Rapid Determination of Soil Horizons and Suborders Based on VIS-NIR-SWIR Spectroscopy and Machine Learning Models
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area and Soil Sampling Sites
2.2. Spectroscopic Measurement and Preprocessing
2.3. Exploratory Data Analysis
2.4. Classification of Soil Horizons and Suborders Using Machine Learning Models
3. Results
3.1. Soil Properties
3.2. Soil Horizons and Spectral Behaviour
3.3. Principal Component Analysis (PCA)
3.4. Classification of Soil Horizons Using Machine Learning Models
3.5. Classification of Soil Suborders Using Machine Learning Models
4. Discussion
4.1. Soil Horizons and Spectral Behavior
4.2. Principal Component Analysis (PCA)
4.3. Classification of Soil Horizons Using Machine-Learning Models
4.4. Classification of Soil Suborders Using Machine Learning Models
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Demattê, J.L.I.; Nanni, M.R. Management Options in Sandy Soils. Bol. Info. (SBCS) 2018, 44, 16–21. [Google Scholar]
- ONU—United Nations. World Population Prospects 2019: Highlights. Depart. of Economic and Social Affairs, Population Division, 2019. Available online: https://www.un.org/development/desa/pd/news/world-population-prospects-2019-0 (accessed on 26 August 2023).
- Vasques, G.M.; Dematte, J.A.M.; Viscarra Rossel, R.A.; Ramírez-Lopez, L.; Terra, F.S. Soil Classification Using Visible/near-Infrared Diffuse Reflectance Spectra from Multiple Depths. Geoderma 2014, 223, 73–78. [Google Scholar] [CrossRef]
- Castaldi, F.; Palombo, A.; Santini, F.; Pascucci, S.; Pignatti, S.; Casa, R. Evaluation of the Potential of the Current and Forthcoming Multispectral and Hyperspectral Imagers to Estimate Soil Texture and Organic Carbon. Remote Sens. Environ. 2016, 179, 54–65. [Google Scholar] [CrossRef]
- Chagas, C.S.; Carvalho, W., Jr.; Bhering, S.B.; Calderano Filho, B. Spatial Prediction of Soil Surface Texture in a Semiarid Region Using Random Forest and Multiple Linear Regressions. Catena 2016, 139, 232–240. [Google Scholar] [CrossRef]
- Rawlins, B.G.; Kemp, S.J.; Milodowski, A.E. Relationships between particle size distribuition and VNIR reflectance spectra are weaker for soils formed from bedrock compared to transported parente materials. Geoderma 2011, 166, 84–91. [Google Scholar] [CrossRef]
- Li, S.; Shi, Z.; Chen, S.; Ji, W.; Zhou, L.; Yu, W.; Webster, R. In Situ Measurements of Organic Carbon in Soil Profiles Using Vis-NIR Spectroscopy on the Qinghai-Tibet Plateau. Environ. Sci. Technol. 2015, 49, 4980–4987. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Cattle, S.R.; Ortega, A.; Fouad, Y. In Situ Measurements of Soil Colour, Mineral Composition and Clay Content by Vis–NIR Spectroscopy. Geoderma 2009, 150, 253–266. [Google Scholar] [CrossRef]
