mapping and characterizing the Kīlauea (Hawaiʻi) lava lake through Sentinel-2 MSI and Landsat-8 OLI observations of December 2020–February 2021. Environ. Model. Softw. 2022, 148, 105273. [Google Scholar] [CrossRef]
- Del Negro, C.; Cappello, A.; Neri, M.; Bilotta, G.; Herault, A.; Ganci, G. Lava flow hazards at Mount Etna: Constraints imposed by eruptive history and numerical simulations. Sci. Rep. 2013, 3, 3493. [Google Scholar] [CrossRef]
- Torrisi, F.; Amato, E.; Corradino, C.; Mangiagli, S.; Del Negro, C. Characterization of Volcanic Cloud Components Using Machine Learning Techniques and SEVIRI Infrared Images. Sensors 2022, 22, 7712. [Google Scholar] [CrossRef]
- Ramsey, M.S.; Harris, A.J.L. Volcanology 2020: How will thermal remote sensing of volcanic surface activity evolve over the next decade? J. Volcanol. Geotherm. Res. 2013, 249, 217–233. [Google Scholar] [CrossRef]
- Steffke, A.M.; Harris, A.J.L. A review of algorithms for detecting volcanic hot spots in satellite infrared data. Bull. Volcanol. 2011, 73, 1109–1137. [Google Scholar] [CrossRef]
- Tramutoli, V.; Cuomo, V.; Filizzola, C.; Pergola, N.; Pietrapertosa, C. Assessing the potential of thermal infrared satellite surveys for monitoring seismically active areas: The case of Kocaeli (İzmit) earthquake, August 17, 1999. Remote Sens. Environ. 2005, 96, 409–426. [Google Scholar] [CrossRef]
- Wright, R.; Flynn, L.; Garbeil, H.; Harris, A.; Pilger, E. MODVOLC: Near-real-time thermal monitoring of global volcanism. J. Volcanol. Geotherm Res. 2004, 135, 29–49. [Google Scholar] [CrossRef]
- Higgins, J.; Harris, A. VAST: A program to locate and analyse volcanic thermal anomalies automatically from remotely sensed data. Comput. Geosci. 1997, 23, 627–645. [Google Scholar] [CrossRef]
- Tramutoli, V. Robust AVHRR techniques (RAT) for environmental monitoring: Theory and applications. Proc. SPIE Earth Surf. Remote Sens. II 1998, 3496, 101–113. [Google Scholar] [CrossRef]
- Wright, R.; Flynn, L.; Garbeil, H.; Harris, A.; Pilge, E. Automated volcanic eruption detection using MODIS. Remote Sens. Environ. 2002, 82, 135–155. [Google Scholar] [CrossRef]
- Dehn, J.; Dean, K.; Engle, K. Thermal Monitoring of North Pacific Volcanoes from Space. Geology 2000, 28, 755–758. [Google Scholar] [CrossRef]
- Genzano, N.; Pergola, N.; Marchese, F. A Google Earth Engine Tool to Investigate, Map and Monitor Volcanic Thermal Anomalies at Global Scale by Means of Mid-High Spatial Resolution Satellite Data. Remote Sens. 2020, 12, 3232. [Google Scholar] [CrossRef]
- Falconieri, A.; Genzano, N.; Mazzeo, G.; Pergola, N.; Marchese, F. First Implementation of a Normalized Hotspot Index on Himawari-8 and GOES-R Data for the Active Volcanoes Monitoring: Results and Future Developments. Remote Sens. 2022, 14, 5481. [Google Scholar] [CrossRef]
- Ganci, G.; Vicari, A.; Del Negro, C. The HOTSAT Volcano Monitoring System Based on a Combined Use of SEVIRI and MODIS Multispectral Data. Ann. Geophys. 2011, 54, 5338. [Google Scholar] [CrossRef]
- Ganci, G.; Cappello, A.; Bilotta, G.; Del Negro, C. How the variety of satellite remote sensing data over volcanoes can assist hazard monitoring efforts: The 2011 eruption of Nabro volcano. Remote Sens. Environ. 2020, 236, 111426. [Google Scholar] [CrossRef]
- Corradino, C.; Ganci, G.; Bilotta, G.; Cappello, A.; Del Negro, C.; Fortuna, L. Smart Decision Support Systems for Volcanic Applications. Energies 2019, 12, 1216. [Google Scholar] [CrossRef]
