Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (501)

Search Parameters:
Keywords = Vector competence

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 2816 KiB  
Article
Influence of the Origin, Feeding Status, and Trypanosoma cruzi Infection in the Microbial Composition of the Digestive Tract of Triatoma pallidipennis
by Everardo Gutiérrez-Millán, Alba N. Lecona-Valera, Mario H. Rodriguez and Ana E. Gutiérrez-Cabrera
Biology 2025, 14(8), 984; https://doi.org/10.3390/biology14080984 (registering DOI) - 2 Aug 2025
Abstract
Triatoma pallidipennis, the main vector of Chagas disease in central Mexico, hosts a diverse and complex gut bacterial community shaped by environmental and physiological factors. To gain insight into these microbes’ dynamics, we characterised the gut bacterial communities of wild and insectary [...] Read more.
Triatoma pallidipennis, the main vector of Chagas disease in central Mexico, hosts a diverse and complex gut bacterial community shaped by environmental and physiological factors. To gain insight into these microbes’ dynamics, we characterised the gut bacterial communities of wild and insectary insects under different feeding and Trypanosoma cruzi infection conditions, using 16S rRNA gene sequencing. We identified 91 bacterial genera across 8 phyla, with Proteobacteria dominating most samples. Wild insects showed greater bacterial diversity, led by Acinetobacter and Pseudomonas, while insectary insects exhibited lower diversity and were dominated by Arsenophonus. The origin of the insects, whether they were reared in the insectary (laboratory) or collected from wild populations, was the principal factor structuring the gut microbiota, followed by feeding and T. cruzi infection. A stable core microbiota of 12 bacterial genera was present across all conditions, suggesting key functional roles in host physiology. Co-occurrence and functional enrichment analyses revealed that feeding and infection induced condition-specific microbial interactions and metabolic pathways. Our findings highlight the ecological plasticity of the triatomine gut microbiota and its potential role in modulating vector competence, providing a foundation for future microbiota-based control strategies. Full article
(This article belongs to the Special Issue Metabolic Interactions between the Gut Microbiome and Host)
Show Figures

Figure 1

13 pages, 1085 KiB  
Article
Comparative Endosymbiont Community Structures of Nonviruliferous and Rice Stripe Virus-Viruliferous Laodelphax striatellus (Hemiptera: Delphacidae) in Korea
by Jiho Jeon, Minhyeok Kwon, Bong Choon Lee and Eui-Joon Kil
Viruses 2025, 17(8), 1074; https://doi.org/10.3390/v17081074 - 1 Aug 2025
Viewed by 69
Abstract
Insects and their bacterial endosymbionts form intricate ecological relationships, yet their role in host–pathogen interactions are not fully elucidated. The small brown planthopper (Laodelphax striatellus), a polyphagous pest of cereal crops, acts as a key vector for rice stripe virus (RSV), [...] Read more.
Insects and their bacterial endosymbionts form intricate ecological relationships, yet their role in host–pathogen interactions are not fully elucidated. The small brown planthopper (Laodelphax striatellus), a polyphagous pest of cereal crops, acts as a key vector for rice stripe virus (RSV), a significant threat to rice production. This study aimed to compare the endosymbiont community structures of nonviruliferous and RSV-viruliferous L. striatellus populations using 16S rRNA gene sequencing with high-throughput sequencing technology. Wolbachia was highly dominant in both groups; however, the prevalence of other endosymbionts, specifically Rickettsia and Burkholderia, differed markedly depending on RSV infection. Comprehensive microbial diversity and composition analyses revealed distinct community structures between nonviruliferous and RSV-viruliferous populations, highlighting potential interactions and implications for vector competence and virus transmission dynamics. These findings contribute to understanding virus-insect-endosymbiont dynamics and could inform strategies to mitigate viral spread by targeting symbiotic bacteria. Full article
(This article belongs to the Special Issue Plant Viruses and Their Vectors: Epidemiology and Control)
Show Figures

Figure 1

14 pages, 347 KiB  
Review
Is Ghana Prepared for Another Arboviral Outbreak? Evaluating the 2024 Dengue Fever Outbreak in the Context of Past Yellow Fever, Influenza, and COVID-19 Outbreaks
by Godfred Amoah Appiah, Jerry John Babason, Anthony Yaw Dziworshie, Abigail Abankwa and Joseph Humphrey Kofi Bonney
Trop. Med. Infect. Dis. 2025, 10(7), 196; https://doi.org/10.3390/tropicalmed10070196 - 15 Jul 2025
Viewed by 1052
Abstract
Arboviruses are a growing concern in many nations. Several reports of arboviral outbreaks have been recorded globally in the past decade alone. Repeated arboviral outbreaks in developing countries have consistently highlighted vulnerabilities in disease surveillance and response systems, exposing critical gaps in early [...] Read more.
Arboviruses are a growing concern in many nations. Several reports of arboviral outbreaks have been recorded globally in the past decade alone. Repeated arboviral outbreaks in developing countries have consistently highlighted vulnerabilities in disease surveillance and response systems, exposing critical gaps in early detection, contact tracing, and resource allocation. The 2024 Dengue fever outbreak in Ghana, which recorded 205 confirmed cases out of 1410 suspected cases, underscored the urgent need to evaluate the country’s preparedness for arboviral outbreaks, given the detection of competent vectors in the country. A retrospective analysis of Ghana’s 2009–2013 pandemic influenza response plan revealed significant deficiencies in emergency preparedness, raising concerns about the country’s ability to manage emerging arboviral threats. This review assessed Ghana’s current arboviral outbreak response and preparedness by examining (a) the effectiveness of vector control measures, (b) the role of early warning systems in mitigating outbreaks, (c) laboratory support and diagnostic capabilities, and (d) community engagement strategies. It highlights the successes made in previous outbreaks and sheds light on several gaps in Ghana’s outbreak response efforts. This review also provides recommendations that can be implemented in many countries across Africa as they brace themselves for any arboviral outbreak. Full article
(This article belongs to the Special Issue Emerging Vector-Borne Diseases and Public Health Challenges)
Show Figures

Figure 1

14 pages, 1903 KiB  
Article
Metagenomic Analyses of Gut Bacteria of Two Sandfly Species from Western Ghats, India, Differing in Their Vector Competence for Leishmaniasis
by Anns Tom, Nanda Kumar Yellapu, Manju Rahi and Prasanta Saini
Microorganisms 2025, 13(7), 1615; https://doi.org/10.3390/microorganisms13071615 - 9 Jul 2025
Viewed by 329
Abstract
Phlebotomine sandflies are the primary vectors of Leishmania parasites, the causative agents of leishmaniasis. In India, Phlebotomus argentipes is the confirmed vector of Leishmania donovani. The sandfly gut microbiota plays a crucial role in Leishmania development and transmission, yet it remains largely [...] Read more.
Phlebotomine sandflies are the primary vectors of Leishmania parasites, the causative agents of leishmaniasis. In India, Phlebotomus argentipes is the confirmed vector of Leishmania donovani. The sandfly gut microbiota plays a crucial role in Leishmania development and transmission, yet it remains largely understudied. This study used a metagenomic approach targeting the V3–V4 region of the 16S rRNA gene to compare the gut bacterial communities of P. argentipes and Sergentomyia babu prevalent in Kerala. A total of 18 distinct bacterial phyla were identified in P. argentipes, and 14 in S. babu, both dominated by Proteobacteria, Actinobacteria, and Firmicutes. A total of 315 genera were identified in P. argentipes, with a high relative abundance of Pseudomonas (6.3%), whereas S. babu harbored 327 genera, with Pseudomonas showing a higher relative abundance of 11%. Unique to P. argentipes, bacterial phyla such as Fusobacteria, Armatimonadetes, Elusimicrobia, Chlamydiae, and Crenarchaeota were identified, whereas Chlorobi was specific to S. babu. Additionally, 145 species were identified in P. argentipes, compared to 164 species in S. babu. These findings provide a comparative baseline of gut microbial diversity between vector and non-vector sandfly species, offering a foundation for future functional investigations into vector competence. Full article
(This article belongs to the Topic Diversity of Insect-Associated Microorganisms)
Show Figures