- Richter, K.; Palladino, M.; Vuolo, F.; Dini, L.; D’Urso, G. Spatial distribuition of soil water contente from airborne termal and optical remote sensing data. Remote Sens. Agric. Ecosyst. Hydrol. 2009, 7472, 74720W. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Franch, B.; Mattar, C.; Jiménez-Muñoz, J.C.; Corbari, C. A Method to Estimate Soil Moisture from Airborne Hyperspectral Scanner (AHS) and ASTER Data: Application to SEN2FLEX and SEN3EXP Campaigns. Remote Sens. Environ. 2012, 117, 415–428. [Google Scholar] [CrossRef]
- Sellitto, V.M.; Fernandes, R.B.A.; Barrón, V.; Colombo, C. Comparing two diferente spectroscopic techniques for the characterization of soil iron oxides: Diffuse versus bi-directional reflectance. Geoderma 2009, 149, 2–9. [Google Scholar] [CrossRef]
- Chen, S.; Li, S.; Ma, W.; Ji, W.; Xu, D.; Shi, Z.; Zhang, G. Rapid Determination of Soil Classes in Soil Profiles Using Vis–NIR Spectroscopy and Multiple Objectives Mixed Support Vector Classification: Soil Classification Using Vis-NIR Spectroscopy. Eur. J. Soil Sci. 2019, 70, 42–53. [Google Scholar] [CrossRef]
- Demattê, J.A.M.; Bellinaso, H.; Romero, D.J.; Fongaro, C.T. Morphological Interpretation of Reflectance Spectrum (MIRS) Using Libraries Looking towards Soil Classification. Sci. Agric. 2014, 71, 509–520. [Google Scholar] [CrossRef]
- Fajardo, M.; McBratney, A.; Whelan, B. Fuzzy Clustering of Vis–NIR Spectra for the Objective Recognition of Soil Morphological Horizons in Soil Profiles. Geoderma 2016, 263, 244–253. [Google Scholar] [CrossRef]
- Jeune, W.; Francelino, M.R.; Souza, E.D.; Fernandes Filho, E.I.; Rocha, G.C. Multinomial Logistic Regression and Random Forest Classifiers in Digital Mapping of Soil Classes in Western Haiti. Rev. Bras. De Ciência Do Solo 2018, 42. [Google Scholar] [CrossRef]
- Coblinski, J.A.; Giasson, E.; Demattê, J.A.M.; Dotto, A.C.; Costa, J.J.F.; Vasát, R. Prediction of Soil Texture Classes through Different Wavelength Regions of Reflectance Spectroscopy at Various Soil Depths. Catena 2020, 189, 104485. [Google Scholar] [CrossRef]
- Fonseca, A.D.; Fernandes, J.C. Remote Detection; Lidel: Lisboa, Portugal, 2004; p. 224. [Google Scholar]
- Viscarra Rossel, R.A.; Behrens, T.; Bem-Dor, E.; Brown, D.J.; Demattê, J.A.M.; Shepherd, K.D.; Shi, Z.; Stenberg, B.; Stevens, A.; Adamchuk, V.; et al. Aglobal spectral library to characterize the world’s soil. Earth Sci. Rev. 2016, 155, 198–230. [Google Scholar] [CrossRef]
- Xie, X.L.; Li, A.B. Identification of Soil Profile Classes Using Depth-Weighted Visible–near-Infrared Spectral Reflectance. Geoderma 2018, 325, 90–101. [Google Scholar] [CrossRef]
- Zhang, Y.; Hartemink, A.E.; Huang, J. Spectral signatures of soil horizons and soil orders–An exploratory study of 270 soil profiles. Geoderma 2021, 389, 114961. [Google Scholar] [CrossRef]
- Zeng, R.; Zhang, G.L.; Li, D.C.; Rossiter, D.G.; Zhao, Y.G. How Well Can VNIR Spectroscopy Distinguish Soil Classes? Bios. Eng. 2016, 152, 117–125. [Google Scholar] [CrossRef]
- Xu, H.; Xu, D.; Chen, S.; Ma, W.; Shi, Z. Rapid Determination of Soil Class Based on Visible-near Infrared, Mid-Infrared Spectroscopy and Data Fusion. Remote Sens. 2020, 12, 1512. [Google Scholar] [CrossRef]
- Ben-Dor, E.; Chabrillat, S.; Demattê, J.A.M.; Taylor, G.R.; Hill, J.; Whiting, M.L.; Sommer, S. Using Imaging Spectroscopy to Study Soil Properties. Remote Sens. Environ. 2009, 113, S38–S55. [Google Scholar] [CrossRef]
- Soil Survey Staff, S.S. Keys to Soil Taxonomy; United States Department of Agriculture: Washington, DC, USA, 2014. [Google Scholar]
- Medeiros, S.G.; Dutra, R.P.S.; Grilo, J.P.F.; Martinelli, A.E.; Paskocimas, C.A.; Macedo, D.A. Preparation of low-cost alumina-mullite composites via reactive sintering between a kaolinite clay from Paraíba and aluminum hydroxide. Cerâmica 2016, 62, 266–271. [Google Scholar] [CrossRef]
- Smith, D.K.; Jenkins, R. The Powder Diffraction File: Past, Present, and Future. J. Res. Natl. Inst. Stand. Technol. 1996, 101, 259–271. [Google Scholar] [CrossRef] [PubMed]
- Nanni, M.R.; Demattê, J.A.M.; Rodrigues, M.; Santos, G.L.A.A.D.; Reis, A.S.; Oliveira, K.M.D.O.; Cezar, E.; Furlanetto, R.H.; Crusiol, L.G.T.; Sun, L. Mapping Particle Size and Soil Organic Matter in Tropical Soil Based on Hyperspectral Imaging and Non-Imaging Sensors. Remote Sens. 2021, 13, 1782. [Google Scholar] [CrossRef]
- LRCL—Labsphere Reflectance Calibration Laboratory. Spectral Reflectance Target Calibrated From 0.25–2.5 nm Reported in 0.050 nm Intervals, 1st ed.; LRCL: London, UK, 2009. [Google Scholar]
- Geron, A. Hands-On Machine Learning with Scikit-Learn TensorFlow: Concepts, Tools and Techniques to Build Intelligent Systems; O’Reilly Media: Newtown, MA, USA, 2017. [Google Scholar]
- Demsar, J.; Curk, T.; Erjavec, A.; Gorup, C.; Hocevar, T.; Milutinovic, M.; Mozina, M.; Polajnar, M.; Toplak, M.; Staric, A.; et al. Orange: Data Mining Toolbox in Python. J. Mach. Learn. Res. 2013, 14, 2349–2353. [Google Scholar]
- Kriegeskorte, N.; Golan, T. Neural network models and deep learning. Curr. Biol. 2019, 29, R231–R236. [Google Scholar] [CrossRef] [PubMed]
- Brownlee, J. Machine Learning Mastery with Python: Understand Your Data, Create Accurate Models and Work Projects End-To-End. Machine Learning Mastery: 2016. Available online: https://machinelearningmastery.com/machine-learning-with-python/ (accessed on 3 August 2023).
- Besser, M.L.; Brumatti, M.; Spisila, A.L. Mapa Geológico e de Recursos Minerais do Estado do Paraná. Programa Geologia, Mineração e Transformação Mineral. Curitiba: SGB-CPRM, 2021, Escala 1:600.000. Available online: https://rigeo.cprm.gov.br/jspui/handle/doc/22492 (accessed on 20 August 2023).