- Coppola, D.; Laiolo, M.; Cigolini, C.; Massimetti, F.; Delle Donne, D.; Ripepe, M.; Arias, H.; Barsotti, S.; Parra, C.B.; Centeno, R.G.; et al. Thermal remote sensing for global volcano monitoring experiences from the Mirova system. Front. Earth Sci. 2020, 7, 362. [Google Scholar] [CrossRef]
- Gouhier, M.; Guéhenneux, Y.; Labazuy, P.; Cacault, P.; Decriem, J.; Rivet, S. HOTVOLC: A web-based monitoring system for volcanic hot spots. Geol. Soc. Lond. Spec. Publ. 2016, 426, 223–241. [Google Scholar] [CrossRef]
- Torrisi, F.; Amato, E.; Corradino, C.; Del Negro, C. The FastVRP automatic platform for the thermal monitoring of volcanicactivity using VIIRS and SLSTR sensors: FastFRP to monitor volcanic radiative power. Ann. Geophys. 2023, 65, 1. [Google Scholar]
- Wooster, M. Fire radiative energy for quantitative study of biomass burning derivation from the bird experimental satellite and comparison to MODIS fire products. Remote Sens Environ. 2003, 86, 83–107. [Google Scholar] [CrossRef]
- Xu, W.; Wooster, M.J. Sentinel-3 SLSTR active fire (AF) detection and FRP daytime product-Algorithm description and globalintercomparison to MODIS, VIIRS and landsat AF data. Sci. Remote Sens. 2023, 7, 100087. [Google Scholar] [CrossRef]
- Coppola, D.; Laiolo, M.; Cigolini, C.; Delle Donne, D.; Ripepe, M. Enhanced volcanic hot-spot detection using MODIS IR data: Results from the MIROVA system. Geol. Soc. Spec. Publ. 2016, 426, 181–205. [Google Scholar] [CrossRef]
- Campus, A.; Aveni, S.; Laiolo, M.; Coppola, D. Thermal unrest at La Fossa (Vulcano Island, Italy): The 2021–2023 VIIRS 375 m MIROVA-processed dataset. Bull. Volcanol. 2024, 86, 25. [Google Scholar] [CrossRef]
- Cariello, S.; Corradino, C.; Torrisi, F.; Del Negro, C. Cascading Machine Learning to Monitor Volcanic Thermal Activity Using Orbital Infrared Data: From Detection to Quantitative Evaluation. Remote Sens. 2024, 16, 171. [Google Scholar] [CrossRef]
- Ramsey, M.; Corradino, C.; Thompson, J.; Leggett, T.N. Statistical retrieval of volcanic activity in long time series orbital data: Implications for forecasting future activity. Remote Sens. Environ. 2023, 295, 113704. [Google Scholar] [CrossRef]
- Corradino, C.; Ramsey, M.S.; Pailot-Bonnetat, S.; Harris, A.J.L.; Del Negro, C. Detection of Subtle Thermal Anomalies: Deep Learning Applied to the ASTER Global Volcano Dataset. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5000715. [Google Scholar] [CrossRef]
- De Beni, E.; Proietti, C.; Scollo, S.; Cantarero, M.; Mereu, L.; Romeo, F.; Pioli, L.; Sciotto, M.; Alparone, S. A Hidden Eruption: The 21 May 2023 Paroxysm of the Etna Volcano (Italy). Remote Sens. 2024, 16, 1555. [Google Scholar] [CrossRef]
- Calvari, S.; Nunnari, G. Statistical Insights on the Eruptive Activity at Stromboli Volcano (Italy) Recorded from 1879 to 2023. Remote Sens. 2023, 15, 4822. [Google Scholar] [CrossRef]
- Wooster, M.J.; Xu, W.; Nightingale, T. Sentinel-3 SLSTR Active Fire Detection and FRP Product: Pre-Launch Algorithm Development and Performance Evaluation Using MODIS and ASTER Datasets. Remote Sens. Environ. 2012, 120, 236–254. [Google Scholar] [CrossRef]
- Justice, C.O.; Giglio, L.; Korontzi, S.; Owens, J.; Morisette, J.T.; Roy, D.; Descloitres, J.; Alleaume, S.; Petitcolin, F.; Kaufman, Y. The MODIS Fire Products. Remote Sens. Environ. 2002, 83, 244–262. [Google Scholar] [CrossRef]
- Del Negro, C.; Cappello, A.; Ganci, G. Quantifying lava flow hazards in response to effusive eruption. Geol. Soc. Am. Bull. 2016, 128, 752–763. [Google Scholar] [CrossRef]
- Del Negro, C.; Cappello, A.; Bilotta, G.; Ganci, G.; Hérault, A.; Zago, V. Living at the Edge of an Active Volcano: Risk from Lava Flows on Mt Etna. GSA Bull. 2020, 132, 1615–1625. [Google Scholar] [CrossRef]
