Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = Vis-SWIR spectroscopy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3838 KB  
Article
Method of Characterization and Classification of the Physicochemical Quality of Polished White Rice Grains Using VIS/NIR/SWIR Techniques and Machine Learning Models for Lot Segregation and Commercialization in Storage and Processing Units
by Letícia de Oliveira Carneiro, Nairiane dos Santos Bilhalva, Ênio Antônio Manfroi Filho, Dthenifer Cordeiro Santana, Larissa Pereira Ribeiro Teodoro, Paulo Eduardo Teodoro and Paulo Carteri Coradi
Foods 2026, 15(1), 62; https://doi.org/10.3390/foods15010062 - 24 Dec 2025
Abstract
The quality of rice depends on physical, nutritional, and sensory attributes. However, in industrial practice, quality is predominantly based on physical characteristics evaluated by the conventional method for categorizing commercial atches. In this context, the present study aimed to characterize the physical quality [...] Read more.
The quality of rice depends on physical, nutritional, and sensory attributes. However, in industrial practice, quality is predominantly based on physical characteristics evaluated by the conventional method for categorizing commercial atches. In this context, the present study aimed to characterize the physical quality and proximate composition and to classify commercial batches of polished white rice using machine learning (ML) algorithms based on spectral data. Individual samples (healthy grains and physical defects) and samples from commercial batches (Type 1 to Type 5 and Off-Type) were analyzed and prepared in accordance with current legislation. Spectral data were obtained using NIR and hyperspectral measurements covering the VIS/NIR/SWIR regions, and proximate composition was determined for moisture (MOI), starch (ST), protein (PRO), lipids (LIP), fiber (FIB), and ash (ASH). Multivariate analyses and ML classification models were applied to evaluate differences among grain types and commercial categories and to assess the discriminatory capacity of spectral information. The results showed that including physicochemical attributes to evaluate the quality of commercial batches simplifies the commercial categories currently used. For spectral behavior, batches classified as Type 1 and Type 2 showed low reflectance in the NIR and SWIR regions, suggesting greater interaction of radiant energy with compounds associated with nutritional and sensory quality. The MLP, LGBM, CAT, XGB and RF models performed best for the classification of commercial white polished rice batches, with metrics above 95%. The SWIR region, especially the 2173 nm spectral point, demonstrated high discriminatory power. In conclusion, the application of machine learning models based on VIS/NIR/SWIR spectroscopy proved highly efficient for classifying commercial batches of polished white rice, integrating physical and physicochemical attributes of the grains. Full article
(This article belongs to the Special Issue The Processing of Cereal and Its By-Products)
Show Figures

Graphical abstract

19 pages, 1792 KB  
Article
Hyperspectral Detection of Single and Combined Effects of Simulated Tree Shading and Alternaria alternata Infection on Sorghum bicolor, from Leaf to UAV-Canopy Scale
by Lorenzo Pippi, Michael Alibani, Nicola Acito, Daniele Antichi, Giovanni Caruso, Marco Fontanelli, Michele Moretti, Cristina Nali, Silvia Pampana, Elisa Pellegrini, Andrea Peruzzi, Samuele Risoli, Gabriele Sileoni, Nicola Silvestri, Lorenzo Gabriele Tramacere and Lorenzo Cotrozzi
Agronomy 2025, 15(11), 2458; https://doi.org/10.3390/agronomy15112458 - 22 Oct 2025
Cited by 1 | Viewed by 597
Abstract
Agroforestry systems offer clear environmental and agronomic advantages, but their effect on plant–biotic stressor interactions remains poorly understood. Specifically, the shade from companion trees can create microclimates favorable to fungal diseases on herbaceous crops. This potential drawback may offset other benefits, highlighting the [...] Read more.
Agroforestry systems offer clear environmental and agronomic advantages, but their effect on plant–biotic stressor interactions remains poorly understood. Specifically, the shade from companion trees can create microclimates favorable to fungal diseases on herbaceous crops. This potential drawback may offset other benefits, highlighting the urgent need for advanced plant health monitoring in these systems. This study assessed the potential of hyperspectral reflectance to detect the single and combined effects of simulated tree shading and infection by the fungal pathogen Alternaria alternata on grain sorghum (Sorghum bicolor L. Moench) under rainfed field conditions. Sorghum was grown either under full light or 50% shading conditions. Half of the plots were artificially inoculated with an A. alternata spore suspension (2 × 108 CFU mL−1), while the others served as controls. Leaf and ground-canopy measurements were acquired with a full range spectroradiometer (VNIR-SWIR, 400–2,400 nm) and UAV imagery covered the VIS-NIR range (400–1,000 nm) before the onset of visible symptoms. Permutational multivariate analysis of variance of leaf and ground-canopy data revealed significant effects of shading (Sh), infection (Aa), and their interaction (p < 0.05), allowing early detection of infection two days before symptom appearance, while UAV data showed only singular significant effects. Partial least squares discriminant analysis accuracy reached 78% at the leaf level, 90% at the ground-canopy level, and 74% (Sh) and 75% (Aa) at the UAV scale. Furthermore, vegetation spectral indices derived from the spectra confirmed greater physiological stress in shaded and infected plants, consistent with disease incidence assessments. Our results establish scale-specific hyperspectral reflectance spectroscopy as a powerful, non-destructive technique for early plant health surveillance in agroforestry. This advanced optical sensing capability is poised to illuminate complex stressor interactions, marking a significant step forward for precision agroforestry management. Full article
Show Figures

Figure 1

22 pages, 5262 KB  
Article
An SWIR-MIR Spectral Database of Organic Coatings Used on Historic Metals
by Elizabeth Provost and Aaron Shugar
Coatings 2025, 15(10), 1226; https://doi.org/10.3390/coatings15101226 - 20 Oct 2025
Viewed by 1184
Abstract
Surface organic coatings (SOCs) composed of drying oils, resins, and bitumen were commonly applied to small Renaissance bronze sculptures to enhance their visual and physical properties, producing dark, lustrous surfaces that were both esthetic and protective. Yet, the identification of these coatings remains [...] Read more.
Surface organic coatings (SOCs) composed of drying oils, resins, and bitumen were commonly applied to small Renaissance bronze sculptures to enhance their visual and physical properties, producing dark, lustrous surfaces that were both esthetic and protective. Yet, the identification of these coatings remains challenging due to aging, conservation interventions, and the damage caused by physical sampling. This study presents a reproducible, non-destructive protocol for characterizing SOCs on metal substrates using external reflection Fourier transform infrared spectroscopy (ER-FTIR) and fiber optic reflectance spectroscopy (FORS). Twenty-seven reference coating mock-ups of linseed oil, walnut oil, mastic resin, pine resin, and bitumen were stoved onto bronze coupons and artificially aged. Spectra were analyzed across the visible/near-infrared (VIS-NIR) (~400–1000 nm), short-wave-infrared (SWIR) (~1000–2500 nm), and mid-infrared (MIR) (~2.5–25 µm) ranges, with key diagnostic features identified for each component and blend, including primary absorptions, combination bands, and overtones. ER-FTIR proved highly effective in detecting oil–resin mixtures and later wax coatings through characteristic bands in the MIR, while FORS, enhanced by first-derivative processing, successfully differentiated triterpenoid and diterpenoid resins and identified multi-component SOCs in the SWIR region. The reference spectral database generated in this study is intended to serve as a comparative tool for future non-invasive analysis of organic coatings on metal surfaces and to demonstrate that ER-FTIR and FORS, used in tandem, offer a practical and scalable framework for the non-destructive identification of SOCs. Full article
Show Figures

Graphical abstract

31 pages, 45979 KB  
Article
High-Throughput Identification and Prediction of Early Stress Markers in Soybean Under Progressive Water Regimes via Hyperspectral Spectroscopy and Machine Learning
by Caio Almeida de Oliveira, Nicole Ghinzelli Vedana, Weslei Augusto Mendonça, João Vitor Ferreira Gonçalves, Dheynne Heyre Silva de Matos, Renato Herrig Furlanetto, Luis Guilherme Teixeira Crusiol, Amanda Silveira Reis, Werner Camargos Antunes, Roney Berti de Oliveira, Marcelo Luiz Chicati, José Alexandre M. Demattê, Marcos Rafael Nanni and Renan Falcioni
Remote Sens. 2025, 17(20), 3409; https://doi.org/10.3390/rs17203409 - 11 Oct 2025
Viewed by 1219
Abstract
The soybean Glycine max (L.) Merrill is a key crop in Brazil’s agricultural sector and is essential for both domestic food security and international trade. However, water stress severely impacts its productivity. In this study, we examined the physiological and biochemical responses of [...] Read more.
The soybean Glycine max (L.) Merrill is a key crop in Brazil’s agricultural sector and is essential for both domestic food security and international trade. However, water stress severely impacts its productivity. In this study, we examined the physiological and biochemical responses of soybean plants to various water regimes via hyperspectral reflectance (350–2500 nm) and machine learning (ML) models. The plants were subjected to eleven distinct water regimes, ranging from 100% to 0% field capacity, over 14 days. Seventeen key physiological parameters, including chlorophyll, carotenoids, flavonoids, proline, stress markers and water content, and hyperspectral data were measured to capture changes induced by water deficit. Principal component analysis (PCA) revealed significant spectral differences between the water treatments, with the first two principal components explaining 88% of the variance. Hyperspectral indices and reflectance patterns in the visible (VIS), near-infrared (NIR), and shortwave-infrared (SWIR) regions are linked to specific stress markers, such as pigment degradation and osmotic adjustment. Machine learning classifiers, including random forest and gradient boosting, achieved over 95% accuracy in predicting drought-induced stress. Notably, a minimal set of 12 spectral bands (including red-edge and SWIR features) was used to predict both stress levels and biochemical changes with comparable accuracy to traditional laboratory assays. These findings demonstrate that spectroscopy by hyperspectral sensors, when combined with ML techniques, provides a nondestructive, field-deployable solution for early drought detection and precision irrigation in soybean cultivation. Full article
Show Figures

Figure 1

22 pages, 3083 KB  
Article
Evaluating the Effect of Thermal Treatment on Phenolic Compounds in Functional Flours Using Vis–NIR–SWIR Spectroscopy: A Machine Learning Approach
by Achilleas Panagiotis Zalidis, Nikolaos Tsakiridis, George Zalidis, Ioannis Mourtzinos and Konstantinos Gkatzionis
Foods 2025, 14(15), 2663; https://doi.org/10.3390/foods14152663 - 29 Jul 2025
Viewed by 1213
Abstract
Functional flours, high in bioactive compounds, have garnered increasing attention, driven by consumer demand for alternative ingredients and the nutritional limitations of wheat flour. This study explores the thermal stability of phenolic compounds in various functional flours using visible, near and shortwave-infrared (Vis–NIR–SWIR) [...] Read more.
Functional flours, high in bioactive compounds, have garnered increasing attention, driven by consumer demand for alternative ingredients and the nutritional limitations of wheat flour. This study explores the thermal stability of phenolic compounds in various functional flours using visible, near and shortwave-infrared (Vis–NIR–SWIR) spectroscopy (350–2500 nm), integrated with machine learning (ML) algorithms. Random Forest models were employed to classify samples based on flour type, baking temperature, and phenolic concentration. The full spectral range yielded high classification accuracy (0.98, 0.98, and 0.99, respectively), and an explainability framework revealed the wavelengths most relevant for each class. To address concerns regarding color as a confounding factor, a targeted spectral refinement was implemented by sequentially excluding the visible region. Models trained on the 1000–2500 nm and 1400–2500 nm ranges showed minor reductions in accuracy, suggesting that classification is not solely driven by visible characteristics. Results indicated that legume and wheat flours retain higher total phenolic content (TPC) under mild thermal conditions, whereas grape seed flour (GSF) and olive stone flour (OSF) exhibited notable thermal stability of TPC even at elevated temperatures. These first findings suggest that the proposed non-destructive spectroscopic approach enables rapid classification and quality assessment of functional flours, supporting future applications in precision food formulation and quality control. Full article
Show Figures

Figure 1

16 pages, 4533 KB  
Article
Assessment of Melon Fruit Nutritional Composition Using VIS/NIR/SWIR Spectroscopy Coupled with Chemometrics
by Dimitrios S. Kasampalis, Pavlos Tsouvaltzis and Anastasios S. Siomos
Horticulturae 2025, 11(6), 658; https://doi.org/10.3390/horticulturae11060658 - 10 Jun 2025
Cited by 2 | Viewed by 1992
Abstract
The objective of this study was to evaluate the feasibility of using visible, near-infrared, and short-wave infrared (VIS/NIR/SWIR) spectroscopy coupled with chemometrics for non-destructive prediction of nutritional components in Galia-type melon fruit. A total of 175 fully ripened melons were analyzed for soluble [...] Read more.
The objective of this study was to evaluate the feasibility of using visible, near-infrared, and short-wave infrared (VIS/NIR/SWIR) spectroscopy coupled with chemometrics for non-destructive prediction of nutritional components in Galia-type melon fruit. A total of 175 fully ripened melons were analyzed for soluble solids content (SSC), dry matter (DM), pH, and titratable acidity (TA) using partial least squares regression (PLSR), principal components regression (PCR), and multilinear regression (MLR) models. Reflectance spectra were captured at three fruit locations (pedicel, equatorial, and blossom end) in the 350–2500 nm range. The PLSR models yielded the highest accuracy, particularly for SSC (R = 0.80) and SSC/TA (R = 0.79), using equatorial zone data. Variable selection using the genetic algorithm (GA) successfully identified the spectral regions critical for each nutritional parameter at the pedicel, equatorial, and blossom end areas. Key wavelengths for SSC were found around 670–720 nm and 900–1100 nm, with important wavelengths for pH prediction located near 1450 nm, and, for dry matter, in the ranges 1900–1950 nm. Variable importance in projection (VIP) analysis confirmed that specific wavelengths between 680 and 720 nm, 900 and 1000 nm, 1400 and 1500 nm, and 1900 and 2000 nm were consistently critical in predicting the SSC, DM, and SSC/TA ratio. The highest VIP scores for SSC prediction were noted around 690 nm and 950 nm, while dry matter prediction was influenced most by wavelengths in the 1450 nm to 1950 nm range. This study demonstrates the potential of VIS/NIR/SWIR spectroscopy for rapid, non-destructive melon quality assessment, with implications for commercial postharvest management. Full article
Show Figures

Figure 1

16 pages, 5036 KB  
Article
Early Study on Visible (Vis) and Short-Wave Infrared (SWIR) Spectroscopy for Assessing Water Content in Olive Fruits: Towards Sustainable Land and Agricultural Practices
by Giuseppe Bonifazi, Riccardo Gasbarrone, Davide Gattabria, Eugenio Lendaro, Luciana Mosca, Roberto Mattioli and Silvia Serranti
Land 2024, 13(12), 2231; https://doi.org/10.3390/land13122231 - 20 Dec 2024
Viewed by 1578
Abstract
Accurate and rapid assessment of the water content in olive fruits is critical for enhancing the efficiency and sustainability of olive oil production. This study investigates the application of visible and short-wave infrared (Vis-SWIR) spectroscopy as a non-invasive method to directly measure the [...] Read more.
Accurate and rapid assessment of the water content in olive fruits is critical for enhancing the efficiency and sustainability of olive oil production. This study investigates the application of visible and short-wave infrared (Vis-SWIR) spectroscopy as a non-invasive method to directly measure the water content in intact olive fruits before milling, also affecting eco-friendly farming practices. Partial least squares (PLS) regression models for the olive fruit weight, weight loss, and water content were developed while using the dehydration process in a drying oven as the reference analysis. The models demonstrated strong predictive performance, with the PLS model for the olive fruit weight achieving a coefficient of determination in cross-validation (R2CV) of 0.78 and a root mean squared error (RMSECV) of 0.6 g. Additionally, for olive fruit weight loss, a R2CV of 0.96 with an RMSECV of 4.5% was achieved. Meanwhile, for the olive fruit water content, an R2CV of 0.94 with an RMSECV of 0.245 mL was obtained. The PLS regression model set up to predict the water content for intact olive fruits showed promise, as evidenced by its fit, RMSE in prediction, and residual prediction deviation (RPD) values (R2P = 0.80, RMSEP = 0.556 mL, and RPD = 2.247). The obtained results indicate that portable Vis-SWIR spectrophotometers provide a rapid and efficient alternative to conventional drying and weighing methods, facilitating early detection of olive fruit quality. This technological approach not only enhances the financial returns for producers but also supports sustainable agricultural practices. The use of Vis-SWIR spectroscopy has broader potential applications in the olive industry, including quality control, monitoring the water status of olive orchards, and optimizing irrigation management, contributing to the sustainable management of land and agricultural resources. Full article
Show Figures

Figure 1

22 pages, 4009 KB  
Article
Prediction of Corn Leaf Nitrogen Content in a Tropical Region Using Vis-NIR-SWIR Spectroscopy
by Ana Karla da Silva Oliveira, Rodnei Rizzo, Carlos Augusto Alves Cardoso Silva, Natália Correr Ré, Matheus Luís Caron and Peterson Ricardo Fiorio
AgriEngineering 2024, 6(4), 4135-4153; https://doi.org/10.3390/agriengineering6040233 - 31 Oct 2024
Cited by 4 | Viewed by 1722
Abstract
Traditional techniques for measuring leaf nitrogen content (LNC) involve slow and laborious processes, and radiometric data have been used to assist in the nutritional analysis of plants. Therefore, this study aimed to evaluate the performance of LNC predictions in corn plants based on [...] Read more.
Traditional techniques for measuring leaf nitrogen content (LNC) involve slow and laborious processes, and radiometric data have been used to assist in the nutritional analysis of plants. Therefore, this study aimed to evaluate the performance of LNC predictions in corn plants based on laboratory hyperspectral Vis-NIR-SWIR data. The treatments corresponded to 60, 120, 180, and 240 kg ha−1 of nitrogen, in addition to the control (0 kg ha−1), and they were distributed using a randomized complete block design. At the laboratory, hyperspectral data of the leaves and LNC were obtained. The hyperspectral data were used in the calculation of different vegetation indices (VIs), which were applied in a predictive model—partial least squares regression (PLSR)—and the capacity of the prediction was assessed. The combination of bands and VIs generated a better prediction (0.74 < R2 < 0.87; 1.00 < RMSE < 1.50 kg ha−1) in comparison with the individual prediction by band (0.69 < R2 < 0.85; 1.00 < RMSE < 1.77 kg ha−1) and by VI (0.55 < R2 < 0.68; 1.00 < RMSE < 1.78 kg ha−1). Hyperspectral data offer a new opportunity to monitor the LNC in corn plants, especially in the region comprising the bands from 450 to 750 nm, since these were the bands that were most sensitive to the LNC. Full article
(This article belongs to the Section Remote Sensing in Agriculture)
Show Figures

Figure 1

22 pages, 2642 KB  
Article
Fluorescence and Hyperspectral Sensors for Nondestructive Analysis and Prediction of Biophysical Compounds in the Green and Purple Leaves of Tradescantia Plants
by Renan Falcioni, Roney Berti de Oliveira, Marcelo Luiz Chicati, Werner Camargos Antunes, José Alexandre M. Demattê and Marcos Rafael Nanni
Sensors 2024, 24(19), 6490; https://doi.org/10.3390/s24196490 - 9 Oct 2024
Cited by 3 | Viewed by 2234
Abstract
The application of non-imaging hyperspectral sensors has significantly enhanced the study of leaf optical properties across different plant species. In this study, chlorophyll fluorescence (ChlF) and hyperspectral non-imaging sensors using ultraviolet-visible-near-infrared shortwave infrared (UV-VIS-NIR-SWIR) bands were used to evaluate leaf biophysical parameters. For [...] Read more.
The application of non-imaging hyperspectral sensors has significantly enhanced the study of leaf optical properties across different plant species. In this study, chlorophyll fluorescence (ChlF) and hyperspectral non-imaging sensors using ultraviolet-visible-near-infrared shortwave infrared (UV-VIS-NIR-SWIR) bands were used to evaluate leaf biophysical parameters. For analyses, principal component analysis (PCA) and partial least squares regression (PLSR) were used to predict eight structural and ultrastructural (biophysical) traits in green and purple Tradescantia leaves. The main results demonstrate that specific hyperspectral vegetation indices (HVIs) markedly improve the precision of partial least squares regression (PLSR) models, enabling reliable and nondestructive evaluations of plant biophysical attributes. PCA revealed unique spectral signatures, with the first principal component accounting for more than 90% of the variation in sensor data. High predictive accuracy was achieved for variables such as the thickness of the adaxial and abaxial hypodermis layers (R2 = 0.94) and total leaf thickness, although challenges remain in predicting parameters such as the thickness of the parenchyma and granum layers within the thylakoid membrane. The effectiveness of integrating ChlF and hyperspectral technologies, along with spectroradiometers and fluorescence sensors, in advancing plant physiological research and improving optical spectroscopy for environmental monitoring and assessment. These methods offer a good strategy for promoting sustainability in future agricultural practices across a broad range of plant species, supporting cell biology and material analyses. Full article
(This article belongs to the Special Issue Spectral Detection Technology, Sensors and Instruments, 2nd Edition)
Show Figures

Figure 1

19 pages, 4714 KB  
Article
The Use of Vis-NIR-SWIR Spectroscopy and X-ray Fluorescence in the Development of Predictive Models: A Step forward in the Quantification of Nitrogen, Total Organic Carbon and Humic Fractions in Ferralsols
by Bruna Coelho de Lima, José A. M. Demattê, Carlos H. dos Santos, Carlos S. Tiritan, Raul R. Poppiel, Marcos R. Nanni, Renan Falcioni, Caio A. de Oliveira, Nicole G. Vedana, Guilherme Zimmermann and Amanda S. Reis
Remote Sens. 2024, 16(16), 3009; https://doi.org/10.3390/rs16163009 - 16 Aug 2024
Cited by 4 | Viewed by 1761
Abstract
The objective was to verify the performance of spectral techniques as well as validation models in the prediction of nitrogen, total organic carbon, and humic fractions under different cultivation conditions. Chemical analyses for the determination of nitrate, total nitrogen, total organic carbon, and [...] Read more.
The objective was to verify the performance of spectral techniques as well as validation models in the prediction of nitrogen, total organic carbon, and humic fractions under different cultivation conditions. Chemical analyses for the determination of nitrate, total nitrogen, total organic carbon, and the chemical fractionation of soil organic matter were performed, as well as spectral analyses by Vis-NIR-SWIR and X-ray fluorescence. The results of the spectroscopy were processed using RStudio v. 4.1.3, and PLSR and support vector machine learning algorithms were applied to validate the models. The Vis-NIR-SWIR and XRF spectroscopic techniques showed high performance and are indicated for the prediction of nitrogen, total organic carbon, and humic fractions in Ferralsols of medium sandy texture. However, it is important to highlight that each technique has its own characteristic mechanism of action: Vis-NIR-SWIR detects the element based on harmonic tones, while XRF is based on the atomic number of the element or elemental association. The PLSR and SVM models showed excellent validation results, allowing them to fit the experimental data, emphasizing that they are different statistical methods. Full article
Show Figures

Graphical abstract

35 pages, 7133 KB  
Article
Spectral- and Image-Based Metrics for Evaluating Cleaning Tests on Unvarnished Painted Surfaces
by Jan Dariusz Cutajar, Calin Constantin Steindal, Francesco Caruso, Edith Joseph and Tine Frøysaker
Coatings 2024, 14(8), 1040; https://doi.org/10.3390/coatings14081040 - 15 Aug 2024
Cited by 2 | Viewed by 2929
Abstract
Despite advances in conservation–restoration treatments, most surface cleaning tests are subjectively evaluated. Scores according to qualitative criteria are employed to assess results, but these can vary by user and context. This paper presents a range of cleaning efficacy and homogeneity evaluation metrics for [...] Read more.
Despite advances in conservation–restoration treatments, most surface cleaning tests are subjectively evaluated. Scores according to qualitative criteria are employed to assess results, but these can vary by user and context. This paper presents a range of cleaning efficacy and homogeneity evaluation metrics for appraising cleaning trials, which minimise user bias by measuring quantifiable changes in the appearance and characteristic spectral properties of surfaces. The metrics are based on various imaging techniques (optical imaging by photography using visible light (VIS); spectral imaging in the visible-to-near-infrared (VNIR) and shortwave infrared (SWIR) ranges; chemical imaging by Fourier transform infrared (FTIR) spectral mapping in the mid-infrared (MIR) range; and scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX) element mapping). They are complemented by appearance measurements (glossimetry and colourimetry). As a case study showcasing the low-cost to high-end metrics, agar gel spray cleaning tests on exposed ground and unvarnished oil paint mock-ups are reported. The evaluation metrics indicated that spraying agar (prepared with citric acid in ammonium hydroxide) at a surface-tailored pH was as a safe candidate for efficacious and homogenous soiling removal on water-sensitive oil paint and protein-bound ground. Further research is required to identify a gel-based cleaning system for oil-bound grounds. Full article
Show Figures

Figure 1

13 pages, 3417 KB  
Article
Combined Scanned Macro X-Ray Fluorescence and Reflectance Spectroscopy Mapping on Corroded Ancient Bronzes
by Jacopo Orsilli and Simone Caglio
Minerals 2024, 14(2), 192; https://doi.org/10.3390/min14020192 - 12 Feb 2024
Cited by 7 | Viewed by 2661
Abstract
Bronze is an alloy composed primarily of copper and tin and since its discovery is widespread in the whole world. This alloy can thus be found in many archaeological sites and its study can give information about the technology of production, the trading [...] Read more.
Bronze is an alloy composed primarily of copper and tin and since its discovery is widespread in the whole world. This alloy can thus be found in many archaeological sites and its study can give information about the technology of production, the trading routes, or the warfare within a region. However, bronze artefacts can undergo severe alteration processes, and the formation of corrosion layers of different copper minerals can prevent the readability of the artefact or even destroy it, as in the case of the ‘bronze disease’. Their preservation is crucial for maintaining a connection to our cultural heritage. In this paper, we present the study of some corroded bronze artefacts found in different burying conditions. They have been analysed through a scanner system that combines two non-invasive techniques, macro XRF (MA-XRF) and visible, near infrared, short wave infrared (VIS-NIR-SWIR) reflectance, to unravel information about the metal and the patina composition, thickness, and distribution. As the corrosion of bronze depends on the burying conditions and the alloy composition, these data are of the utmost importance to understanding the alteration processes occurring in the archaeological site and to ensure the artefacts’ optimal preservation. Full article
Show Figures

Figure 1

18 pages, 16066 KB  
Article
Rapid Determination of Soil Horizons and Suborders Based on VIS-NIR-SWIR Spectroscopy and Machine Learning Models
by Karym Mayara de Oliveira, Renan Falcioni, João Vitor Ferreira Gonçalves, Caio Almeida de Oliveira, Weslei Augusto Mendonça, Luís Guilherme Teixeira Crusiol, Roney Berti de Oliveira, Renato Herrig Furlanetto, Amanda Silveira Reis and Marcos Rafael Nanni
Remote Sens. 2023, 15(19), 4859; https://doi.org/10.3390/rs15194859 - 7 Oct 2023
Cited by 5 | Viewed by 2915
Abstract
In an effort to improve the efficiency of soil classification, traditional methods are being combined with analytical and computational techniques. This integration has strengthened the connection between conventional classification and the application of machine-learning (ML) models to interpret soil spectral reflectance data. Due [...] Read more.
In an effort to improve the efficiency of soil classification, traditional methods are being combined with analytical and computational techniques. This integration has strengthened the connection between conventional classification and the application of machine-learning (ML) models to interpret soil spectral reflectance data. Due to the time and computational cost, several studies are limited to testing the classification performance of a few algorithms and do not always explore the best parameters for model optimization. The study aims to assess the efficiency of combining soil spectral reflectance with prevalent ML models for classifying pedogenetic horizons and soil suborders, enhancing traditional classification methods. We collected seven soil monoliths, previously classified according to the Brazilian Soil Classification System (SiBCS) and soil taxonomy. Using the ASD Fieldspec spectroradiometer, we obtained spectral reflectance samples along each monolith (n = 800 per monolith) to classify horizons and n = 5600 for suborder classification. Spectral fingerprints were obtained and explored by Principal Component Analysis (PCA). The spectral data were subdivided into training (70%) and test (30%) sets and submitted to the Logistic Regression (LR), Artificial Neural Network (NN), Support Vector Machine (SVM), Random Forest (RF), and Gradient Boosting (GB) models for the classification of horizons and suborders, considering the model’s adjustment parameters. Accuracy and F-Score were used to verify the performance of the models. There was a significant influence of particle size and soil organic carbon on the spectral fingerprint of the soils. The PCA indicated that topsoil horizons clustered in most of the monoliths analyzed, while most of the subsoil horizons showed data overlap. The NN model showed the highest accuracy in the classification of horizons (97%), while the SVM showed the lowest performance (52% accuracy). The classification of soil suborders presented accuracies between 95% and 98%. Therefore, our study concludes that spectral data combined with ML models can enhance the discrimination and classification of soil horizons and suborders, improving upon traditional methods. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Graphical abstract

24 pages, 27698 KB  
Article
Chemometric Analysis for the Prediction of Biochemical Compounds in Leaves Using UV-VIS-NIR-SWIR Hyperspectroscopy
by Renan Falcioni, João Vitor Ferreira Gonçalves, Karym Mayara de Oliveira, Caio Almeida de Oliveira, Amanda Silveira Reis, Luis Guilherme Teixeira Crusiol, Renato Herrig Furlanetto, Werner Camargos Antunes, Everson Cezar, Roney Berti de Oliveira, Marcelo Luiz Chicati, José Alexandre M. Demattê and Marcos Rafael Nanni
Plants 2023, 12(19), 3424; https://doi.org/10.3390/plants12193424 - 28 Sep 2023
Cited by 17 | Viewed by 3209
Abstract
Reflectance hyperspectroscopy is recognised for its potential to elucidate biochemical changes, thereby enhancing the understanding of plant biochemistry. This study used the UV-VIS-NIR-SWIR spectral range to identify the different biochemical constituents in Hibiscus and Geranium plants. Hyperspectral vegetation indices (HVIs), principal component analysis [...] Read more.
Reflectance hyperspectroscopy is recognised for its potential to elucidate biochemical changes, thereby enhancing the understanding of plant biochemistry. This study used the UV-VIS-NIR-SWIR spectral range to identify the different biochemical constituents in Hibiscus and Geranium plants. Hyperspectral vegetation indices (HVIs), principal component analysis (PCA), and correlation matrices provided in-depth insights into spectral differences. Through the application of advanced algorithms—such as PLS, VIP, iPLS-VIP, GA, RF, and CARS—the most responsive wavelengths were discerned. PLSR models consistently achieved R2 values above 0.75, presenting noteworthy predictions of 0.86 for DPPH and 0.89 for lignin. The red-edge and SWIR bands displayed strong associations with pivotal plant pigments and structural molecules, thus expanding the perspectives on leaf spectral dynamics. These findings highlight the efficacy of spectroscopy coupled with multivariate analysis in evaluating the management of biochemical compounds. A technique was introduced to measure the photosynthetic pigments and structural compounds via hyperspectroscopy across UV-VIS-NIR-SWIR, underpinned by rapid multivariate PLSR. Collectively, our results underscore the burgeoning potential of hyperspectroscopy in precision agriculture. This indicates a promising paradigm shift in plant phenotyping and biochemical evaluation. Full article
(This article belongs to the Special Issue Integration of Spectroscopic and Photosynthetic Analyses in Plants)
Show Figures

Figure 1

25 pages, 8173 KB  
Article
First Nighttime Light Spectra by Satellite—By EnMAP
by Martin Bachmann and Tobias Storch
Remote Sens. 2023, 15(16), 4025; https://doi.org/10.3390/rs15164025 - 14 Aug 2023
Cited by 6 | Viewed by 2669
Abstract
For the first time, nighttime VIS/NIR—SWIR (visible and near-infrared—shortwave infrared) spectra from a satellite mission have been analyzed using the EnMAP (Environmental Mapping and Analysis Program) high-resolution imaging spectrometer. This article focuses on the spectral characteristics. Firstly, we checked the spectral calibration of [...] Read more.
For the first time, nighttime VIS/NIR—SWIR (visible and near-infrared—shortwave infrared) spectra from a satellite mission have been analyzed using the EnMAP (Environmental Mapping and Analysis Program) high-resolution imaging spectrometer. This article focuses on the spectral characteristics. Firstly, we checked the spectral calibration of EnMAP using sodium light emissions. Here, By applying a newly devised general method, we estimated shifts of +0.3nm for VIS/NIR and 0.2nm for SWIR; the uncertainties were found to be within the range of [0.4nm,+0.2nm] for VIS/NIR and [1.2nm,+1.0nm] for SWIR. These results emphasize the high accuracy of the spectral calibration of EnMAP and illustrate the feasibility of methods based on nighttime Earth observations for the spectral calibration of future nighttime satellite missions. Secondly, by employing a straightforward general method, we identified the dominant lighting types and thermal emissions in Las Vegas, Nevada, USA, on a per-pixel basis, and we considered the consistency of the outcomes. The identification and mapping of different types of LED (light-emitting diode) illuminations were achieved—with 75% of the identified dominant lighting types identified in VIS/NIR—as well as high- and low-pressure sodium and metal halide, which made up 22% of the identified dominant lighting types in VIS/NIR and 29% in SWIR and other illumination sources, as well as high temperatures, where 33% of the identified dominant emission types in SWIR were achieved from space using EnMAP due to the elevated illumination levels in the observed location. These results illustrate the feasibility of the precise identification of lighting types and thermal emissions based on nighttime high-resolution imaging spectroscopy satellite products; moreover, they support the specification of spectral characteristics for upcoming nighttime missions. Full article
Show Figures

Figure 1

Back to TopTop