- Melo, V.F.; Alleoni, L.R.F. Química e Mineralogia do Solo: Parte II—Aplicações; Soc. Bras. de Ciência do Solo: Viçosa, MG, Brasil, 2009. [Google Scholar]
- Lepsch, I.F. 19 Lições de Pedologia; Oficina de Textos: São Paulo, Brasil, 2011; p. 456. [Google Scholar]
- Martínez-Martínez, V.; Gomez-Gil, J.; Machado, M.L.; Pinto, F.A.C. Leaf and Canopy Reflectance Spectrometry Applied to the Estimation of Angular Leaf Spot Disease Severity of Common Bean Crops. PLoS ONE 2018, 13, e0196072. [Google Scholar] [CrossRef]
- Demattê, J.A.M.; Terra, F.D.S.; Quartaroli, C.F. Spectral Behavior of Some Modal Soil Profiles from São Paulo State, Brazil. Bragantia Bol. Tec. Do Inst. Agro. Do Estado De São Paulo 2012, 71, 413–423. [Google Scholar] [CrossRef]
- Demattê, J.A.; Araújo, S.R.; Fiorio, P.R.; Fongaro, C.T.; Nanni, M.R. Espectroscopia VIS-NIR-SWIR na avaliação de solos ao longo de uma topossequência em Piracicaba (SP). Rev. Ciência Agron. 2015, 46, 679–688. [Google Scholar] [CrossRef]
- Moreira, M.A. Fundamentos do Sensoriamento Remoto e Tecnologias de Aplicação, 3rd ed.; Viçosa; UFV: Florestal, MG, USA, 2007; p. 314. [Google Scholar]
- Viscarra Rossel, R.A.; Behrens, T. Using Data Mining to Model and Interpret Soil Diffuse Reflectance Spectra. Geoderma 2010, 158, 46–54. [Google Scholar] [CrossRef]
- Huang, Y.C.; Huang, C.Y.; Minasny, B.; Chen, Z.S.; Hseu, Z.Y. Using PXRF and Vis-NIR for Characterizing Diagnostic Horizons of Fine-Textured Podzolic Soils in Subtropical Forests. Geoderma 2023, 437, 116582. [Google Scholar] [CrossRef]
- Nanni, M.R.; Demattê, J.A.M. Spectral Reflectance Methodology in Comparison to Traditional Soil Analysis. Soil Sci. Soc. Am. J. 2006, 70, 393–407. [Google Scholar] [CrossRef]
- Zhao, L.; Hong, H.; Liu, J.; Fang, Q.; Yao, Y.; Tan, W.; Yin, K.; Wang, C.; Chen, M.; Algeo, T.J. Assessing the Utility of Visible-to-Shortwave Infrared Reflectance Spectroscopy for Analysis of Soil Weathering Intensity and Paleoclimate Reconstruction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 512, 80–94. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Webster, R. Discrimination of Australian Soil Horizons and Classes from Their Visible-near Infrared Spectra. Eur. J. Soil Sci. 2011, 62, 637–647. [Google Scholar] [CrossRef]
- Mancini, M.; Weindorf, D.C.; Silva, S.H.G.; Chakraborty, S.; dos Santos Teixeira, A.F.; Guilherme, L.R.G.; Curi, N. Parent Material Distribution Mapping from Tropical Soils Data via Machine Learning and Portable X-Ray Fluorescence (PXRF) Spectrometry in Brazil. Geoderma 2019, 354, 113885. [Google Scholar] [CrossRef]
- Andrade, R.; Silva, S.H.G.; Weindorf, D.C.; Chakraborty, S.; Faria, W.M.; Guilherme, L.R.G.; Curi, N. Tropical Soil Order and Suborder Prediction Combining Optical and X-Ray Approaches. Geoderma 2020, 23, e00331. [Google Scholar] [CrossRef]
Taxonomy Units | |||
---|---|---|---|
SiBCS 1 | Soil Taxonomy | ID 2 | n 3 |
Argissolo Vermelho Ta Distrófico | Arenic Kandiustults | AK | 800 |
Gleissolo Háplico Ta Distrófico | Typic Kandiaqualfs | TK | 800 |
Latossolo Vermelho Eutrófico | Typic Eutrudox | TE | 800 |
Latossolo Vermelho Distrófico | Typic Hapludox Loamy | THL | 800 |
Latossolo Vermelho Distrófico | Typic Hapludox Very-fine | THV | 800 |
Nitossolo Vermelho Eutrófico | Kandiudalfic Eutrudox | KE | 800 |
Gleissolo Háplico Ta Eutrófico | Aquic Udorthents | AU | 800 |
Total | 5600 |
Soil | Horizon 1 | Depth (m) | SOC 2 (g dm−3) | Sand (%) | Silt (%) | Clay (%) | Color 3 (Moist) Hue, Value/Chroma |
---|---|---|---|---|---|---|---|
Arenic Kandiustults | A | 0–0.12 | 3.66 | 90 | 1 | 9 | 5YR, 5/3 |
Ab | 0.12–0.30 | 5.17 | 91 | 1 | 8 | 5YR, 3/2 | |
BA | 0.30–0.40 | 2.10 | 91 | 1 | 9 | 5YR, 3/2 | |
Bt1 | 0.40–0.60 | 1.07 | 81 | 1 | 18 | 5YR, 3/2 | |
Bt2 | 0.60–0.95 | 0.71 | 76 | 1 | 23 | 5YR, 3/2 | |
Bt3 | 0.95+ | 0.09 | 83 | 2 | 16 | 5YR, 3/4 | |
Typic Kandiaqualfs | A | 0–0.09 | 6.67 | 90 | 1 | 9 | 5YR, 3/4 |
EA | 0.09–0.23 | 4.87 | 91 | 1 | 8 | 5YR, 3/4 | |
E | 0.23–0.43 | 1.86 | 92 | 1 | 7 | 10R, 3/4 | |
BE | 0.43–0.70 | 3.34 | 86 | 2 | 12 | 10R, 3/4 | |
Btg | 0.70–1.10 | 2.46 | 71 | 3 | 27 | 5YR, 5/1 | |
Cg | 1.10+ | 3.11 | 49 | 2 | 49 | 5YR, 5/1 | |
Typic Eutrudox | Ap | 0–0.16 | 15.89 | 14 | 7 | 78 | 10YR, 3/6 |
Bw1 | 0.16–0.90 | 3.44 | 7 | 4 | 89 | 10YR, 3/6 | |
Bw2 | 0.90–1.35 | 1.98 | 8 | 2 | 90 | 10YR, 3/6 | |
Bw3 | 1.35+ | 1.86 | 6 | 2 | 92 | 10YR, 3/6 | |
Typic Hapludox Loamy | A | 0–0.16 | 14.87 | 69 | 3 | 29 | 2.5YR, 3/4 |
BA | 0.16–0.35 | 6.80 | 66 | 3 | 31 | 2.5YR, 3/4 | |
Bw1 | 0.35–1.0 | 4.55 | 65 | 3 | 32 | 2.5YR, 3/4 | |
Bw2 | 1.0+ | 4.33 | 67 | 3 | 31 | 2.5YR, 2.5/4 | |
Typic Hapludox Very-fine | Ap | 0–0.12 | 22.94 | 27 | 11 | 62 | 2.5YR, 3/6 |
Bw1 | 0.12–0.44 | 9.73 | 29 | 7 | 64 | 2.5YR, 3/6 | |
Bw2 | 0.44–1.14 | 4.32 | 14 | 5 | 81 | 2.5YR, 3/6 | |
Bw3 | 1.14+ | 1.98 | 21 | 2 | 77 | 2.5YR, 3/6 | |
Kandiudalfic Eutrudox | Ap | 0–0.24 | 10.11 | 17 | 7 | 76 | 10R, 3/6 |
AB | 0.24–0.40 | 4.51 | 16 | 6 | 78 | 10R, 3/6 | |
Bt1 | 0.40–0.10 | 2.94 | 17 | 5 | 77 | 10R, 3/6 | |
Bt2 | 0.10+ | 1.73 | 21 | 4 | 74 | 10R, 3/6 | |
Aquic Udorthents | A | 0–0.28 | 28.72 | 21 | 6 | 73 | 10YR, 3/1 |
Cgv | 0.28–0.38 | 7.28 | 27 | 3 | 70 | 10YR, 3/1 | |
Cg | 0.38–0.10 | 2.98 | 20 | 6 | 74 | 10YR, 4/1 | |
Cgss | 0.10+ | 4.69 | 10 | 4 | 87 | 2.5YR, 3/0 |
Learner | Model Performance | Soil | Optimal General Parameters | ||||||
---|---|---|---|---|---|---|---|---|---|
AK | TK | TE | THL | THV | KE | AU | |||
Gradient Boosting | Accuracy: | 0.79 | 0.83 | 0.83 | 0.83 | 0.72 | 0.78 | 0.92 | Scikit-learn, |
F-Score | 0.78 | 0.82 | 0.82 | 0.82 | 0.71 | 0.77 | 0.91 | learning rate: 0.1 or 0.2 | |
Neural Network | Accuracy: | 0.90 | 0.89 | 0.92 | 0.92 | 0.82 | 0.85 | 0.97 | Act.: logistic or ReLu, |
F-Score | 0.89 | 0.89 | 0.92 | 0.92 | 0.81 | 0.85 | 0.97 | solver: Adam | |
SVM | Accuracy: | 0.62 | 0.80 | 0.62 | 0.73 | 0.54 | 0.52 | 0.89 | Cost = 1, |
F-Score | 0.63 | 0.80 | 0.61 | 0.76 | 0.54 | 0.54 | 0.90 | linear or polynomial | |
Randon Forest | Accuracy: | 0.78 | 0.82 | 0.77 | 0.78 | 0.65 | 0.70 | 0.90 | 8 or 10 trees, |
F-Score | 0.78 | 0.81 | 0.76 | 0.77 | 0.65 | 0.69 | 0.89 | minimum split: 5 | |
Logistic Regression | Accuracy: | 0.86 | 0.87 | 0.80 | 0.75 | 0.65 | 0.74 | 0.93 | Ridge, |
F-Score | 0.86 | 0.87 | 0.80 | 0.71 | 0.63 | 0.72 | 0.91 | C = 10 |
Learner | Accuracy | F-Score | Optimal Parameters |
---|---|---|---|
Gradient Boosting | 0.97 | 0.96 | Method: scikit-learn, learning rate: 0.1 |
Neural Network | 0.98 | 0.98 | Act.: logistic, solver: Adam |
Support Vector Machine | 0.95 | 0.94 | Cost = 1, linear |
Random Forest | 0.95 | 0.95 | N° trees: 10, minimum split: 5 |
Logistic Regression | 0.98 | 0.97 | Ridge, C = 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Oliveira, K.M.; Falcioni, R.; Gonçalves, J.V.F.; de Oliveira, C.A.; Mendonça, W.A.; Crusiol, L.G.T.; de Oliveira, R.B.; Furlanetto, R.H.; Reis, A.S.; Nanni, M.R. Rapid Determination of Soil Horizons and Suborders Based on VIS-NIR-SWIR Spectroscopy and Machine Learning Models. Remote Sens. 2023, 15, 4859. https://doi.org/10.3390/rs15194859
de Oliveira KM, Falcioni R, Gonçalves JVF, de Oliveira CA, Mendonça WA, Crusiol LGT, de Oliveira RB, Furlanetto RH, Reis AS, Nanni MR. Rapid Determination of Soil Horizons and Suborders Based on VIS-NIR-SWIR Spectroscopy and Machine Learning Models. Remote Sensing. 2023; 15(19):4859. https://doi.org/10.3390/rs15194859
Chicago/Turabian Stylede Oliveira, Karym Mayara, Renan Falcioni, João Vitor Ferreira Gonçalves, Caio Almeida de Oliveira, Weslei Augusto Mendonça, Luís Guilherme Teixeira Crusiol, Roney Berti de Oliveira, Renato Herrig Furlanetto, Amanda Silveira Reis, and Marcos Rafael Nanni. 2023. "Rapid Determination of Soil Horizons and Suborders Based on VIS-NIR-SWIR Spectroscopy and Machine Learning Models" Remote Sensing 15, no. 19: 4859. https://doi.org/10.3390/rs15194859
APA Stylede Oliveira, K. M., Falcioni, R., Gonçalves, J. V. F., de Oliveira, C. A., Mendonça, W. A., Crusiol, L. G. T., de Oliveira, R. B., Furlanetto, R. H., Reis, A. S., & Nanni, M. R. (2023). Rapid Determination of Soil Horizons and Suborders Based on VIS-NIR-SWIR Spectroscopy and Machine Learning Models. Remote Sensing, 15(19), 4859. https://doi.org/10.3390/rs15194859