- Calvari, S.; Nunnari, G. Comparison between automated and manual detection of lava fountains from fixed monitoring thermalcameras at Etna volcano, Italy. Remote Sens. 2022, 14, 2392. [Google Scholar] [CrossRef]
- Marchese, F.; Filizzola, C.; Lacava, T.; Falconieri, A.; Faruolo, M.; Genzano, N.; Mazzeo, G.; Pietrapertosa, C.; Pergola, N.; Tramutoli, V.; et al. Mt. Etna paroxysms of February–April 2021 monitored and quantified through a multi-platform satellite observing system. Remote Sens. 2021, 13, 3074. [Google Scholar] [CrossRef]
- Guerrieri, L.; Corradini, S.; Theys, N.; Stelitano, D.; Merucci, L. Volcanic Clouds Characterization of the 2020–2022 Sequence of Mt. Etna Lava Fountains Using MSG-SEVIRI and Products’ Cross-Comparison. Remote Sens. 2023, 15, 2055. [Google Scholar] [CrossRef]
- Métrich, N.; Bertagnini, A.; Pistolesi, M. Paroxysms at Stromboli Volcano (Italy): Source, Genesis and Dynamics. Front. Earth Sci. 2021, 9, 593339. [Google Scholar] [CrossRef]
- Corradino, C.; Amato, E.; Torrisi, F.; Calvari, S.; Del Negro, C. Classifying Major Explosions and Paroxysms at Stromboli Volcano (Italy) from Space. Remote Sens. 2021, 13, 4080. [Google Scholar] [CrossRef]
- Plank, S.; Marchese, F.; Filizzola, C.; Pergola, N.; Neri, M.; Nolde, M.; Martinis, S. The July/August 2019 lava flows at the Sciara Del Fuoco, Stromboli—Analysis from multi-sensor infrared satellite imagery. Remote Sens. 2019, 11, 2879. [Google Scholar] [CrossRef]
- Giudicepietro, F.; Calvari, S.; De Cesare, W.; Di Lieto, B.; Di Traglia, F.; Esposito, A.M.; Orazi, M.; Romano, P.; Tramelli, A.; Nolesini, T.; et al. Seismic and thermal precursors of crater collapses and overflows at Stromboli volcano. Sci. Rep. 2023, 13, 11115. [Google Scholar] [CrossRef]
- Calvari, S.; Di Traglia, F.; Ganci, G.; Bruno, V.; Ciancitto, F.; Di Lieto, B.; Gambino, S.; Garcia, A.; Giudicepietro, F.; Inguaggiato, S.; et al. Multi-parametric study of an eruptive phase comprising unrest, major explosions, crater failure, pyroclastic density currents and lava flows: Stromboli volcano, 1 December 2020–30 June 2021. Front. Earth Sci. 2022, 10, 899635. [Google Scholar] [CrossRef]
- EUMETSAT. Available online: https://data.eumetsat.int/ (accessed on 30 November 2023).
- LAADS-DAAC. Available online: https://ladsweb.modaps.eosdis.nasa.gov/ (accessed on 18 January 2024).
- COPERNICUS. Available online: https://sentinels.copernicus.eu/documents/247904/0/SLSTR_Level-2_Fire_ATBD.pdf/ (accessed on 1 November 2023).
- Giglio, L.; Descloitres, J.; Justice, C.O.; Kaufman, Y. An enhanced contextual fire detection algorithm for MODIS. Remote Sens. Environ. 2003, 87, 273–282. [Google Scholar] [CrossRef]
- Giglio, L.; Schroeder, W.; Justice, C.O. The Collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 2016, 178, 31–41. [Google Scholar] [CrossRef]
- Coppola, D.; Laiolo, M.; Piscopo, D.; Cigolini, C. Rheological control on the radiant density of active lava flows and domes. J. Volcan. Geotherm. Res. 2013, 249, 39–48. [Google Scholar] [CrossRef]
- Ganci, G.; Vicari, A.; Cappello, A.; Del Negro, C. An emergent strategy for volcano hazard assessment: From thermal satellite monitoring to lava flow modeling. Remote Sens. Environ. 2012, 119, 197–207. [Google Scholar] [CrossRef]
- Plank, S.; Massimetti, F.; Soldati, A.; Hess, K.U.; Nolde, M.; Martinis, S.; Dingwell, D.B. Estimates of lava discharge rate of 2018 Kīlauea Volcano, Hawaiʻi eruption using multi-sensor satellite and laboratory measurements. Int. J. Remote Sens. 2021, 42, 1492–1511. [Google Scholar] [CrossRef]
- Harris, A.J.L.; Steffke, A.; Calvari, S.; Spampinato, L. Thirty years of satellite-derived lava discharge rates at Etna: Implications for steady volumetric output. J. Geophys. Res.–Solid Earth 2011, 116, B8. [Google Scholar] [CrossRef]
- Campus, A.; Laiolo, M.; Massimetti, F.; Coppola, D. The Transition from MODIS to VIIRS for Global Volcano Thermal Monitoring. Sensors 2022, 22, 1713. [Google Scholar] [CrossRef] [PubMed]
SLSTR (Sentinel-3) | MODIS (AQUA/TERRA) | VIIRS (S-NPP/N20) | SEVIRI (MSG) | |
---|---|---|---|---|
Orbit altitude (km) | 814 | 705 | 824 | 38.500 |
Type of Satellites | Polar | Polar | Polar | Geostationary |
Equator crossing time | 10:00 LT | 10:30 LT/13:30 LT | 13:30 LT/12:40 LT | |
Spatial Resolution (km) | 1 | 1 | 0.75–0.375 | 3 |
Temporal Resolution | 1–2 days | 1–2 days | 12 h | 10–15 min |
Spectral coverage of thermal bands (μm) | 3.700–12.000 | 3660–14.385 | 3.550–12.488 | 3.480–13.400 |
ID MIR Band | S7/F1 | 22/21 | I04/M-13 | IR-039 |
Spectral Range (μm) | 3.700/3.700 | 3.940–4.001/3.929–3.989 | 3.973–4.128 | 3.480–4.360 |
Tmax | 312 K/500 K | 331 K/500 K | 367 K/634 K | 335 K |
ID TIR Band | S8/F1 | 31 | I05/M-15 | I-108 |
Spectral Range (μm) | 10.850/12.000 | 10.780–11.280 | 10.263–11.263 | 11.000–13.400 |
Tmax | 323 K/400 K | 400 K | 380 K/343 K |
Etna | Stromboli | |
---|---|---|
RSDF Algorithm SLSTR | SLSTR Level 2 Product | RSDF Algorithm MODIS | MODIS Level 2 Product | |
---|---|---|---|---|
Etna | ||||
15 February 2021–3 April 2021 | ||||
17 May 2021–28 September 2021 | ||||
12 May 2022–15 June 2022 | ||||
27 November 2022–6 February 2023 | 0 | |||
2021–2023 | ||||
Stromboli | ||||
13 May 2021–27 May 2021 | 0 | |||
11 May 2022–8 June 2022 | 0 | 0 | ||
27 November 2022–11 December 2022 | 0 | 0 | ||
2021–2023 |
False Rate | Omitted Rate | Npass | Nalert (f%) | Mean VRP (MW) | f% Daytime | f% Nightime | |
---|---|---|---|---|---|---|---|
Etna | |||||||
SLSTR RSDF | 3.6% | 2.9% | 2545 | 764 (30%) | 13% | 17% | |
SLSTR Level 2 | 12% | 62% | 2545 | 445 (18%) | 5% | 12% | |
MODIS RSDF | 4.8% | 4.5% | 5171 | 858 (17%) | 10% | 7% | |
MODIS Level 2 | 10% | 89% | 5171 | 17 (0.002%) | 0.001% | 0.001% | |
Stromboli | |||||||
SLSTR RSDF | 5.1% | 5.4% | 2545 | 605 (24%) | 17% | 7% | |
SLSTR Level 2 | 2% | 80% | 2545 | 25 (0.01%) | 0.007% | 0.001% | |
MODIS RSDF | 4.7% | 5.7% | 5171 | 570 (11%) | 7% | 4% | |
MODIS Level 2 | 1% | 99% | 5171 | 18 (0.002%) | 0.002% | 0.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Bella, G.S.; Corradino, C.; Cariello, S.; Torrisi, F.; Del Negro, C. Advancing Volcanic Activity Monitoring: A Near-Real-Time Approach with Remote Sensing Data Fusion for Radiative Power Estimation. Remote Sens. 2024, 16, 2879. https://doi.org/10.3390/rs16162879
Di Bella GS, Corradino C, Cariello S, Torrisi F, Del Negro C. Advancing Volcanic Activity Monitoring: A Near-Real-Time Approach with Remote Sensing Data Fusion for Radiative Power Estimation. Remote Sensing. 2024; 16(16):2879. https://doi.org/10.3390/rs16162879
Chicago/Turabian StyleDi Bella, Giovanni Salvatore, Claudia Corradino, Simona Cariello, Federica Torrisi, and Ciro Del Negro. 2024. "Advancing Volcanic Activity Monitoring: A Near-Real-Time Approach with Remote Sensing Data Fusion for Radiative Power Estimation" Remote Sensing 16, no. 16: 2879. https://doi.org/10.3390/rs16162879
APA StyleDi Bella, G. S., Corradino, C., Cariello, S., Torrisi, F., & Del Negro, C. (2024). Advancing Volcanic Activity Monitoring: A Near-Real-Time Approach with Remote Sensing Data Fusion for Radiative Power Estimation. Remote Sensing, 16(16), 2879. https://doi.org/10.3390/rs16162879