Figure 1

56 pages, 750 KiB  
Review
The Role of Hematophagous Arthropods, Other than Mosquitoes and Ticks, in Arbovirus Transmission
by Bradley J. Blitvich
Viruses 2025, 17(7), 932; https://doi.org/10.3390/v17070932 - 30 Jun 2025
Viewed by 421
Abstract
Arthropod-borne viruses (arboviruses) significantly impact human, domestic animal, and wildlife health. While most arboviruses are transmitted to vertebrate hosts by blood-feeding mosquitoes and ticks, a growing body of evidence highlights the importance of other hematophagous arthropods in arboviral transmission. These lesser-known vectors, while [...] Read more.
Arthropod-borne viruses (arboviruses) significantly impact human, domestic animal, and wildlife health. While most arboviruses are transmitted to vertebrate hosts by blood-feeding mosquitoes and ticks, a growing body of evidence highlights the importance of other hematophagous arthropods in arboviral transmission. These lesser-known vectors, while often overlooked, can play crucial roles in the maintenance, amplification, and spread of arboviruses. This review summarizes our understanding of hematophagous arthropods, other than mosquitoes and ticks, in arboviral transmission, as well as their associations with non-arboviral viruses. Thirteen arthropod groups are discussed: bat flies, blackflies, cimicids (bat bugs, bed bugs, and bird bugs), Culicoides midges, fleas, hippoboscid flies, lice, mites, muscid flies (including horn flies and stable flies), phlebotomine sandflies, tabanids (including deer flies and horse flies), triatomines, and tsetse flies. Some of these arthropods are regarded as known or likely arboviral vectors, while others have no known role in arbovirus transmission. Particular attention is given to species associated with arboviruses of medical and veterinary significance. As the burden of arboviruses continues to grow, it is critical not to overlook the potential contribution of these lesser-known vectors. Full article
(This article belongs to the Section Invertebrate Viruses)
12 pages, 1598 KiB  
Article
Impact of Thermal Variation on Egg Hatching and the Life Cycle of Aedes (Protomacleaya) terrens (Diptera: Culicidae) in a Laboratory Environment
by Rayane Dias, Manuella Pereira Cerqueira Leite, Guilherme Sanches Corrêa-do-Nascimento, Gabriel Silva Santos, Cecilia Ferreira de Mello, Nathália Menezes de Almeida and Jeronimo Alencar
Life 2025, 15(7), 1038; https://doi.org/10.3390/life15071038 - 30 Jun 2025
Viewed by 379
Abstract
Evaluating the development process of mosquito species under the influence of temperature is essential for understanding their ecology and geographical distribution, as well as assessing their potential as vectors of pathogens. Aedes (Protomacleaya) terrens, a species recognized for its susceptibility [...] Read more.
Evaluating the development process of mosquito species under the influence of temperature is essential for understanding their ecology and geographical distribution, as well as assessing their potential as vectors of pathogens. Aedes (Protomacleaya) terrens, a species recognized for its susceptibility and competence in transmitting the chikungunya virus, serves as a relevant model for research in this context. This study aimed to analyze the influence of temperature on egg hatching and the development cycle of this species to expand knowledge on its biology and implications for public health. During the experiment, 800 eggs were used, collected through 10 ovitraps in a forest remnant located in Uruaçu, Goiás, Brazil. The total number of eggs was divided into four groups, exposed to constant temperatures of 15 ± 2 °C, 20 ± 2 °C, 25 ± 2 °C, and 30 ± 2 °C. After hatching, first-instar larvae were individually separated and monitored daily under controlled conditions until adult emergence. The highest hatching rate occurred at 25 °C, showing an optimal point around 27 °C. Throughout development, temperature significantly reduced the duration of each stage, with the fastest complete cycle at 30 °C, a difference of approximately 10–12 days when compared to 20 °C and approximately 47 days when compared to 25 °C. These results offer valuable insights into the temperature sensitivity of Ae. terrens across its developmental stages, suggesting that each stage has its own optimal temperature. Thus, small variations in responses to environmental conditions and differentiation between sexes may become more pronounced throughout development. In this sense, temperature can affect not only the development and survival of dipterans but also the capacity for virus transmission, as the pathogen influences the reproduction rate and longevity of the vectors. Full article
(This article belongs to the Section Diversity and Ecology)
Show Figures

Figure 1

25 pages, 1439 KiB  
Review
Tick-Borne Viruses in a Changing Climate: The Expanding Threat in Africa and Beyond
by Cara Leonie Ebert and Stefanie C. Becker
Microorganisms 2025, 13(7), 1509; https://doi.org/10.3390/microorganisms13071509 - 28 Jun 2025
Viewed by 444
Abstract
Tick-borne viruses (TBVs), notably Orthonairovirus haemorrhagiae (Crimean–Congo hemorrhagic fever virus, CCHFV), are emerging global health threats intensified by climate change. Rising temperatures and altered precipitation patterns are expanding the habitats of key tick vectors, increasing their survival and reproductive success. The African continent [...] Read more.
Tick-borne viruses (TBVs), notably Orthonairovirus haemorrhagiae (Crimean–Congo hemorrhagic fever virus, CCHFV), are emerging global health threats intensified by climate change. Rising temperatures and altered precipitation patterns are expanding the habitats of key tick vectors, increasing their survival and reproductive success. The African continent is characterized by many different climatic zones, and climatic shifts have increased or changed CCHFV transmission patterns, becoming greater risk to humans and livestock. Beyond Africa, CCHFV spread in Europe, the Middle East, and Asia and has been facilitated by factors such as livestock movement, deforestation, and migratory birds. Climate-driven shifts in tick seasonality, behavior, and vector competence may further enhance viral transmission. Addressing these challenges requires integrated responses, including enhanced surveillance, predictive modeling, and climate-adaptive vector control strategies. A One Health approach—linking environmental, animal, and human health domains—is essential. Innovative strategies such as anti-tick vaccines and sustainable vector control methods offer promise in reducing the burden of these diseases. Proactive, collaborative efforts at regional and international levels are crucial in tackling this growing public health challenge. Full article
(This article belongs to the Section Virology)
Show Figures

Figure 1

6 pages, 197 KiB  
Communication
Evidence of Transmission Capability in UK Culex pipiens for Japanese Encephalitis Virus (JEV) Genotype I and Potential Impact of Climate Change
by Luis M. Hernández-Triana, Sanam Sewgobind, Insiyah Parekh, Nicholas Johnson and Karen L. Mansfield
Viruses 2025, 17(7), 869; https://doi.org/10.3390/v17070869 - 20 Jun 2025
Viewed by 424
Abstract
Japanese encephalitis virus (JEV) is a mosquito-borne orthoflavivirus and a major cause of human encephalitis throughout Asia, although it is currently not reported in Europe. To assess the potential impact of climate change, such as increased temperatures, and the potential for native Cx. [...] Read more.
Japanese encephalitis virus (JEV) is a mosquito-borne orthoflavivirus and a major cause of human encephalitis throughout Asia, although it is currently not reported in Europe. To assess the potential impact of climate change, such as increased temperatures, and the potential for native Cx. pipiens to transmit JEV genotype I in the United Kingdom (UK), we have investigated vector competence at two different temperatures. Culex pipiens f. pipiens were provided a bloodmeal containing JEV genotype I at 7.8 × 108 PFU/mL. Mosquitoes were maintained for 14 days at 21 °C or 25 °C, and rates of infection, dissemination, and transmission potential were assessed. There was no evidence for virus infection, dissemination, or potential for transmission at 21 °C. However, at 25 °C, virus infection was detected in 5 of 36 mosquitoes (13.9%). Of these, JEV disseminated to legs and wings in three specimens (3/5) and viral RNA was detected in saliva from one specimen (1/3). These data indicate that at elevated temperatures of 25 °C, UK Cx. pipiens f. pipiens could transmit JEV genotype 1. Full article
(This article belongs to the Section Invertebrate Viruses)
16 pages, 1811 KiB  
Article
Exceptional Heme Tolerance in Serratia plymuthica: Proteomic Insights into Oxidative Stress Adaptation in the Aedes aegypti Midgut
by Sâmella da Hora Machado, Rívea Cristina Custódio Rodrigues, Maria Aparecida Aride Bertonceli, Analiz de Oliveira Gaio, Gabriela Petroceli-Mota, Ricardo de Souza Reis, Marília Amorim Berbert-Molina, Vanildo Silveira and Francisco José Alves Lemos
Life 2025, 15(6), 950; https://doi.org/10.3390/life15060950 - 13 Jun 2025
Viewed by 614
Abstract
Serratia plymuthica, isolated from the midgut of Aedes aegypti, displays remarkable resilience to hemin, a toxic hemoglobin byproduct generated during blood digestion. This study explores its proteomic adaptations under oxidative stress induced by 5 mM hemin, mimicking midgut conditions. Growth assays [...] Read more.
Serratia plymuthica, isolated from the midgut of Aedes aegypti, displays remarkable resilience to hemin, a toxic hemoglobin byproduct generated during blood digestion. This study explores its proteomic adaptations under oxidative stress induced by 5 mM hemin, mimicking midgut conditions. Growth assays demonstrated that S. plymuthica tolerated hemin concentrations ranging from 5 µM to 1 mM, reaching the stationary phase within approximately 10 h. Colonies exhibited morphological changes—darkened peripheries and translucent halos—suggesting heme accumulation and detoxification. Label-free quantitative proteomics identified 436 proteins, among which 28 were significantly upregulated—including universal stress proteins (USPs), ABC transporters, and flavodoxin—while 54 were downregulated, including superoxide dismutase and several ribosomal proteins. Upregulated proteins were associated with antioxidant defense, heme transport, and redox regulation, whereas downregulated proteins suggested metabolic reprogramming to conserve energy under stress. Functional enrichment analysis revealed significant alterations in transmembrane transport, oxidative stress response, and central metabolism. These findings suggest that S. plymuthica contributes to redox homeostasis in the mosquito gut by mitigating reactive oxygen species (ROS) and detoxifying excess heme, supporting its role as a beneficial symbiont. The observed stress tolerance mechanisms may influence mosquito physiology and vector competence, offering novel insights into mosquito–microbiota interactions and potential microbiota-based strategies for vector control. Full article
(This article belongs to the Section Proteins and Proteomics)
Show Figures

Figure 1

9 pages, 511 KiB  
Brief Report
Immunotherapeutic Blockade of CD47 Increases Virus Neutralization Antibodies
by Lamin B. Cham, Thamer A. Hamdan, Hilal Bhat, Bello Sirajo, Murtaza Ali, Khaled Saeed Tabbara, Eman Farid, Mohamed-Ridha Barbouche and Tom Adomati
Vaccines 2025, 13(6), 602; https://doi.org/10.3390/vaccines13060602 - 31 May 2025
Viewed by 716
Abstract
Background/Objectives: CD47 is a cell surface glycoprotein moderately expressed in healthy cells and upregulated in cancer and viral infected cells. CD47’s interaction with signal regulatory protein alpha (SIRPα) inhibits phagocytic cells and its interaction with thrombospondin-1 inhibits T cell response. Experimental evidence has [...] Read more.
Background/Objectives: CD47 is a cell surface glycoprotein moderately expressed in healthy cells and upregulated in cancer and viral infected cells. CD47’s interaction with signal regulatory protein alpha (SIRPα) inhibits phagocytic cells and its interaction with thrombospondin-1 inhibits T cell response. Experimental evidence has revealed that the blockade of CD47 resulted in the increased activation and function of both innate and adaptive immune cells, therefore exerting antitumoral and antiviral effects. Recent studies have shown that the combination of vaccines and immune checkpoint inhibitors could be a promising approach to increasing vaccine immunogenicity. Here, we investigated the vaccinal effect of anti-CD47 antibodies and discussed the possibilities of combining anti-CD47 treatments with vaccines. Methods: Using vesicular stomatitis virus (VSV), a widely used replication-competent vaccine vector, we evaluated the impact of the immunotherapeutic blockade of CD47 on cellular, humoral, and protective immunity. We infected C57BL/6 mice with VSV, treated them with anti-CD47 antibodies or an isotype, and evaluated the total immunoglobulin (Ig), IgG neutralizing antibodies, B cell activation, CD8+ T cell effector function, and survival of the mice. Results: We found that the treatments of anti-CD47 antibodies led to significantly increased Ig and IgG neutralizing antibody levels compared to the isotype treatment. Flow cytometric analysis of B cells revealed no difference in the number of circulating B cells; however, we observed an increased surface expression of CD80 and CD86 in B cells among anti-CD47-treated mice. Further analysis of the impact of CD47 blockade on T immunity revealed a significantly higher percentage of IFN-γ+ CD4 and IFN-γ+ CD8 T cells in anti-CD47-treated mice. Upon infecting mice with a lethal VSV dose, we observed a significantly higher survival rate among the anti-CD47-treated mice compared to control mice. Conclusions: Our results indicate that anti-CD47 treatment induces a stronger cellular and humoral immune response, leading to better protection. As such, immunotherapy by CD47 blockade in combination with vaccines could be a promising approach to improve vaccine efficacy. Full article
(This article belongs to the Section Vaccines against Infectious Diseases)
Show Figures

Figure 1

7 pages, 195 KiB  
Communication
Chagas Disease in Latin America and the United States: Factors Influencing Differences in Transmission Rates Among Differing Populations and Vectors
by Stephen A. Klotz
Insects 2025, 16(6), 570; https://doi.org/10.3390/insects16060570 - 28 May 2025
Viewed by 681
Abstract
Autochthonous Chagas disease remains a health risk for humans in Latin American countries but is rarely found among residents of the United States (US), despite the presence of competent insect vectors and small mammal reservoirs of Trypanosoma cruzi in the lower two-thirds of [...] Read more.
Autochthonous Chagas disease remains a health risk for humans in Latin American countries but is rarely found among residents of the United States (US), despite the presence of competent insect vectors and small mammal reservoirs of Trypanosoma cruzi in the lower two-thirds of the US. This report discusses the differences in the rates of autochthonous Chagas disease in Latin America and the US. The key to the differences may lie in the mode (or means) of transmission of parasites to humans. In both Latin America and the US, the so-called vectorial transmission of Chagas disease to humans is the mode of acquisition accepted by most authorities. This mode involves the improbable combination of an infected kissing bug defecating near the mouth or eyes or the site of the bite, followed by the bite victim rubbing infected feces into the wound site or mucous membranes. Outbreaks of Chagas disease due to fecal–oral contamination, known as oral Chagas, have been recorded in Latin America for decades, and at present, oral Chagas is the predominant mode of infection recognized in Brazil. It is perhaps time to consider fecal–oral transmission in its many manifestations as a risk factor for Chagas disease in the US rather than reflexively invoking vectorial transmission. Fecal–oral transmission includes contamination of food and drink by triatomine feces and infection via contaminated fomites and surfaces at home and at worksites, as well as transmission from infected small mammals and other routes discussed in this report. Full article
(This article belongs to the Section Medical and Livestock Entomology)
10 pages, 2226 KiB  
Case Report
How Common Is Imported Cutaneous Leishmaniasis in Romania? Two Case Reports
by Victoria Birlutiu, Gabriela Iancu, Rares-Mircea Birlutiu and Simin Aysel Florescu
Microorganisms 2025, 13(6), 1207; https://doi.org/10.3390/microorganisms13061207 - 25 May 2025
Viewed by 676
Abstract
Background: Leishmaniasis is a vector-borne zoonotic disease caused by protozoa of the genus Leishmania. While it is endemic in the Mediterranean Basin and the Balkans, Romania remains a non-endemic country. However, climate change, increased international travel, and the documented presence of competent [...] Read more.
Background: Leishmaniasis is a vector-borne zoonotic disease caused by protozoa of the genus Leishmania. While it is endemic in the Mediterranean Basin and the Balkans, Romania remains a non-endemic country. However, climate change, increased international travel, and the documented presence of competent vectors (Phlebotomus spp.) have raised concerns about the potential emergence of autochthonous cases. Case Presentation: We report two cases of imported cutaneous leishmaniasis (CL) diagnosed in central Romania, a region without previously confirmed human or animal cases. The first case involved a 31-year-old male with a recent travel history to Spain, presenting with erythematous papules and plaques that evolved into ulcerated lesions. The diagnosis was confirmed histopathologically and by a PCR. Treatment with miltefosine was effective, with minimal hepatic toxicity and a sustained response at a six-month follow-up. The second case concerned an 11-year-old boy who had traveled to Elba, Italy. He developed ulcerative lesions that progressed rapidly and were complicated by Pseudomonas aeruginosa superinfection. Despite an initially negative smear, PCR testing of the skin lesion confirmed the presence of CL. Antifungal therapy with fluconazole led to clinical improvement; treatment was ongoing at the time of publication. Discussion: These cases highlight the diagnostic and therapeutic challenges associated with CL in non-endemic settings. The varied clinical evolution underscores the importance of considering leishmaniasis in the differential diagnosis of chronic, non-healing cutaneous lesions, particularly in patients with a travel history to endemic regions. Conclusions: Increased awareness among clinicians, supported by accurate diagnostic tools and public health surveillance, is essential to identify and manage imported leishmaniasis. Given the absence of a licensed vaccine and the growing risk of vector expansion in Eastern Europe, these cases support the WHO’s inclusion of leishmaniasis among the priority neglected tropical diseases targeted for intensified global control efforts by 2030. Full article
(This article belongs to the Special Issue Infectious Disease Surveillance in Romania)
Show Figures

Figure 1

11 pages, 1773 KiB  
Article
First Molecular Identification of Zoonotic Babesia odocoilei in Ticks from Romania
by Ioan Cristian Dreghiciu, Diana Hoffman, Simona Dumitru, Ion Oprescu, Mirela Imre, Tiana Florea, Anamaria Plesko, Vlad Iorgoni, Sorin Morariu, Gheorghe Dărăbuș and Marius Stelian Ilie
Microorganisms 2025, 13(6), 1182; https://doi.org/10.3390/microorganisms13061182 - 22 May 2025
Viewed by 631
Abstract
Babesia odocoilei is an emerging zoonotic protozoan parasite primarily associated with cervids, with growing recognition among non-cervid hosts and in terms of potential public health implications. While this species has been documented in North America and parts of Europe, data on its presence [...] Read more.
Babesia odocoilei is an emerging zoonotic protozoan parasite primarily associated with cervids, with growing recognition among non-cervid hosts and in terms of potential public health implications. While this species has been documented in North America and parts of Europe, data on its presence in Romania remain scarce. This study aimed to investigate the presence of Babesia spp. in ticks collected from Romania, providing new information on the existing species and their distribution, as well as their potential epidemiologic significance. A total of 41 Ixodidae ticks were collected from 184 wild boars across six counties from Western and Central Romania. Ticks were identified using morphological assessments, and DNA was extracted from the samples using a standardized protocol. The presence of Babesia spp. was assessed using real-time PCR with primers and a Taq Man probe targeting 116 bp fragments of 18S rRNA genes. Molecular analysis was used to detect Babesia spp. DNA from a single tick sample (1/41, 2.43%), identified as Dermacentor marginatus, from Timiș County. The resulting amplicons were sequenced and compared with reference sequences in GenBank for species confirmation. This finding represents the first molecular identification of B. odocoilei in questing ticks from Romania. The expanding host range and geographic distribution of B. odocoilei raise concerns regarding its zoonotic potential. The presence of this pathogen in Dermacentor marginatus ticks suggests a broader vector competence than previously recognized, and future research should focus on host reservoirs, vector competence, and potential zoonotic transmission, with an emphasis on public health implications, including potential implications for veterinary diagnostics, vector control policies, and public health awareness regarding emerging tick-borne pathogens. Full article
(This article belongs to the Special Issue Ticks and Threats: Insights on Tick-Borne Diseases)
Show Figures

Figure 1

26 pages, 2363 KiB  
Article
Generative Artificial Intelligence-Enabled Facility Layout Design Paradigm
by Fuwen Hu, Chun Wang and Xuefei Wu
Appl. Sci. 2025, 15(10), 5697; https://doi.org/10.3390/app15105697 - 20 May 2025
Cited by 1 | Viewed by 2017
Abstract
Facility layout design (FLD) is critical for optimizing manufacturing efficiency, yet traditional approaches struggle with complexity, dynamic constraints, and fragmented data integration. This study proposes a generative-AI-enabled facility layout design, a novel paradigm aligning with Industry 4.0, to address these challenges by integrating [...] Read more.
Facility layout design (FLD) is critical for optimizing manufacturing efficiency, yet traditional approaches struggle with complexity, dynamic constraints, and fragmented data integration. This study proposes a generative-AI-enabled facility layout design, a novel paradigm aligning with Industry 4.0, to address these challenges by integrating generative artificial intelligence (AI), semantic models, and data-driven optimization. The proposed method evolves from three historical paradigms: experience-based methods, operations research, and simulation-based engineering. The metamodels supporting the generative-AI-enabled facility layout design is the Asset Administration Shell (AAS), which digitizes physical assets and their relationships, enabling interoperability across systems. Domain-specific knowledge graphs, constructed by parsing AAS metadata and enriched by large language models (LLMs), capture multifaceted relationships (e.g., spatial adjacency, process dependencies, safety constraints) to guide layout generation. The convolutional knowledge graph embedding (ConvE) method is employed for link prediction, converting entities and relationships into low-dimensional vectors to infer optimal spatial arrangements while addressing data sparsity through negative sampling. The proposed reference architecture for generative-AI-enabled facility layout design supports end-to-end layout design, featuring a 3D visualization engine, AI-driven optimization, and real-time digital twins. Prototype testing demonstrates the system’s end-to-end generation ability from requirement-driven contextual prompts and extensively reduced complexity of modeling, integration, and optimization. Key innovations include the fusion of AAS with LLM-derived contextual knowledge, dynamic adaptation via big data streams, and a hybrid optimization approach balancing competing objectives. The 3D layout generation results demonstrate a scalable, adaptive solution for storage workshops, bridging gaps between isolated data models and human–AI collaboration. This research establishes a foundational framework for AI-driven facility planning, offering actionable insights for AI-enabled facility layout design adoption and highlighting future directions in the generative design of complex engineering. Full article
Show Figures

Figure 1

18 pages, 1451 KiB  
Systematic Review
Viruses in Simuliidae: An Updated Systematic Review of Arboviral Diversity and Vector Potential
by Alejandra Rivera-Martínez, S. Viridiana Laredo-Tiscareño, Jaime R. Adame-Gallegos, Erick de Jesús de Luna-Santillana, Carlos A. Rodríguez-Alarcón, Julián E. García-Rejón, Mauricio Casas-Martínez and Javier A. Garza-Hernández
Life 2025, 15(5), 807; https://doi.org/10.3390/life15050807 - 19 May 2025
Cited by 1 | Viewed by 1016
Abstract
Black flies (Diptera: Simuliidae) are important vectors of pathogens, including filarial nematodes, protozoans, and arboviruses, which significantly impact human and animal health. Although their role in arbovirus transmission has not been as thoroughly studied as that of mosquitoes and ticks, advances in molecular [...] Read more.
Black flies (Diptera: Simuliidae) are important vectors of pathogens, including filarial nematodes, protozoans, and arboviruses, which significantly impact human and animal health. Although their role in arbovirus transmission has not been as thoroughly studied as that of mosquitoes and ticks, advances in molecular tools, particularly metagenomics, have enabled the identification of non-cultivable viruses, significantly enhancing our understanding of black-fly-borne viral diversity and their public and veterinary health implications. However, these methods can also detect insect-specific viruses (i.e., viruses that are unable to replicate in vertebrate hosts), which may lead to the incorrect classification of black flies as potential vectors. This underscores the need for further research into their ecological and epidemiological roles. This systematic review, conducted following the PRISMA protocol, compiled and analyzed evidence on arbovirus detection in Simuliidae from scientific databases. Several arboviruses were identified in these insects, including vesicular stomatitis virus New Jersey serotype (VSVNJ), Venezuelan equine encephalitis virus (VEEV), and Rift Valley fever virus. Additionally, in vitro studies evaluating the vector competence of Simuliidae for arboviruses such as dengue virus, Murray Valley encephalitis virus, and Sindbis virus were reviewed. These findings provide critical insights into the potential role of black flies in arbovirus transmission cycles, emphasizing their importance as vectors in both public and veterinary health contexts. Full article
(This article belongs to the Section Epidemiology)
Show Figures

Figure 1

Back to TopTop