Assessment of Melon Fruit Nutritional Composition Using VIS/NIR/SWIR Spectroscopy Coupled with Chemometrics
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. VIS/NIR Spectroscopy
2.3. Nutritional Composition
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PLSR | Partial least squares regression |
VIS/NIR | Visible–near-infrared |
SWIR | Short-wave infrared |
PCR | Principal components regression |
MLR | Multilinear regression |
LV | Latent vectors |
GA | Genetic algorithm |
VIP | Variable importance in projection |
VIF | Variable inflation factor |
SSC | Soluble solids content |
TA | Titratable acidity |
DM | Dry matter |
Rcv | Regression coefficient of cross-validation |
PMSECV | Root mean squares error in cross-validation |
References
- Wang, Q.; Lu, J.; Wang, Y.; Gao, J. Research on Nondestructive Inspection of Fruits Based on Spectroscopy Techniques: Experimental Scenarios, ROI, Number of Samples, and Number of Features. Agriculture 2024, 14, 977. [Google Scholar] [CrossRef]
- Amanah, H.Z.; Pratiwi, E.Z.D.; Rahmi, D.N.; Pahlawan, M.F.R.; Masithoh, R.E. Non-Destructive Determination of Water Content in Fruits Using Vis-NIR Spectroscopy. Food Res. 2024, 8, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Prasetyo, E.W.; Amanah, H.Z.; Farras, I.; Pahlawan, M.F.R.; Masithoh, R.E. Partial Least Square Regression for Nondestructive Determination of Sucrose Content of Healthy and Fusarium spp. Infected Potato (Solanum tuberosum L.) Utilizing Visible and Near-Infrared Spectroscopy. Int. J. Adv. Sci. Eng. Inf. Technol. 2024, 14, 1001–1009. [Google Scholar] [CrossRef]
- Kumar, R.; Paul, V.; Pandey, R.; Sahoo, R.N.; Gupta, V.K. Reflectance Based Non-Destructive Determination of Colour and Ripeness of Tomato Fruits. Physiol. Mol. Biol. Plants 2022, 28, 275–288. [Google Scholar] [CrossRef]
- Kumar, R.; Paul, V.; Pandey, R.; Sahoo, R.N.; Gupta, V.K. Reflectance-Based Non-Destructive Assessment of Total Carotenoids in Tomato Fruits. Plant Physiol. Rep. 2023, 28, 152–160. [Google Scholar] [CrossRef]
- Anderson, N.T.; Walsh, K.B. Review: The Evolution of Chemometrics Coupled with near Infrared Spectroscopy for Fruit Quality Evaluation. J. Near Infrared Spectrosc. 2022, 30, 3–17. [Google Scholar] [CrossRef]
- Chaarmart, K.; Narongwongwattana, S.; Rittiron, R.; Sa-Ngiamvibool, W. Evaluation of Chemical Quality on Juices and Wine Produced from Mamao Fruit (Antidesma puncticulatum Miq.) within near-Infrared Spectroscopy. Instrum. Mes. Metrol. 2021, 20, 255–260. [Google Scholar] [CrossRef]
- Gehlken, J.; Nikfardjam, M.P.; Kleb, M.; Zörb, C. Near-Infrared Spectroscopy in Process Control and Quality Management of Fruits and Wine. J. Appl. Bot. Food Qual. 2021, 94, 26–38. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhou, L.; Wang, W.; Zhang, X.; Gu, Q.; Zhu, Y.; Chen, R.; Zhang, C. Visible/near-Infrared Spectroscopy and Hyperspectral Imaging Facilitate the Rapid Determination of Soluble Solids Content in Fruits. Food Eng. Rev. 2024, 16, 470–496. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, M.; Mujumdar, A.S.; Wu, C.; Wang, D. Advanced Model Predictive Control Strategies for Nondestructive Monitoring Quality of Fruit and Vegetables during Supply Chain Processes. Comput. Electron. Agric. 2024, 225, 109262. [Google Scholar] [CrossRef]
- Lan, W.; Ge, Y.; Ma, H.; Chen, S.; Tu, K.; Pan, L. Principles, Theories and Applications of Near-Infrared Spectroscopy for Food Quality and Safety Control. In A Guide to Near-Infrared Spectroscopy; Martin, J.F.G., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2023. [Google Scholar]
- Tao, M.; Fang, H.; Feng, X.; He, Y.; Liu, X.; Shi, Y.; Wei, Y.; Hong, Z. Rapid Trace Detection of Pesticide Residues on Tomato by Surface-Enhanced Raman Spectroscopy and Flexible Tapes. J. Food Qual. 2022, 2022, 1–10. [Google Scholar] [CrossRef]
- Lu, Y.; Li, X.; Li, W.; Shen, T.; He, Z.; Zhang, M.; Zhang, H.; Sun, Y.; Liu, F. Detection of Chlorpyrifos and Carbendazim Residues in the Cabbage Using Visible/near-Infrared Spectroscopy Combined with Chemometrics. Spectrochim Acta A Mol. Biomol. Spectrosc. 2021, 257, 119759. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Peng, J.; Xie, C.; Bao, Y.; He, Y. Fruit Quality Evaluation Using Spectroscopy Technology: A Review. Sensors 2015, 15, 11889–11927. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Sun, Y.; Peng, Y.; Dhakal, S.; Chao, K.; Liu, Q. Rapid Detection of Pesticide Residue in Apple Based on Raman Spectroscopy. In Proceedings of the Sensing for Agriculture and Food Quality and Safety IV, Baltimore, MD, USA, 24–25 April 2012; Volume 8369, pp. 83690I-1–83690I-6. [Google Scholar]
- Huang, Z.; Saito, Y.; Gao, T.; Al Riza, D.F.; Lu, R.; Cen, H.; Kondo, N.; Omwange, K.A. A Review of Fluorescence Imaging System Supported by Excitation-Emission Matrix for Fruit and Vegetable Quality Estimation. Food Control 2025, 169, 111040. [Google Scholar] [CrossRef]
- Jiang, W.; Goncalves, J.; Kostakos, V. Mobile Near-Infrared Sensing—A Systematic Review on Devices, Data, Modeling, and Applications. ACM Comput. Surv. 2024, 56, 201. [Google Scholar] [CrossRef]
- Patel, K.K.; Pathare, P.B. Principle and Applications of Near-Infrared Imaging for Fruit Quality Assessment—An Overview. Int. J. Food Sci. Technol. 2024, 59, 3436–3450. [Google Scholar] [CrossRef]
- Lamptey, F.P.; Teye, E.; Abano, E.E.; Amuah, C.L.Y. Application of Handheld NIR Spectrometer for Simultaneous Identification and Quantification of Quality Parameters in Intact Mango Fruits. Smart Agric. Technol. 2023, 6, 100357. [Google Scholar] [CrossRef]
- Munawar, A.A.; Hayati, R.; Fachruddin, F. Rapid Determination of Inner Quality Parameters of Intact Mango Fruits Using Portable near Infrared Spectroscopy. In Proceedings of the 10th Annual International Conference (AIC) on Environmental and Life Sciences (ELS) 2020, Banda Aceh, Indonesia, 5–16 October 2020; Volume 711. [Google Scholar]
- Kusumiyati; Munawar, A.A.; Suhandy, D. Fast and Contactless Assessment of Intact Mango Fruit Quality Attributes Using near Infrared Spectroscopy (NIRS). In Proceedings of the International Conference on Agricultural Technology, Engineering and Environmental Sciences, Banda Aceh, Indonesia, 21–22 November 2020; Volume 644. [Google Scholar]
- Li, L.; Hu, D.-Y.; Tang, T.-Y.; Tang, Y.-L. Non-Destructive Detection of the Quality Attributes of Fruits by Visible-near Infrared Spectroscopy. J. Food Meas. Charact. 2023, 17, 1526–1534. [Google Scholar] [CrossRef]
