Metagenomic Analyses of Gut Bacteria of Two Sandfly Species from Western Ghats, India, Differing in Their Vector Competence for Leishmaniasis
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Processing and Identification of Field-Collected Sandflies
2.3. DNA Extraction, PCR Amplification, and 16S rRNA Sequencing
2.4. Bioinformatic Analysis of Amplicon Sequencing Data
3. Results
3.1. Next-Generation Sequencing (NGS) Data of Gut Bacteria of P. argentipes (PAG-1) and S. babu (SBG-2)
3.2. Taxonomic Composition of Gut Bacteria
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Health Topics. Leishmaniasis. Available online: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis (accessed on 7 July 2024).
- Srinivasan, R.; Kumar, N.P.; Jambulingam, P. Detection of natural infection of Leishmania donovani (Kinetoplastida: Trypanosomatidae) in Phlebotomus argentipes (Diptera: Psychodidae) from a forest ecosystem in the Western Ghats, India, endemic for cutaneous leishmaniasis. Acta Trop. 2016, 156, 95–99. [Google Scholar] [CrossRef]
- Saini, P.; Kumar, N.P.; Ajithlal, P.M.; Joji, A.; Rajesh, K.R.; Reena, K.J.; Kumar, A. Visceral Leishmaniasis Caused by Leishmania donovani Zymodeme MON-37, Western Ghats, India. Emerg. Infect. Dis. 2020, 26, 1956–1958. [Google Scholar] [CrossRef] [PubMed]
- Tiwary, P.; Kumar, D.; Singh, R.P.; Rai, M.; Sundar, S. Prevalence of sandflies and Leishmania donovani infection in a natural population of female Phlebotomus argentipes in Bihar State, India. Vector Borne Zoonotic Dis. 2012, 12, 467–472. [Google Scholar] [CrossRef]
- Campino, L.; Cortes, S.; Dionisio, L.; Neto, L.; Afonso, M.O.; Maia, C. The first detection of Leishmania major in naturally infected Sergentomyia minuta in Portugal. Mem. Inst. Oswaldo Cruz 2013, 108, 516–518. [Google Scholar] [CrossRef]
- Maia, C.; Depaquit, J. Can Sergentomyia (Diptera, Psychodidae) play a role in the transmission of mammal-infecting Leishmania? Parasite 2016, 23, 55. [Google Scholar] [CrossRef] [PubMed]
- Sadlova, J.; Dvorak, V.; Seblova, V.; Warburg, A.; Votypka, J.; Volf, P. Sergentomyia schwetzi is not a competent vector for Leishmania donovani and other Leishmania species pathogenic to humans. Parasites Vectors 2013, 6, 186. [Google Scholar] [CrossRef]
- Fraihi, W.; Fares, W.; Perrin, P.; Dorkeld, F.; Sereno, D.; Barhoumi, W.; Sbissi, I.; Cherni, S.; Chelbi, I.; Durvasula, R.; et al. An integrated overview of the midgut bacterial flora composition of Phlebotomus perniciosus, a vector of zoonotic visceral leishmaniasis in the Western Mediterranean Basin. PLoS Negl. Trop. Dis. 2017, 11, e0005484. [Google Scholar] [CrossRef]
- Karimian, F.; Koosha, M.; Choubdar, N.; Oshaghi, M.A. Comparative analysis of the gut microbiota of sandfly vectors of zoonotic visceral leishmaniasis (ZVL) in Iran; host-environment interplay shapes diversity. PLoS Negl. Trop. Dis. 2022, 16, e0010609. [Google Scholar] [CrossRef]
- Kelly, P.H.; Bahr, S.M.; Serafim, T.D.; Ajami, N.J.; Petrosino, J.F.; Meneses, C.; Kirby, J.R.; Valenzuela, J.G.; Kamhawi, S.; Wilson, M.E. The gut microbiome of the vector Lutzomyia longipalpis is essential for survival of Leishmania infantum. mBio 2017, 8, e01121-16. [Google Scholar] [CrossRef]
- Vaselek, S.; Alten, B. Microbial ecology of sandflies-the correlation between nutrition, Phlebotomus papatasi sandfly development and microbiome. Front. Vet. Sci. 2025, 11, 1522917. [Google Scholar] [CrossRef]
- Vivero, R.J.; Villegas-Plazas, M.; Cadavid-Restrepo, G.E.; Herrera, C.X.M.; Uribe, S.I.; Junca, H. Wild specimens of sandfly phlebotomine Lutzomyia evansi, vector of leishmaniasis, show high abundance of Methylobacterium and natural carriage of Wolbachia and Cardinium types in the midgut microbiome. Sci. Rep. 2019, 9, 17746. [Google Scholar] [CrossRef]
- Tabbabi, A.; Mizushima, D.; Yamamoto, D.S.; Kato, H. Sandflies and their microbiota. Parasitologia 2022, 2, 71–87. [Google Scholar] [CrossRef]
- Weiss, B.; Aksoy, S. Microbiome influences on insect host vector competence. Trends Parasitol. 2011, 27, 514–522. [Google Scholar] [CrossRef]
- Dostálová, A.; Volf, P. Leishmania development in sand flies: Parasite-vector interactions overview. Parasites Vectors 2012, 5, 276. [Google Scholar] [CrossRef]
- Dillon, R.J.; Lane, R.P. Influence of Leishmania infection on blood-meal digestion in the sandflies Phlebotomus papatasi and P. langeroni. Parasitol. Res. 1993, 79, 492–496. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, J.; Braig, H.R.; Rowton, E.D.; Ghosh, K. Naturally occurring culturable aerobic gut flora of adult Phlebotomus papatasi, vector of Leishmania major in the Old World. PLoS ONE 2012, 7, e35748. [Google Scholar] [CrossRef]
- Karimian, F.; Vatandoost, H.; Rassi, Y.; Maleki-Ravasan, N.; Mohebali, M.; Shirazi, M.H.; Koosha, M.; Choubdar, N.; Oshaghi, M.A. Aerobic midgut microbiota of sand fly vectors of zoonotic visceral leishmaniasis from Northern Iran, a step toward finding potential paratransgenic candidates. Parasites Vectors 2019, 12, 10. [Google Scholar] [CrossRef]
- Gunathilaka, N.; Perera, H.; Wijerathna, T.; Rodrigo, W.; Wijegunawardana, N.D.A.D. The diversity of midgut bacteria among wild-caught Phlebotomus argentipes (Psychodidae: Phlebotominae), the vector of leishmaniasis in Sri Lanka. Biomed. Res. Int. 2020, 2020, 5458063. [Google Scholar] [CrossRef]
- Handelsman, J. Metagenomics: Application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev. 2004, 68, 669–685. [Google Scholar] [CrossRef]
- Garza, D.R.; Dutilh, B.E. From cultured to uncultured genome sequences: Metagenomics and modeling microbial ecosystems. Cell Mol. Life Sci. 2015, 72, 4287–4308. [Google Scholar] [CrossRef]
- Monteiro, C.C.; Villegas, L.E.; Campolina, T.B.; Pires, A.C.; Miranda, J.C.; Pimenta, P.F.; Secundino, N.F. Bacterial diversity of the American sand fly Lutzomyia intermedia using high-throughput metagenomic sequencing. Parasites Vectors 2016, 9, 480. [Google Scholar] [CrossRef] [PubMed]
- Vaselek, S. Overview of microbial studies in sandflies and their progress toward development of paratransgenic approach for the control of Leishmania sp. Front. Trop. Dis. 2024, 5, 1369077. [Google Scholar] [CrossRef]
- Lewis, D.J. The phlebotomine sandflies (Diptera: Psychodidae) of the Oriental Region. Bull. Br. Mus. Nat. Hist. Entomol. 1978, 37, 217–343. [Google Scholar]
- Kalra, N.L.; Bang, