Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,194)

Search Parameters:
Keywords = Vgg-19 net

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 54671 KiB  
Article
Pep-VGGNet: A Novel Transfer Learning Method for Pepper Leaf Disease Diagnosis
by Süleyman Çetinkaya and Amira Tandirovic Gursel
Appl. Sci. 2025, 15(15), 8690; https://doi.org/10.3390/app15158690 (registering DOI) - 6 Aug 2025
Abstract
The health of crops is a major challenge for productivity growth in agriculture, with plant diseases playing a key role in limiting crop yield. Identifying and understanding these diseases is crucial to preventing their spread. In particular, greenhouse pepper leaves are susceptible to [...] Read more.
The health of crops is a major challenge for productivity growth in agriculture, with plant diseases playing a key role in limiting crop yield. Identifying and understanding these diseases is crucial to preventing their spread. In particular, greenhouse pepper leaves are susceptible to diseases such as mildew, mites, caterpillars, aphids, and blight, which leave distinctive marks that can be used for disease classification. The study proposes a seven-class classifier for the rapid and accurate diagnosis of pepper diseases, with a primary focus on pre-processing techniques to enhance colour differentiation between green and yellow shades, thereby facilitating easier classification among the classes. A novel algorithm is introduced to improve image vibrancy, contrast, and colour properties. The diagnosis is performed using a modified VGG16Net model, which includes three additional layers for fine-tuning. After initialising on the ImageNet dataset, some layers are frozen to prevent redundant learning. The classification is additionally accelerated by introducing flattened, dense, and dropout layers. The proposed model is tested on a private dataset collected specifically for this study. Notably, this work is the first to focus on diagnosing aphid and caterpillar diseases in peppers. The model achieves an average accuracy of 92.00%, showing promising potential for seven-class deep learning-based disease diagnostics. Misclassifications in the aphid class are primarily due to the limited number of samples available. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

20 pages, 19537 KiB  
Article
Submarine Topography Classification Using ConDenseNet with Label Smoothing Regularization
by Jingyan Zhang, Kongwen Zhang and Jiangtao Liu
Remote Sens. 2025, 17(15), 2686; https://doi.org/10.3390/rs17152686 - 3 Aug 2025
Viewed by 189
Abstract
The classification of submarine topography and geomorphology is essential for marine resource exploitation and ocean engineering, with wide-ranging implications in marine geology, disaster assessment, resource exploration, and autonomous underwater navigation. Submarine landscapes are highly complex and diverse. Traditional visual interpretation methods are not [...] Read more.
The classification of submarine topography and geomorphology is essential for marine resource exploitation and ocean engineering, with wide-ranging implications in marine geology, disaster assessment, resource exploration, and autonomous underwater navigation. Submarine landscapes are highly complex and diverse. Traditional visual interpretation methods are not only inefficient and subjective but also lack the precision required for high-accuracy classification. While many machine learning and deep learning models have achieved promising results in image classification, limited work has been performed on integrating backscatter and bathymetric data for multi-source processing. Existing approaches often suffer from high computational costs and excessive hyperparameter demands. In this study, we propose a novel approach that integrates pruning-enhanced ConDenseNet with label smoothing regularization to reduce misclassification, strengthen the cross-entropy loss function, and significantly lower model complexity. Our method improves classification accuracy by 2% to 10%, reduces the number of hyperparameters by 50% to 96%, and cuts computation time by 50% to 85.5% compared to state-of-the-art models, including AlexNet, VGG, ResNet, and Vision Transformer. These results demonstrate the effectiveness and efficiency of our model for multi-source submarine topography classification. Full article
Show Figures