- Minas, I.S.; Anthony, B.M.; Pieper, J.R.; Sterle, D.G. Large-Scale and Accurate Non-Destructive Visual to near Infrared Spectroscopy-Based Assessment of the Effect of Rootstock on Peach Fruit Internal Quality. Eur. J. Agron. 2023, 143, 126706. [Google Scholar] [CrossRef]
- Walsh, K.B.; Blasco, J.; Zude-Sasse, M.; Sun, X. Visible-NIR ‘Point’ Spectroscopy in Postharvest Fruit and Vegetable Assessment: The Science behind Three Decades of Commercial Use. Postharvest Biol Technol 2020, 168, 111246. [Google Scholar] [CrossRef]
- Nicolaï, B.M.; Beullens, K.; Bobelyn, E.; Peirs, A.; Saeys, W.; Theron, K.I.; Lammertyn, J. Nondestructive Measurement of Fruit and Vegetable Quality by Means of NIR Spectroscopy: A Review. Postharvest Biol. Technol. 2007, 46, 99–118. [Google Scholar] [CrossRef]
- Alenazi, M.M.; Shafiq, M.; Alsadon, A.A.; Alhelal, I.M.; Alhamdan, A.M.; Solieman, T.H.I.; Ibrahim, A.A.; Shady, M.R.; Saad, M.A.O. Non-Destructive Assessment of Flesh Firmness and Dietary Antioxidants of Greenhouse-Grown Tomato (Solanum lycopersicum L.) at Different Fruit Maturity Stages. Saudi J. Biol. Sci. 2020, 27, 2839–2846. [Google Scholar] [CrossRef] [PubMed]
- Goisser, S.; Wittmann, S.; Fernandes, M.; Mempel, H.; Ulrichs, C. Comparison of Colorimeter and Different Portable Food-Scanners for Non-Destructive Prediction of Lycopene Content in Tomato Fruit. Postharvest Biol. Technol. 2020, 167, 111232. [Google Scholar] [CrossRef]
- Magwaza, L.S.; Opara, U.L.; Nieuwoudt, H.; Cronje, P.J.R.; Saeys, W.; Nicolaï, B. NIR Spectroscopy Applications for Internal and External Quality Analysis of Citrus Fruit-A Review. Food Bioprocess Tech. 2012, 5, 425–444. [Google Scholar] [CrossRef]
- Cattaneo, T.M.P.; Stellari, A. Review: NIR Spectroscopy as a Suitable Tool for the Investigation of the Horticultural Field. Agronomy 2019, 9, 503. [Google Scholar] [CrossRef]
- Bureau, S.; Ruiz, D.; Reich, M.; Gouble, B.; Bertrand, D.; Audergon, J.-M.; Renard, C.M.G.C. Rapid and Non-Destructive Analysis of Apricot Fruit Quality Using FT-near-Infrared Spectroscopy. Food Chem. 2009, 113, 1323–1328. [Google Scholar] [CrossRef]
- Camps, C.; Christen, D. Non-Destructive Assessment of Apricot Fruit Quality by Portable Visible-near Infrared Spectroscopy. LWT 2009, 42, 1125–1131. [Google Scholar] [CrossRef]
- Nelson, S.O.; Trabelsi, S.; Electronics Engineer, P.D.; House Louisville, G. Examination of Dielectric Spectroscopy Data for Correlations with Melon Quality; Written for Presentation at the 2011 ASABE Annual International Meeting Sponsored by ASABE; ASABE: St. Joseph, MI, USA, 2011. [Google Scholar]
- Sun, T.; Huang, K.; Xu, H.; Ying, Y. Research Advances in Nondestructive Determination of Internal Quality in Watermelon/Melon: A Review. J. Food Eng. 2010, 100, 569–577. [Google Scholar] [CrossRef]
- Sun, J.; Ma, B.; Dong, J.; Zhu, R.; Zhang, R.; Jiang, W. Detection of Internal Qualities of Hami Melons Using Hyperspectral Imaging Technology Based on Variable Selection Algorithms. J. Food Process. Eng. 2017, 40, e12496. [Google Scholar] [CrossRef]
- Fass, E.; Shlomi, E.; Ziv, C.; Glikman, O.; Helman, D. Machine Learning Models Based on Hyperspectral Imaging for Pre-Harvest Tomato Fruit Quality Monitoring. Comput. Electron. Agric. 2025, 229, 109788. [Google Scholar] [CrossRef]
- Gu, Q.; Li, T.; Hu, Z.; Zhu, Y.; Shi, J.; Zhang, L.; Zhang, X. Quantitative Analysis of Watermelon Fruit Skin Phenotypic Traits via Image Processing and Their Potential in Maturity and Quality Detection. Comput. Electron. Agric. 2025, 230, 109960. [Google Scholar] [CrossRef]
- Minas, I.S.; Blanco-Cipollone, F.; Sterle, D. Accurate Non-Destructive Prediction of Peach Fruit Internal Quality and Physiological Maturity with a Single Scan Using near Infrared Spectroscopy. Food Chem. 2021, 335, 127626. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekaran, I.; Panigrahi, S.S.; Ravikanth, L.; Singh, C.B. Potential of Near-Infrared (NIR) Spectroscopy and Hyperspectral Imaging for Quality and Safety Assessment of Fruits: An Overview. Food Anal. Methods 2019, 12, 2438–2458. [Google Scholar] [CrossRef]
- Si, W.; Xiong, J.; Huang, Y.; Jiang, X.; Hu, D. Quality Assessment of Fruits and Vegetables Based on Spatially Resolved Spectroscopy: A Review. Foods 2022, 11, 1198. [Google Scholar] [CrossRef]
- Nelson, S.O.; Trabelsi, S.; Kays, S.J. Dielectric Spectroscopy of Melons for Potential Quality Sensing. Trans. ASABE 2008, 51, 2209–2214. [Google Scholar] [CrossRef]
- Mishra, P.; Rutledge, D.N.; Roger, J.-M.; Wali, K.; Khan, H.A. Chemometric Pre-Processing Can Negatively Affect the Performance of near-Infrared Spectroscopy Models for Fruit Quality Prediction. Talanta 2021, 229, 122303. [Google Scholar] [CrossRef]
- Hemrattrakun, P.; Nakano, K.; Boonyakiat, D.; Ohashi, S.; Maniwara, P.; Theanjumpol, P.; Seehanam, P. Comparison of Reflectance and Interactance Modes of Visible and Near-Infrared Spectroscopy for Predicting Persimmon Fruit Quality. Food Anal. Methods 2021, 14, 117–126. [Google Scholar] [CrossRef]
- Walsh, J.; Neupane, A.; Koirala, A.; Li, M.; Anderson, N. Review: The Evolution of Chemometrics Coupled with near Infrared Spectroscopy for Fruit Quality Evaluation. II. Rise Convolutional Neural Networks. J. Near Infrared Spectrosc. 2023, 31, 109–125. [Google Scholar] [CrossRef]
- Xu, Y.; Luo, J.; Xue, S.; Jin, Q.; Zhu, J.; Lu, S.; Meng, Q.; Du, H.; Fu, M.; Zhong, Y. Development of Comprehensive Prediction Models for Pumpkin Fruit Sensory Quality Using Physicochemical Analysis, near-Infrared Spectroscopy, and Machine Learning. J. Food Compos. Anal. 2024, 134, 106530. [Google Scholar] [CrossRef]
- Yang, J.; Sun, Z.; Tian, S.; Jiang, H.; Feng, J.; Ting, K.C.; Lin, T.; Ying, Y. Enhancing Spectroscopy-Based Fruit Quality Control: A Knowledge-Guided Machine Learning Approach to Reduce Model Uncertainty. Postharvest Biol. Technol. 2024, 216, 113009. [Google Scholar] [CrossRef]
- Kusumiyati; Hamdani, J.S.; Sutari, W.; Mubarok, S.; Kurniasari, I. Non-Destructive Detection of Two Cucumber Cultivars Fruit Quality Using NIR Spectroscopy. IOP Conf. Ser. Earth Environ. Sci. 2020, 583, 012002. [Google Scholar] [CrossRef]
- Shao, Y.; Shi, Y.; Qin, Y.; Xuan, G.; Li, J.; Li, Q.; Yang, F.; Hu, Z. A New Quantitative Index for the Assessment of Tomato Quality Using Vis-NIR Hyperspectral Imaging. Food Chem. 2022, 386, 132864. [Google Scholar] [CrossRef]
- Sarkar, M.; Assaad, M.; Gupta, N. Phase Based Time Resolved Reflectance Spectroscopy Using Time-of-Flight Camera for Fruit Quality Monitoring. In Proceedings of the 2020 IEEE Sensors Applications Symposium (SAS), Kuala Lumpur, Malaysia, 9–11 March 2020. [Google Scholar]
Area on Fruit | Wavelength Regions | Rcv | RMSECV | Wavelength Regions | Rcv | RMSECV | Wavelength Regions | Rcv | RMSECV |
---|---|---|---|---|---|---|---|---|---|
Pedicel | Latent vectors selected from the whole spectrum | Specific regions selected with genetic algorithm | Specific wavelengths (nm) selected with VIP scores | ||||||
SSC | 340–2500 nm | 0.785 | 1.450 | A | 0.817 | 1.343 | 693, 1945 | 0.752 | 1.538 |
pH | 340–2500 nm | 0.837 | 0.346 | B | 0.847 | 0.335 | 690, 1079, 1400 | 0.822 | 0.340 |
SSC/TA | 340–2500 nm | 0.792 | 2.733 | C | 0.822 | 2.537 | 660, 754 | 0.769 | 2.835 |
DM | 340–2500 nm | 0.696 | 1.310 | D | 0.736 | 1.236 | 2131 | 0.670 | 1.351 |
Diameter | Diameter | ||||||||
SSC | 340–2500 nm | 0.799 | 1.403 | E | 0.815 | 1.353 | 691, 2018 | 0.759 | 1.516 |
pH | 340–2500 nm | 0.832 | 0.350 | F | 0.835 | 0.348 | 691, 1193, 1406 | 0.811 | 0.369 |
SSC/TA | 340–2500 nm | 0.794 | 2.702 | G | 0.791 | 2.723 | 691, 978, 2215 | 0.777 | 2.794 |
DM | 340–2500 nm | 0.749 | 1.208 | H | 0.771 | 1.160 | 2002 | 0.707 | 1.287 |
Blossom end | Blossom end | ||||||||
SSC | 340–2500 nm | 0.801 | 1.397 | I | 0.802 | 1.396 | 676, 1728, 1890 | 0.743 | 1.564 |
pH | 340–2500 nm | 0.832 | 0.350 | J | 0.825 | 0.357 | 688, 1191, 1403 | 0.807 | 0.372 |
SSC/TA | 340–2500 nm | 0.793 | 2.708 | K | 0.777 | 2.808 | 688, 2027 | 0.769 | 2.836 |
DM | 340–2500 nm | 0.746 | 1.215 | L | 0.727 | 1.253 | 2026 | 0.645 | 1.390 |
Wavelength Regions | Rcv | RMSECV | |
---|---|---|---|
Principal components | |||
SSC | P1, P2, D3, B4 | 0.810 | 1.367 |
pH | P2, P3, B1, B4 | 0.845 | 0.337 |
SSC/TA | D3, B1, B2, B3 | 0.803 | 2.647 |
DM | P1, D1, D3, B2, B4 | 0.775 | 1.515 |
Latent vectors | |||
SSC | P1, D3, B2, B3, B4 | 0.831 | 1.301 |
pH | P2, P3, B1 | 0.846 | 0.336 |
SSC/TA | P1, P4, D3, B1, B2, B3 | 0.808 | 2.618 |
DM | P1, D3, B1, B2, B3, B4 | 0.820 | 1.045 |
Specific wavelengths | |||
SSC | 693p, 2018d, 1890b | 0.794 | 1.421 |
pH | 690p, 1079p, 1403b | 0.825 | 0.357 |
SSC/TA | 660p, 754p, 2215d, 2027b | 0.784 | 2.755 |
DM | 2131p, 2002d, 2026b | 0.740 | 1.224 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasampalis, D.S.; Tsouvaltzis, P.; Siomos, A.S. Assessment of Melon Fruit Nutritional Composition Using VIS/NIR/SWIR Spectroscopy Coupled with Chemometrics. Horticulturae 2025, 11, 658. https://doi.org/10.3390/horticulturae11060658
Kasampalis DS, Tsouvaltzis P, Siomos AS. Assessment of Melon Fruit Nutritional Composition Using VIS/NIR/SWIR Spectroscopy Coupled with Chemometrics. Horticulturae. 2025; 11(6):658. https://doi.org/10.3390/horticulturae11060658
Chicago/Turabian StyleKasampalis, Dimitrios S., Pavlos Tsouvaltzis, and Anastasios S. Siomos. 2025. "Assessment of Melon Fruit Nutritional Composition Using VIS/NIR/SWIR Spectroscopy Coupled with Chemometrics" Horticulturae 11, no. 6: 658. https://doi.org/10.3390/horticulturae11060658
APA StyleKasampalis, D. S., Tsouvaltzis, P., & Siomos, A. S. (2025). Assessment of Melon Fruit Nutritional Composition Using VIS/NIR/SWIR Spectroscopy Coupled with Chemometrics. Horticulturae, 11(6), 658. https://doi.org/10.3390/horticulturae11060658