The Use of Vis-NIR-SWIR Spectroscopy and X-ray Fluorescence in the Development of Predictive Models: A Step forward in the Quantification of Nitrogen, Total Organic Carbon and Humic Fractions in Ferralsols
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Site and Soil Sampling Procedures
2.2. Experiment Design, Management Description and Soil Sampling
2.3. Chemical Analysis of the Soil
2.3.1. Determination of Soil Organic Matter and Total Organic C, Chemical Fractionation of Organic Matter, and Quantification of Carbon in Fractions
2.3.2. Inorganic Nitrogen Determination
2.3.3. Determination of Total Nitrogen Content
2.4. Spectroscopic Analysis of Samples
2.4.1. Visible, Near Infrared, and Shortwave Infrared (Vis-NIR-SWIR)
2.4.2. X-ray Fluorescence Analysis (XRF)
2.5. Analyzing Data
3. Results
3.1. Validation of PLSR and SVM Prediction Models Using Vis-NIR-SWIR and XRF Spectroscopy on Soil Samples of Mombasa Intercropped with Guandu Beans and Java
3.1.1. Mombasa + Guandu Crop (M+G)
3.1.2. Mombasa + Java Crop (M+J)
3.1.3. Mombasa Crop with Mineral Nitrogen Fertilization (M+N)
3.1.4. Mombasa Crop without Nitrogen Fertilization (M-N)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Silva, M.A.; Nascente, A.S.; de Mello Frasca, L.L.; Rezende, C.C.; Ferreira, E.A.S.; Filippi, M.C.C.; Lanna, A.C.; Ferreira, E.P.B.; Lacerda, M.C. Plantas de cobertura isoladas e em mix para a melhoria da qualidade do solo e das culturas comerciais no Cerrado. Res. Soc. Dev. 2021, 10, e11101220008. [Google Scholar] [CrossRef]
- Tiecher, T.; Gubiani, E.; Santanna, M.A.; Veloso, M.G.; Calegari, A.; Canalli, B.S.; Finckh, M.R.; Caner, L.; Rheinheimer, D.S. Effect of 26 years of soil tillage systems and winter cover crops on C and N stocks in a Southern Brazilian Oxisol. Rev. Bras. Ciência Solo. 2020, 44, e0200029. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy, 13th ed.; USDA Natural Resources Conservation Service: Washington, DC, USA, 2022. [Google Scholar]
- Oorts, K.; Vanlauwe, B.; Merckx, R. Cation exchange capacities of soil organic matter fractions in a Ferric Lixisol with different organic matter inputs. Agric. Ecosyst. Environ. 2003, 100, 161–171. [Google Scholar] [CrossRef]
- Batista, K.; Vilela, L.A.F. Tropical Grasses—Annual crop intercropping and adequate nitrogen supply increases soil microbial carbon and nitrogen. Agronomy 2023, 13, 1275. [Google Scholar] [CrossRef]
- Lithourgidis, A.S.; Dordas, C.A.; Damalas, C.A.; Damalas, C.A.; Vlachostergios, D.N. An alternative pathway for sustainable agriculture. Aust. J. Crop. Sci. 2011, 5, 396–410. [Google Scholar]
- Dinesh, R.; Suryanarayana, M.A.; Chaudhuri, S.G.; Sheeja, T.E.; Shiva, K.N. Long-term effects of leguminous cover crops on biochemical biological properties in the organic mineral layers of soils of a coconut plantation. Eur. J. Soil. Biol. 2006, 42, 147–157. [Google Scholar] [CrossRef]
- Pietroski, M.; Oliveira, R.; Caione, G. Adubação foliar de nitrogênio em capim Mombaça (Panicum maximus cv. Mombaça). Rev. Agric. Neotrop. 2015, 2, 49–53. [Google Scholar] [CrossRef]
- Souza, É.M.; Isepon, O.J.; Alves, J.B.; Bastos, J.F.P.; Lima, R.C. Efeitos da irrigação e adubação nitrogenada sobre a massa de forragem de cultivares de Panicum maximum Jacq. Rev. Bras. Zootec. 2005, 34, 1146–1155. [Google Scholar] [CrossRef]
- Batista, K.; Giacomini, A.A.; Gerdes, L.; Mattos, W.T.; Otsuk, I.P. Impacts of the nitrogen application on productivity and nutrient concentrations of the corn-Congo grass intercropping system in the dry season. Acta Agric. Scand. Sect. Soil. Plant Sci. 2019, 69, 567–577. [Google Scholar] [CrossRef]
- Ladha, J.K.; Peoples, M.B.; Reddy, P.M.; Biswas, J.C.; Bennett, A.; Jate, M.; Krupnik, T.J. Biological nitrogen fixation prospects for ecological intensification in cereal-based cropping systems. Field Crop. Res. 2022, 283, 108541. [Google Scholar] [CrossRef]
- Lai, H.; Gao, F.; Su, H.; Zheng, P.; Li, Y.; Yao, H. Nitrogen distribution and soil microbial community characteristics in a legume–cereal intercropping system: A review. Agronomy 2022, 12, 1900. [Google Scholar] [CrossRef]
- Ng, W.; Anggria, L.; Siregar, A.F.; Hartatik, W.; Sulaeman, Y.; Jones, E.; Minasny, B. Developing a soil spectral library using a low-cost NIR spectrometer for precision fertilization in Indonesia. Geoderma 2020, 22, e00319. [Google Scholar] [CrossRef]
- Pandey, S.; Bhatta, N.P.; Paudel, P.; Pariyar, R.; Hari, M.K.; Khadka, J.; Thapa, T.B.; Rijal, B.; Panday, D. Improving fertilizer recommendations for Nepalese farmers with the help of a soil-testing mobile van. J. Crop. Improv. 2018, 32, 19–32. [Google Scholar] [CrossRef]
- Tavares, T.R.; Molin, J.P.; Javadi, S.H.; Carvalho, H.W.P.; Mouazen, A.M. Combined use of Vis-NIR and XRF sensors for tropical soil fertility analysis: Assessing different data fusion approaches. Sensors 2020, 21, 148. [Google Scholar] [CrossRef] [PubMed]
- AbdulMunnaf, M.; Nawar, S.; Mouazen, A.M. Estimation of secondary soil properties by fusion of laboratory and online measured Vis–NIR spectra. Remote Sens. 2019, 11, 2819. [Google Scholar] [CrossRef]
- Nawar, S.; Buddenbaum, H.; Colina, J.; Kozak, J.; Mouazen, A.M. Estimating the soil clay content and organic matter by means of different calibration methods of vis-NIR diffuse reflectance spectroscopy. Soil. Tillage Res. 2016, 155, 510–522. [Google Scholar] [CrossRef]
- Javadi, S.H.; AbdulMunnaf, M.; Mouazen, A.M. Fusion of Vis-NIR and XRF spectra for estimation of key soil atributes. Geoderma 2021, 385, 114851. [Google Scholar] [CrossRef]
- Kandpal, L.M.; Munnaf, M.A.; Cruz, C.; Mouazen, A.M. Spectra fusion of Mid-Infrared (MIR) and X-ray Fluorescence (XRF) spectroscopy for estimation of selected soil fertility atributes. Sensors 2022, 22, 34–59. [Google Scholar] [CrossRef] [PubMed]
- Hartemink, A.E. Soil science in tropical and temperate regions—Some differences and similarities. Adv. Agron. 2002, 77, 269–292. [Google Scholar]
- Tavares, T.R.; Almeida, E.; Pinheiro Junior, C.R.; Guerreiro, A.; Fiorio, P.R.; Carvalho, H.W.P. Analysis of total soil nutrient content with X-ray Fluorescence spectroscopy (XRF): Assessing different predictive modeling strategies and auxiliary variables. AgriEngineering 2023, 5, 680–697. [Google Scholar] [CrossRef]
- Song, J.; Shi, X.; Wang, H.; Lv, X.; Zhang, W.; Wang, J.; Li, T.; Li, W. Combination of feature selection and geographical stratification increases the soil total nitrogen estimation accuracy based on vis-NIR and pXRF spectral fusion. Comp. and Eletronics Agrc. 2024, 218, 108636. [Google Scholar] [CrossRef]
- McBratney, A.; Gruijter, J.; Bryce, A. Pedometrics timeline. Geoderma 2019, 338, 568–575. [Google Scholar] [CrossRef]
- Embrapa. Sistema Brasileiro de Classificação de Solos, 5th ed.; Embrapa: Brasília, Brazil, 2018. [Google Scholar]
- Köppen, W.; Geiger, R. Klimate der Erde. Gotha, Verlag Justus Perthes Wall-map 150 cm × 200 cm. Am. J. Plant Sci. 1928, 8, 91–102. [Google Scholar]
- Mattos Junior, D.; Cantarella, H.; Raij, B. Manuseio e conservação de amostras de solo para preservação do nitrogênio inorgânico. Rev. Bras. Ciênc. Solo 1995, 19, 423–431. [Google Scholar]
- Bellinaso, H.; Demattê, J.A.M.; Romeiro, A.S. Soil spectral library and its use in soil classification. Rev. Bras. Ciênc. Solo 2010, 34, 861–870. [Google Scholar] [CrossRef]
- Rosin, N.A.; Demattê, J.A.M.; Leite, M.C.A.; Carvalho, H.W.P.; Costa, A.C.; Greschuk, L.T.; Curi, N.; Silva, S.H.G. The fundamental of the effects of water, organic matter, and iron forms on the pXRF information in soil analyses. Catena 2022, 210, 105868. [Google Scholar] [CrossRef]
- Matos, E.S.; Mendonça, E.S.; Morales, M.M.; Silva, B.R. Carbono total e frações químicas de cabono do solo. In Matéria Orgânica do Solo—Métodos de Análises, 2nd ed.; Mendoça, E.S., Matos, E.S., Eds.; Embrapa: Brasília, Brazil, 2017; p. 221. [Google Scholar]
- Yeomans, J.C.; Bremner, J.M.A. A rapid and precise method for routine determination of organic carbon in soil. Soil. Sci. Plant Anal. 1988, 19, 1467–1476. [Google Scholar] [CrossRef]
- Cantarella, H.; Trivelin, P.C.O. Determinação de nitrogênio inorgânico em solo pelo método da destilação a vapor. In Análise Química para Avaliação da Fertilidade de Solos Tropicais; Instituto Agronômico: Campinas, Brazil, 2001; p. 285. [Google Scholar]
- Thissen, U.; Pepers, M.; Üstün, B.; Melssen, W.J.; Buydens, L.M.C. Comparing support vector machines to PLS for spectral regression applications. Chemom. Intell. Lab. Syst. 2004, 73, 169–179. [Google Scholar] [CrossRef]
- Terra, F.S.; Demattê, J.A.M.; Viscarra Rossel, R.A. Spectral libraries for quantitative analyses of tropical Brazilian soils: Comparing vis–NIR and mid-IR reflectance data. Geoderma 2015, 255–256, 81–93. [Google Scholar] [CrossRef]
- Ribeiro, S.G.; Oliveira, M.R.R.; Lopes, L.M.; Costa, M.C.G.; Toma, R.S.; Araújo, I.C.S.; Moreira, L.C.J.; Teixeira, A.S. Reflectance spectroscopy in the prediction of soil organic carbon associated with humic substances. Rev. Bras. Cienc. Solo 2023, 47, e0220143. [Google Scholar] [CrossRef]
- Yu, P.; Han, K.; Li, Q.; Zhou, D. Soil organic carbon fractions are affected by different land uses in an agro-pastoral transitional zone in Northeastern China. Ecol. Indic. 2017, 73, 331–337. [Google Scholar] [CrossRef]
- Morona, F.; Santos, F.R.; Brinatti, A.M.; Melquiades, F.L. Quick analysis of organic matter in soil by energy-dispersive X-ray fluorescence and multivariate analysis. Appl. Radiat. Isot. 2017, 130, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Blanco-Canqui, H.; Shaver, T.M.; Lindquist, J.L.; Shapiro, C.A.; Elmore, R.W.; Francisco, C.A.; Herget, G.W. Cover crops and ecosystem services: Insights from studies in temperate soils. Agronomy 2015, 107, 2449–2474. [Google Scholar] [CrossRef]
- Branco, C.M.; DuPont, S.T.; Hautau, M.; Hartman, D.; Finney, D.M.; Bradley, B.; LaChance, J.C.; Kaye, J.P. Managing the trade off between nitrogen supply and retention with cover crop mixtures. Agric. Ecosyst. Environ. 2017, 237, 121–133. [Google Scholar] [CrossRef]
- Jian, J.; Lester, B.J.; Du, X.; Reiter, M.S.; Stewart, R.D. A calculator to quantify cover crop effects on soil health and productivity. Soil. Tillage Res. 2020, 199, 104575. [Google Scholar] [CrossRef]
- Campbell, P.M.M.; Fernandes Filho, E.I.; Francelino, M.R.; Demattê, J.A.M.; Pereira, M.G.; Guimarães, C.C.B.; Pinto, L.A.S.L. Digital soil mapping of soil properties in the “Mar de Morros” environment using spectral data. Rev. Bras. Ciênc. Solo 2019, 42, e0170413. [Google Scholar] [CrossRef]
- Rawal, A.; Hartemink, A.; Zhang, Y.; Wang, Y.; Lankau, R.A.; Ruak, M.D. Visible and near-infrared spectroscopy predicted leaf nitrogen contents of potato varieties under different growth and management conditions. Precis. Agric. 2023, 25, 751–770. [Google Scholar] [CrossRef]
- Ghosh, P.K.; Bandyopadhyay, K.K.; Wanjari, R.H.; Manna, M.C.; Misra, A.K.; Mohanty, M. Legume Effect for Enhancing Productivity Nutrient Use-efficiency in major cropping systems—An indian perspective: A review. J. Sustain. Agric. 2007, 30, 59–86. [Google Scholar] [CrossRef]
- Peoples, M.B.; Ladha, J.K.; Herridge, D.F. Enhancing legume N2 fixation through plant and soil management. In Management of Biological Nitrogen Fixation for the Development of More Productive and Sustainable Agricultural Systems; Springer: Dordrecht, The Netherlands, 1995; pp. 83–101. [Google Scholar]
- Chen, Z.; Ren, S.; Qin, R.; Nile, P. Rapid detection of different types of soil nitrogen using near-infrared hyperspectral imaging. Molecules 2022, 27, 2017. [Google Scholar] [CrossRef]
- Xu, D.; Zhao, R.; Li, S.; Chen, S.; Jiang, Q.; Zhou, L.; Shi, Z. Multi-sensor fusion for the determination of several soil properties in the Yangtze River Delta, China. Eur. J. Soil. Sci. 2019, 70, 162–173. [Google Scholar] [CrossRef]
- Sharma, A.; Weindorf, D.C.; Wang, D.; Chakraborty, S. Characterizing soils via portable X-ray fluorescence spectrometer: 4. Cation exchange capacity (CEC). Geoderma 2015, 239–240, 130–134. [Google Scholar] [CrossRef]
- Zhang, Y.; Hartemink, A.E. Data fusion of vis-NIR and PXRF spectra to predict soil physical and chemical properties. Eur. J. Soil. Sci. 2020, 71, 316–333. [Google Scholar] [CrossRef]
- Greenberg, I.; Vohland, M.; Seidel, M.; Hutengs, C.; Bezard, R.; Ludwig, B. Evaluation of Mid-Infrared and X-ray Fluorescence data fusion approaches for prediction of soil properties at the field scale. Sensors 2023, 23, 662. [Google Scholar] [CrossRef] [PubMed]
- Declercq, Y.; Delbecque, N.; Grave, J.; Smedt, P.; Finke, P.; Mouazen, A.M.; Nawar, D.; Vandenberghe, D.; Meirvenne, M.V.; Verdoodt, A. A comprehensive study of three different portable xrf scanners to assess the soil geochemistry of an extensive sample dataset. Remote Sens. 2019, 11, 2490. [Google Scholar] [CrossRef]
- Ehsani, M.; Upadhyaya, S.K.; Slaughter, D.; Shafii, S.; Pelletier, M. A NIR technique for rapid determination of soil mineral nitrogen. Precis. Agric. 1999, 1, 219–236. [Google Scholar] [CrossRef]
- Espinoza, S.; Ovalle, C.; Del Pozo, A. The contribution of nitrogen fixed by annual legume pastures to the productivity of wheat in two contrasting Mediterranean environments in central Chile. Field Crops Res. 2020, 249, 107709. [Google Scholar] [CrossRef]
- Machado, W.; Franchini, J.C.; Guimarães, M.F.; Filho, J.T. Spectroscopic characterization of humic and fulvic acids in soil aggregates, Brazil. Heliyon 2020, 6, e04078. [Google Scholar] [CrossRef]
- Ghabbour, E.A.; Davies, G.; Sayeed, A.A.; Jenkins, T. Measuring the retained water and sequestered organic carbon contents of soil profiles in aroostook and piscataquis counties, Maine, USA. Soil. Horiz. 2013, 54, 1–7. [Google Scholar] [CrossRef]
- Loss, A.; Pereira, M.G.; Mendes Costa, E.; Beutler, S.J.; Piccolo, M.C. Soil fertility, humic fractions and natural abundance of 13C and 15N in soil under different land use in Paraná State, Southern Brazil. Idesia 2016, 34, 27–38. [Google Scholar] [CrossRef]
- Balabin, R.M.; Safieva, R.Z.; Lomakina, E.I. Comparison of linear and nonlinear calibration models based on near infrared (NIR) spectroscopy data for gasoline properties prediction. Chemom. Intell. Lab. Syst. 2007, 88, 183–188. [Google Scholar] [CrossRef]
- Andersen, C.M. Bro RVariable selection in regression—A tutorial. J. Chemom. 2010, 24, 728–737. [Google Scholar] [CrossRef]
- Stagnari, F.; Maggio, A.; Galieni, A.; Pisante, M. Multiple benefits of legumes for agriculture sustainability: An overview. Chem. Biol. Technol. Agric. 2017, 4, 2. [Google Scholar] [CrossRef]
- Vaudour, E.; Cerovic, Z.; Ebengo, D.; Latouche, G. Predicting Key Agronomic Soil Properties with UV-Vis Fluorescence Measurements Combined with Vis-NIR-SWIR Reflectance Spectroscopy: A Farm-Scale Study in a Mediterranean Viticultural Agroecosystem. Sensors 2018, 18, 1157. [Google Scholar] [CrossRef] [PubMed]
- Sauer, M.; Hofkens, J.; Enderlein, J. Handbook of Fluorescence Spectroscopy and Imaging: From Ensemble to Single Molecules, 2011th ed.; John Wiley & Sons, Ltd.: Weinheim, Germany, 2010. [Google Scholar]
- Xu, S.; Wang, M.; Shi, X.; Yu, Q.; Zhonggi, Z. Integrating hyperspectral imaging with machine learning techniques for the high-resolution mapping of soil nitrogen fractions in soil profiles. Sci. Total Environ. 2021, 754, 142135. [Google Scholar] [CrossRef] [PubMed]
- Wold, S.; Martens, H.; Wold, H. The multivariate calibration problem in chemistry solved by the PLS method. In Matrix Pencils. Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1983; pp. 286–293. [Google Scholar]
- Peng, X.; Shi, T.; Song, A.; Chen, Y.; Gao, W. Estimating soil organic carbon using VIS/NIR spectroscopy with SVMR and SPA methods. Remote Sens. 2014, 6, 2699–2717. [Google Scholar] [CrossRef]
- Ge, Y.; Morgan, C.L.S.; Grunwald, S.; Brown, D.J.; Sarkhot, D.V. Comparison of soil reflectance spectra and calibration models obtained using multiple spectrometers. Geoderma 2011, 161, 202–211. [Google Scholar] [CrossRef]
- Zhu, D.; Ji, B.; Meng, C.; Shi, B.; Tua, Z.; Qing, Z. The performance of ν-support vector regression on determination of soluble solids content of apple by acousto-optic tunable filter near-infrared spectroscopy. Anal. Chim. Acta 2007, 598, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Walczak, B.; Massart, D.L. The Radial Basis Functions—Partial Least Squares approach as a flexible non-linear regression technique. Anal. Chim. Acta 1996, 331, 177–185. [Google Scholar] [CrossRef]
- Vasques, G.M.; Grunwald, S.; Sickman, J.O. Modeling of Soil Organic Carbon Fractions Using Visible–Near-Infrared Spectroscopy. Soil. Sci. Soc. Am. J. 2009, 73, 176–184. [Google Scholar] [CrossRef]
- Andrade, R.; Silva, S.H.G.; Weindorf, D.C.; Charkraborty, S.; Faria, W.M.; Mesquita, L.F.; Guilherme, L.R.G.; Curi, N. Assessing models for prediction of some soil chemical properties from portable X-ray fluorescence (pXRF) spectrometry data in Brazilian Coastal Plains. Geoderma 2020, 357, 113957. [Google Scholar] [CrossRef]
- Kirschke, T.; Spott, O.; Vetterlein, D. Impact of urease and nitrification inhibitor on NH4+ and NO3− dynamic in soil after urea spring application under field conditions evaluated by soil extraction and soil solutions. J. Plant Nutr. Soil. Sci. 2019, 182, 441–450. [Google Scholar] [CrossRef]
- Tomás, F.; Petzold, R.; Solveig, M.; Mollenhauer, H.; Becker, C. Werban, U. Estimating Forest Soil Properties for Humus Assessment—Is Vis-NIR the Way to Go? Remote Sens. 2022, 14, 1368. [Google Scholar] [CrossRef]
- Mohamed, E.S.; El Baroudy, A.A.; El-beshbeshy, T.; Emam, M.; Belal, A.A.; Elfadaly, A.; Aldosari, A.A.; Ali, A.M.; Lasaponara, R. Vis-NIR Spectroscopy and Satellite Landsat-8 OLI Data to Map Soil Nutrients in Arid Conditions: A Case Study of the Northwest Coast of Egypt. Remote Sens. 2020, 12, 3716. [Google Scholar] [CrossRef]
- Ruma, F.Y.; Munnaf, M.A.; Neve, S. Visible and near infrared spectroscopy for predicting soil nitrogen mineralization rate: Effect of incubation period and ancillary soil properties. Catena 2024, 235, 107649. [Google Scholar] [CrossRef]
- Beaudoin, N.; Saad, J.K.; Van Laethem, C.; Machet, J.M.; Maucorps, J.; Maria, B. Nitrate leaching in intensive agriculture in Northern France: Effect of farming practices, soils and crop rotations. Agric. Ecosyst. Environ. 2005, 111, 292–310. [Google Scholar] [CrossRef]
- Asgari, N.; Ayoubi, S.; Demattê, J.A.M.; Dotto, A.C. Carbonates and organic matter in soils characterized by reflected energy from 350–25,000 nm wavelength. J. Mt. Sci. 2020, 17, 1636–1651. [Google Scholar] [CrossRef]
- Linsler, D.; Sawallisch, A.; Höper, H.; Schmidt, H.; Vohland, M.; Ludwig, B. Near-infrared spectroscopy for determination of soil organic C, microbial biomass C and C and N fractions in a heterogeneous sample of German arable surface soils. Arch. Agron. Soil. Sci. 2017, 63, 1499–1509. [Google Scholar] [CrossRef]
- Dalal, R.C. Soil microbial biomass—What do the numbers really mean? Aust. J. Exp. Agric. 1998, 38, 649. [Google Scholar] [CrossRef]
- Nguyen, H.V.-M.; Lee, H.-S.; Lee, S.-Y.; Hur, J.; Shin, H.S. Changes in structural characteristics of humic and fulvic acids under chlorination and their association with trihalomethanes and haloacetic acids formation. Sci. Total Environ. 2021, 790, 148142. [Google Scholar] [CrossRef]
- Franzluebbers, A.J.; Stuedemann, J.A.; Franklin, D.H. Water infiltration and surface-soil structural properties as influenced by animal traffic in the Southern Piedmont USA. Rev. Agric. Food Syst. 2012, 27, 256–265. [Google Scholar] [CrossRef]
- Baldotto, M.A.; Vieira, E.M.; Souza, D.O.; Baldotto, L.E.B. Estoque e frações de carbono orgânico e fertilidade de solo sob floresta, agricultura e pecuária. Rev. Ceres 2015, 62, 301–309. [Google Scholar] [CrossRef]
- Mokany, K.; Raison, R.J.; Prokushkin, A.S. Critical analysis of root: Shoot ratios in terrestrial biomes. Glob. Chang. Biol. 2006, 12, 84–96. [Google Scholar] [CrossRef]
- Santos, N.Z.; Dieckow, J.; Bayer, C.; Molin, R.; Favaretto, N.; Pauletti, V.; Piva, J.T. Forages, cover crops and related shoot and root additions in no-till rotations to C sequestration in a subtropical Ferralsol. Soil. Tillage Res. 2011, 111, 208–218. [Google Scholar] [CrossRef]
- Hu, Y.-L.; Zeng, D.-H.; Ma, X.-Q.; Chang, S.X. Root rather than leaf litter input drives soil carbon sequestration after afforestation on a marginal cropland. For. Ecol. Manag. 2016, 362, 38–45. [Google Scholar] [CrossRef]
- Alyokhin, A.; Nault, B.; Brown, B. Soil conservation practices for insect pest management in highly disturbed agroecosystems—A review. Entomol. Exp. Appl. 2020, 168, 7–27. [Google Scholar] [CrossRef]
Depth (cm) | Granulometry (g kg−1) | Structure Class | ||
---|---|---|---|---|
Sandy | Silt | Clay | ||
0–10 | 773 | 48 | 179 | Sandy Middle |
10–20 | 763 | 68 | 169 | Sandy Middle |
20–40 | 736 | 41 | 223 | Sandy Middle |
40–60 | 707 | 63 | 230 | Sandy Middle |
60–80 | 695 | 55 | 250 | Sandy Middle |
80–100 | 697 | 56 | 247 | Sandy Middle |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima, B.C.d.; Demattê, J.A.M.; Santos, C.H.d.; Tiritan, C.S.; Poppiel, R.R.; Nanni, M.R.; Falcioni, R.; Oliveira, C.A.d.; Vedana, N.G.; Zimmermann, G.; et al. The Use of Vis-NIR-SWIR Spectroscopy and X-ray Fluorescence in the Development of Predictive Models: A Step forward in the Quantification of Nitrogen, Total Organic Carbon and Humic Fractions in Ferralsols. Remote Sens. 2024, 16, 3009. https://doi.org/10.3390/rs16163009
Lima BCd, Demattê JAM, Santos CHd, Tiritan CS, Poppiel RR, Nanni MR, Falcioni R, Oliveira CAd, Vedana NG, Zimmermann G, et al. The Use of Vis-NIR-SWIR Spectroscopy and X-ray Fluorescence in the Development of Predictive Models: A Step forward in the Quantification of Nitrogen, Total Organic Carbon and Humic Fractions in Ferralsols. Remote Sensing. 2024; 16(16):3009. https://doi.org/10.3390/rs16163009
Chicago/Turabian StyleLima, Bruna Coelho de, José A. M. Demattê, Carlos H. dos Santos, Carlos S. Tiritan, Raul R. Poppiel, Marcos R. Nanni, Renan Falcioni, Caio A. de Oliveira, Nicole G. Vedana, Guilherme Zimmermann, and et al. 2024. "The Use of Vis-NIR-SWIR Spectroscopy and X-ray Fluorescence in the Development of Predictive Models: A Step forward in the Quantification of Nitrogen, Total Organic Carbon and Humic Fractions in Ferralsols" Remote Sensing 16, no. 16: 3009. https://doi.org/10.3390/rs16163009
APA StyleLima, B. C. d., Demattê, J. A. M., Santos, C. H. d., Tiritan, C. S., Poppiel, R. R., Nanni, M. R., Falcioni, R., Oliveira, C. A. d., Vedana, N. G., Zimmermann, G., & Reis, A. S. (2024). The Use of Vis-NIR-SWIR Spectroscopy and X-ray Fluorescence in the Development of Predictive Models: A Step forward in the Quantification of Nitrogen, Total Organic Carbon and Humic Fractions in Ferralsols. Remote Sensing, 16(16), 3009. https://doi.org/10.3390/rs16163009