Figure 1

18 pages, 10811 KiB  
Article
Multimodal Feature Inputs Enable Improved Automated Textile Identification
by Magken George Enow Gnoupa, Andy T. Augousti, Olga Duran, Olena Lanets and Solomiia Liaskovska
Textiles 2025, 5(3), 31; https://doi.org/10.3390/textiles5030031 - 2 Aug 2025
Viewed by 94
Abstract
This study presents an advanced framework for fabric texture classification by leveraging macro- and micro-texture extraction techniques integrated with deep learning architectures. Co-occurrence histograms, local binary patterns (LBPs), and albedo-dependent feature maps were employed to comprehensively capture the surface properties of fabrics. A [...] Read more.
This study presents an advanced framework for fabric texture classification by leveraging macro- and micro-texture extraction techniques integrated with deep learning architectures. Co-occurrence histograms, local binary patterns (LBPs), and albedo-dependent feature maps were employed to comprehensively capture the surface properties of fabrics. A late fusion approach was applied using four state-of-the-art convolutional neural networks (CNNs): InceptionV3, ResNet50_V2, DenseNet, and VGG-19. Excellent results were obtained, with the ResNet50_V2 achieving a precision of 0.929, recall of 0.914, and F1 score of 0.913. Notably, the integration of multimodal inputs allowed the models to effectively distinguish challenging fabric types, such as cotton–polyester and satin–silk pairs, which exhibit overlapping texture characteristics. This research not only enhances the accuracy of textile classification but also provides a robust methodology for material analysis, with significant implications for industrial applications in fashion, quality control, and robotics. Full article
Show Figures

Graphical abstract

26 pages, 1790 KiB  
Article
A Hybrid Deep Learning Model for Aromatic and Medicinal Plant Species Classification Using a Curated Leaf Image Dataset
by Shareena E. M., D. Abraham Chandy, Shemi P. M. and Alwin Poulose
AgriEngineering 2025, 7(8), 243; https://doi.org/10.3390/agriengineering7080243 - 1 Aug 2025
Viewed by 214
Abstract
In the era of smart agriculture, accurate identification of plant species is critical for effective crop management, biodiversity monitoring, and the sustainable use of medicinal resources. However, existing deep learning approaches often underperform when applied to fine-grained plant classification tasks due to the [...] Read more.
In the era of smart agriculture, accurate identification of plant species is critical for effective crop management, biodiversity monitoring, and the sustainable use of medicinal resources. However, existing deep learning approaches often underperform when applied to fine-grained plant classification tasks due to the lack of domain-specific, high-quality datasets and the limited representational capacity of traditional architectures. This study addresses these challenges by introducing a novel, well-curated leaf image dataset consisting of 39 classes of medicinal and aromatic plants collected from the Aromatic and Medicinal Plant Research Station in Odakkali, Kerala, India. To overcome performance bottlenecks observed with a baseline Convolutional Neural Network (CNN) that achieved only 44.94% accuracy, we progressively enhanced model performance through a series of architectural innovations. These included the use of a pre-trained VGG16 network, data augmentation techniques, and fine-tuning of deeper convolutional layers, followed by the integration of Squeeze-and-Excitation (SE) attention blocks. Ultimately, we propose a hybrid deep learning architecture that combines VGG16 with Batch Normalization, Gated Recurrent Units (GRUs), Transformer modules, and Dilated Convolutions. This final model achieved a peak validation accuracy of 95.24%, significantly outperforming several baseline models, such as custom CNN (44.94%), VGG-19 (59.49%), VGG-16 before augmentation (71.52%), Xception (85.44%), Inception v3 (87.97%), VGG-16 after data augumentation (89.24%), VGG-16 after fine-tuning (90.51%), MobileNetV2 (93.67), and VGG16 with SE block (94.94%). These results demonstrate superior capability in capturing both local textures and global morphological features. The proposed solution not only advances the state of the art in plant classification but also contributes a valuable dataset to the research community. Its real-world applicability spans field-based plant identification, biodiversity conservation, and precision agriculture, offering a scalable tool for automated plant recognition in complex ecological and agricultural environments. Full article
(This article belongs to the Special Issue Implementation of Artificial Intelligence in Agriculture)
Show Figures

Figure 1

16 pages, 2784 KiB  
Article
Development of Stacked Neural Networks for Application with OCT Data, to Improve Diabetic Retinal Health Care Management
by Pedro Rebolo, Guilherme Barbosa, Eduardo Carvalho, Bruno Areias, Ana Guerra, Sónia Torres-Costa, Nilza Ramião, Manuel Falcão and Marco Parente
Information 2025, 16(8), 649; https://doi.org/10.3390/info16080649 - 30 Jul 2025
Viewed by 204
Abstract
Background: Retinal diseases are becoming an important public health issue, with early diagnosis and timely intervention playing a key role in preventing vision loss. Optical coherence tomography (OCT) remains the leading non-invasive imaging technique for identifying retinal conditions. However, distinguishing between diabetic macular [...] Read more.
Background: Retinal diseases are becoming an important public health issue, with early diagnosis and timely intervention playing a key role in preventing vision loss. Optical coherence tomography (OCT) remains the leading non-invasive imaging technique for identifying retinal conditions. However, distinguishing between diabetic macular edema (DME) and macular edema resulting from retinal vein occlusion (RVO) can be particularly challenging, especially for clinicians without specialized training in retinal disorders, as both conditions manifest through increased retinal thickness. Due to the limited research exploring the application of deep learning methods, particularly for RVO detection using OCT scans, this study proposes a novel diagnostic approach based on stacked convolutional neural networks. This architecture aims to enhance classification accuracy by integrating multiple neural network layers, enabling more robust feature extraction and improved differentiation between retinal pathologies. Methods: The VGG-16, VGG-19, and ResNet50 models were fine-tuned using the Kermany dataset to classify the OCT images and afterwards were trained using a private OCT dataset. Four stacked models were then developed using these models: a model using the VGG-16 and VGG-19 networks, a model using the VGG-16 and ResNet50 networks, a model using the VGG-19 and ResNet50 models, and finally a model using all three networks. The performance metrics of the model includes accuracy, precision, recall, F2-score, and area under of the receiver operating characteristic curve (AUROC). Results: The stacked neural network using all three models achieved the best results, having an accuracy of 90.7%, precision of 99.2%, a recall of 90.7%, and an F2-score of 92.3%. Conclusions: This study presents a novel method for distinguishing retinal disease by using stacked neural networks. This research aims to provide a reliable tool for ophthalmologists to improve diagnosis accuracy and speed. Full article
(This article belongs to the Special Issue AI-Based Biomedical Signal Processing)
Show Figures

Figure 1

28 pages, 4007 KiB  
Article
Voting-Based Classification Approach for Date Palm Health Detection Using UAV Camera Images: Vision and Learning
by Abdallah Guettaf Temam, Mohamed Nadour, Lakhmissi Cherroun, Ahmed Hafaifa, Giovanni Angiulli and Fabio La Foresta
Drones 2025, 9(8), 534; https://doi.org/10.3390/drones9080534 - 29 Jul 2025
Viewed by 248
Abstract
In this study, we introduce the application of deep learning (DL) models, specifically convolutional neural networks (CNNs), for detecting the health status of date palm leaves using images captured by an unmanned aerial vehicle (UAV). The images are modeled using the Newton–Euler method [...] Read more.
In this study, we introduce the application of deep learning (DL) models, specifically convolutional neural networks (CNNs), for detecting the health status of date palm leaves using images captured by an unmanned aerial vehicle (UAV). The images are modeled using the Newton–Euler method to ensure stability and accurate image acquisition. These deep learning models are implemented by a voting-based classification (VBC) system that combines multiple CNN architectures, including MobileNet, a handcrafted CNN, VGG16, and VGG19, to enhance classification accuracy and robustness. The classifiers independently generate predictions, and a voting mechanism determines the final classification. This hybridization of image-based visual servoing (IBVS) and classifiers makes immediate adaptations to changing conditions, providing straightforward and smooth flying as well as vision classification. The dataset used in this study was collected using a dual-camera UAV, which captures high-resolution images to detect pests in date palm leaves. After applying the proposed classification strategy, the implemented voting method achieved an impressive accuracy of 99.16% on the test set for detecting health conditions in date palm leaves, surpassing individual classifiers. The obtained results are discussed and compared to show the effectiveness of this classification technique. Full article
Show Figures

Figure 1

27 pages, 11177 KiB  
Article
Robust Segmentation of Lung Proton and Hyperpolarized Gas MRI with Vision Transformers and CNNs: A Comparative Analysis of Performance Under Artificial Noise
by Ramtin Babaeipour, Matthew S. Fox, Grace Parraga and Alexei Ouriadov
Bioengineering 2025, 12(8), 808; https://doi.org/10.3390/bioengineering12080808 - 28 Jul 2025
Viewed by 328
Abstract
Accurate segmentation in medical imaging is essential for disease diagnosis and monitoring, particularly in lung imaging using proton and hyperpolarized gas MRI. However, image degradation due to noise and artifacts—especially in hyperpolarized gas MRI, where scans are acquired during breath-holds—poses challenges for conventional [...] Read more.
Accurate segmentation in medical imaging is essential for disease diagnosis and monitoring, particularly in lung imaging using proton and hyperpolarized gas MRI. However, image degradation due to noise and artifacts—especially in hyperpolarized gas MRI, where scans are acquired during breath-holds—poses challenges for conventional segmentation algorithms. This study evaluates the robustness of deep learning segmentation models under varying Gaussian noise levels, comparing traditional convolutional neural networks (CNNs) with modern Vision Transformer (ViT)-based models. Using a dataset of proton and hyperpolarized gas MRI slices from 56 participants, we trained and tested Feature Pyramid Network (FPN) and U-Net architectures with both CNN (VGG16, VGG19, ResNet152) and ViT (MiT-B0, B3, B5) backbones. Results showed that ViT-based models, particularly those using the SegFormer backbone, consistently outperformed CNN-based counterparts across all metrics and noise levels. The performance gap was especially pronounced in high-noise conditions, where transformer models retained higher Dice scores and lower boundary errors. These findings highlight the potential of ViT-based architectures for deployment in clinically realistic, low-SNR environments such as hyperpolarized gas MRI, where segmentation reliability is critical. Full article
Show Figures

Figure 1

27 pages, 4682 KiB  
Article
DERIENet: A Deep Ensemble Learning Approach for High-Performance Detection of Jute Leaf Diseases
by Mst. Tanbin Yasmin Tanny, Tangina Sultana, Md. Emran Biswas, Chanchol Kumar Modok, Arjina Akter, Mohammad Shorif Uddin and Md. Delowar Hossain
Information 2025, 16(8), 638; https://doi.org/10.3390/info16080638 - 27 Jul 2025
Viewed by 211
Abstract
Jute, a vital lignocellulosic fiber crop with substantial industrial and ecological relevance, continues to suffer considerable yield and quality degradation due to pervasive foliar pathologies. Traditional diagnostic modalities reliant on manual field inspections are inherently constrained by subjectivity, diagnostic latency, and inadequate scalability [...] Read more.
Jute, a vital lignocellulosic fiber crop with substantial industrial and ecological relevance, continues to suffer considerable yield and quality degradation due to pervasive foliar pathologies. Traditional diagnostic modalities reliant on manual field inspections are inherently constrained by subjectivity, diagnostic latency, and inadequate scalability across geographically distributed agrarian systems. To transcend these limitations, we propose DERIENet, a robust and scalable classification approach within a deep ensemble learning framework. It is meticulously engineered by integrating three high-performing convolutional neural networks—ResNet50, InceptionV3, and EfficientNetB0—along with regularization, batch normalization, and dropout strategies, to accurately classify jute leaf diseases such as Cercospora Leaf Spot, Golden Mosaic Virus, and healthy leaves. A key methodological contribution is the design of a novel augmentation pipeline, termed Geometric Localized Occlusion and Adaptive Rescaling (GLOAR), which dynamically modulates photometric and geometric distortions based on image entropy and luminance to synthetically upscale a limited dataset (920 images) into a significantly enriched and diverse dataset of 7800 samples, thereby mitigating overfitting and enhancing domain generalizability. Empirical evaluation, utilizing a comprehensive set of performance metrics—accuracy, precision, recall, F1-score, confusion matrices, and ROC curves—demonstrates that DERIENet achieves a state-of-the-art classification accuracy of 99.89%, with macro-averaged and weighted average precision, recall, and F1-score uniformly at 99.89%, and an AUC of 1.0 across all disease categories. The reliability of the model is validated by the confusion matrix, which shows that 899 out of 900 test images were correctly identified and that there was only one misclassification. Comparative evaluations of the various ensemble baselines, such as DenseNet201, MobileNetV2, and VGG16, and individual base learners demonstrate that DERIENet performs noticeably superior to all baseline models. It provides a highly interpretable, deployment-ready, and computationally efficient architecture that is ideal for integrating into edge or mobile platforms to facilitate in situ, real-time disease diagnostics in precision agriculture. Full article
Show Figures

Figure 1

24 pages, 1990 KiB  
Article
Evaluating Skin Tone Fairness in Convolutional Neural Networks for the Classification of Diabetic Foot Ulcers
by Sara Seabra Reis, Luis Pinto-Coelho, Maria Carolina Sousa, Mariana Neto, Marta Silva and Miguela Sequeira
Appl. Sci. 2025, 15(15), 8321; https://doi.org/10.3390/app15158321 - 26 Jul 2025
Viewed by 560
Abstract
The present paper investigates the application of convolutional neural networks (CNNs) for the classification of diabetic foot ulcers, using VGG16, VGG19 and MobileNetV2 architectures. The primary objective is to develop and compare deep learning models capable of accurately identifying ulcerated regions in clinical [...] Read more.
The present paper investigates the application of convolutional neural networks (CNNs) for the classification of diabetic foot ulcers, using VGG16, VGG19 and MobileNetV2 architectures. The primary objective is to develop and compare deep learning models capable of accurately identifying ulcerated regions in clinical images of diabetic feet, thereby aiding in the prevention and effective treatment of foot ulcers. A comprehensive study was conducted using an annotated dataset of medical images, evaluating the performance of the models in terms of accuracy, precision, recall and F1-score. VGG19 achieved the highest accuracy at 97%, demonstrating superior ability to focus activations on relevant lesion areas in complex images. MobileNetV2, while slightly less accurate, excelled in computational efficiency, making it a suitable choice for mobile devices and environments with hardware constraints. The study also highlights the limitations of each architecture, such as increased risk of overfitting in deeper models and the lower capability of MobileNetV2 to capture fine clinical details. These findings suggest that CNNs hold significant potential in computer-aided clinical diagnosis, particularly in the early and precise detection of diabetic foot ulcers, where timely intervention is crucial to prevent amputations. Full article
(This article belongs to the Special Issue Advances and Applications of Machine Learning for Bioinformatics)
Show Figures

Figure 1

22 pages, 1359 KiB  
Article
Fall Detection Using Federated Lightweight CNN Models: A Comparison of Decentralized vs. Centralized Learning
by Qasim Mahdi Haref, Jun Long and Zhan Yang
Appl. Sci. 2025, 15(15), 8315; https://doi.org/10.3390/app15158315 - 25 Jul 2025
Viewed by 263
Abstract
Fall detection is a critical task in healthcare monitoring systems, especially for elderly populations, for whom timely intervention can significantly reduce morbidity and mortality. This study proposes a privacy-preserving and scalable fall-detection framework that integrates federated learning (FL) with transfer learning (TL) to [...] Read more.
Fall detection is a critical task in healthcare monitoring systems, especially for elderly populations, for whom timely intervention can significantly reduce morbidity and mortality. This study proposes a privacy-preserving and scalable fall-detection framework that integrates federated learning (FL) with transfer learning (TL) to train deep learning models across decentralized data sources without compromising user privacy. The pipeline begins with data acquisition, in which annotated video-based fall-detection datasets formatted in YOLO are used to extract image crops of human subjects. These images are then preprocessed, resized, normalized, and relabeled into binary classes (fall vs. non-fall). A stratified 80/10/10 split ensures balanced training, validation, and testing. To simulate real-world federated environments, the training data is partitioned across multiple clients, each performing local training using pretrained CNN models including MobileNetV2, VGG16, EfficientNetB0, and ResNet50. Two FL topologies are implemented: a centralized server-coordinated scheme and a ring-based decentralized topology. During each round, only model weights are shared, and federated averaging (FedAvg) is applied for global aggregation. The models were trained using three random seeds to ensure result robustness and stability across varying data partitions. Among all configurations, decentralized MobileNetV2 achieved the best results, with a mean test accuracy of 0.9927, F1-score of 0.9917, and average training time of 111.17 s per round. These findings highlight the model’s strong generalization, low computational burden, and suitability for edge deployment. Future work will extend evaluation to external datasets and address issues such as client drift and adversarial robustness in federated environments. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

29 pages, 5542 KiB  
Article
SVRG-AALR: Stochastic Variance-Reduced Gradient Method with Adaptive Alternating Learning Rate for Training Deep Neural Networks
by Shiyun Zou, Hua Qin, Guolin Yang and Pengfei Wang
Electronics 2025, 14(15), 2979; https://doi.org/10.3390/electronics14152979 - 25 Jul 2025
Viewed by 195
Abstract
The stochastic variance-reduced gradient (SVRG) theory is particularly well-suited for addressing gradient variance in deep neural network (DNN) training; however, its direct application to DNN training is hindered by adaptation challenges. To tackle this issue, the present paper proposes a series of strategies [...] Read more.
The stochastic variance-reduced gradient (SVRG) theory is particularly well-suited for addressing gradient variance in deep neural network (DNN) training; however, its direct application to DNN training is hindered by adaptation challenges. To tackle this issue, the present paper proposes a series of strategies focused on adaptive alternating learning rates to effectively adapt SVRG for DNN training. Firstly, within the outer loop of SVRG, both the full gradient and the learning rate specific to DNN training are computed. For two distinct formulas used for calculating the learning rate, an alternating strategy is introduced that employs them alternately across iterations. This approach allows for simultaneous provision of diverse guidance information regarding parameter change rates and gradient change rates during DNN weight updates. Additionally, a threshold method is utilized to correct the learning rate into an appropriate range, thereby accelerating convergence. Secondly, in the inner loop of SVRG, DNN weights are updated using mini-batch average gradient along with the proposed learning rate. Concurrently, mini-batch average gradients from each iteration within the inner loop are refined and aggregated into a single gradient exhibiting reduced variance through an inertia strategy. This refined gradient is then relayed back to the outer loop to recalculate the new learning rate. The efficacy of the proposed algorithm has been validated on models including LeNet, VGG11, ResNet34, and DenseNet121 while being compared against several classic and advanced optimizers. Experimental results demonstrate that the proposed algorithm exhibits remarkable training robustness across DNN models with diverse characteristics. In terms of training convergence, the proposed algorithm demonstrates competitiveness with state-of-the-art algorithms, such as Lion, developed by the Google Brain team. Full article
(This article belongs to the Special Issue Advances in Machine Learning for Image Classification)
Show Figures

Figure 1

19 pages, 8743 KiB  
Article
Role of Feature Diversity in the Performance of Hybrid Models—An Investigation of Brain Tumor Classification from Brain MRI Scans
by Subhash Chand Gupta, Shripal Vijayvargiya and Vandana Bhattacharjee
Diagnostics 2025, 15(15), 1863; https://doi.org/10.3390/diagnostics15151863 - 24 Jul 2025
Viewed by 314
Abstract
Introduction: Brain tumor, marked by abnormal and rapid cell growth, poses severe health risks and requires accurate diagnosis for effective treatment. Classifying brain tumors using deep learning techniques applied to Magnetic Resonance Imaging (MRI) images has attracted the attention of many researchers, [...] Read more.
Introduction: Brain tumor, marked by abnormal and rapid cell growth, poses severe health risks and requires accurate diagnosis for effective treatment. Classifying brain tumors using deep learning techniques applied to Magnetic Resonance Imaging (MRI) images has attracted the attention of many researchers, and specifically, reducing the bias of models and enhancing robustness is still a very pertinent active topic of attention. Methods: For capturing diverse information from different feature sets, we propose a Features Concatenation-based Brain Tumor Classification (FCBTC) Framework using Hybrid Deep Learning Models. For this, we have chosen three pretrained models—ResNet50; VGG16; and DensetNet121—as the baseline models. Our proposed hybrid models are built by the fusion of feature vectors. Results: The testing phase results show that, for the FCBTC Model-3, values for Precision, Recall, F1-score, and Accuracy are 98.33%, 98.26%, 98.27%, and 98.40%, respectively. This reinforces our idea that feature diversity does improve the classifier’s performance. Conclusions: Comparative performance evaluation of our work shows that, the proposed hybrid FCBTC Models have performed better than other proposed baseline models. Full article
(This article belongs to the Special Issue Machine Learning in Precise and Personalized Diagnosis)
Show Figures

Figure 1

15 pages, 2123 KiB  
Article
Multi-Class Visual Cyberbullying Detection Using Deep Neural Networks and the CVID Dataset
by Muhammad Asad Arshed, Zunera Samreen, Arslan Ahmad, Laiba Amjad, Hasnain Muavia, Christine Dewi and Muhammad Kabir
Information 2025, 16(8), 630; https://doi.org/10.3390/info16080630 - 24 Jul 2025
Viewed by 273
Abstract
In an era where online interactions increasingly shape social dynamics, the pervasive issue of cyberbullying poses a significant threat to the well-being of individuals, particularly among vulnerable groups. Despite extensive research on text-based cyberbullying detection, the rise of visual content on social media [...] Read more.
In an era where online interactions increasingly shape social dynamics, the pervasive issue of cyberbullying poses a significant threat to the well-being of individuals, particularly among vulnerable groups. Despite extensive research on text-based cyberbullying detection, the rise of visual content on social media platforms necessitates new approaches to address cyberbullying using images. This domain has been largely overlooked. In this paper, we present a novel dataset specifically designed for the detection of visual cyberbullying, encompassing four distinct classes: abuse, curse, discourage, and threat. The initial prepared dataset (cyberbullying visual indicators dataset (CVID)) comprised 664 samples for training and validation, expanded through data augmentation techniques to ensure balanced and accurate results across all classes. We analyzed this dataset using several advanced deep learning models, including VGG16, VGG19, MobileNetV2, and Vision Transformer. The proposed model, based on DenseNet201, achieved the highest test accuracy of 99%, demonstrating its efficacy in identifying the visual cues associated with cyberbullying. To prove the proposed model’s generalizability, the 5-fold stratified K-fold was also considered, and the model achieved an average test accuracy of 99%. This work introduces a dataset and highlights the potential of leveraging deep learning models to address the multifaceted challenges of detecting cyberbullying in visual content. Full article
(This article belongs to the Special Issue AI-Based Image Processing and Computer Vision)
Show Figures

Figure 1

25 pages, 5142 KiB  
Article
Wheat Powdery Mildew Severity Classification Based on an Improved ResNet34 Model
by Meilin Li, Yufeng Guo, Wei Guo, Hongbo Qiao, Lei Shi, Yang Liu, Guang Zheng, Hui Zhang and Qiang Wang
Agriculture 2025, 15(15), 1580; https://doi.org/10.3390/agriculture15151580 - 23 Jul 2025
Viewed by 279
Abstract
Crop disease identification is a pivotal research area in smart agriculture, forming the foundation for disease mapping and targeted prevention strategies. Among the most prevalent global wheat diseases, powdery mildew—caused by fungal infection—poses a significant threat to crop yield and quality, making early [...] Read more.
Crop disease identification is a pivotal research area in smart agriculture, forming the foundation for disease mapping and targeted prevention strategies. Among the most prevalent global wheat diseases, powdery mildew—caused by fungal infection—poses a significant threat to crop yield and quality, making early and accurate detection crucial for effective management. In this study, we present QY-SE-MResNet34, a deep learning-based classification model that builds upon ResNet34 to perform multi-class classification of wheat leaf images and assess powdery mildew severity at the single-leaf level. The proposed methodology begins with dataset construction following the GBT 17980.22-2000 national standard for powdery mildew severity grading, resulting in a curated collection of 4248 wheat leaf images at the grain-filling stage across six severity levels. To enhance model performance, we integrated transfer learning with ResNet34, leveraging pretrained weights to improve feature extraction and accelerate convergence. Further refinements included embedding a Squeeze-and-Excitation (SE) block to strengthen feature representation while maintaining computational efficiency. The model architecture was also optimized by modifying the first convolutional layer (conv1)—replacing the original 7 × 7 kernel with a 3 × 3 kernel, adjusting the stride to 1, and setting padding to 1—to better capture fine-grained leaf textures and edge features. Subsequently, the optimal training strategy was determined through hyperparameter tuning experiments, and GrabCut-based background processing along with data augmentation were introduced to enhance model robustness. In addition, interpretability techniques such as channel masking and Grad-CAM were employed to visualize the model’s decision-making process. Experimental validation demonstrated that QY-SE-MResNet34 achieved an 89% classification accuracy, outperforming established models such as ResNet50, VGG16, and MobileNetV2 and surpassing the original ResNet34 by 11%. This study delivers a high-performance solution for single-leaf wheat powdery mildew severity assessment, offering practical value for intelligent disease monitoring and early warning systems in precision agriculture. Full article
Show Figures

Figure 1

24 pages, 8015 KiB  
Article
Innovative Multi-View Strategies for AI-Assisted Breast Cancer Detection in Mammography
by Beibit Abdikenov, Tomiris Zhaksylyk, Aruzhan Imasheva, Yerzhan Orazayev and Temirlan Karibekov
J. Imaging 2025, 11(8), 247; https://doi.org/10.3390/jimaging11080247 - 22 Jul 2025
Viewed by 502
Abstract
Mammography is the main method for early detection of breast cancer, which is still a major global health concern. However, inter-reader variability and the inherent difficulty of interpreting subtle radiographic features frequently limit the accuracy of diagnosis. A thorough assessment of deep convolutional [...] Read more.
Mammography is the main method for early detection of breast cancer, which is still a major global health concern. However, inter-reader variability and the inherent difficulty of interpreting subtle radiographic features frequently limit the accuracy of diagnosis. A thorough assessment of deep convolutional neural networks (CNNs) for automated mammogram classification is presented in this work, along with the introduction of two innovative multi-view integration techniques: Dual-Branch Ensemble (DBE) and Merged Dual-View (MDV). By setting aside two datasets for out-of-sample testing, we evaluate the generalizability of the model using six different mammography datasets that represent various populations and imaging systems. We compare a number of cutting-edge architectures on both individual and combined datasets, including ResNet, DenseNet, EfficientNet, MobileNet, Vision Transformers, and VGG19. Both MDV and DBE strategies improve classification performance, according to experimental results. VGG19 and DenseNet both obtained high ROC AUC scores of 0.9051 and 0.7960 under the MDV approach. DenseNet demonstrated strong performance in the DBE setting, achieving a ROC AUC of 0.8033, while ResNet50 recorded a ROC AUC of 0.8042. These enhancements demonstrate how beneficial multi-view fusion is for boosting model robustness. The impact of domain shift is further highlighted by generalization tests, which emphasize the need for diverse datasets in training. These results offer practical advice for improving CNN architectures and integration tactics, which will aid in the creation of trustworthy, broadly applicable AI-assisted breast cancer screening tools. Full article
(This article belongs to the Section Medical Imaging)
Show Figures

Graphical abstract

Back to TopTop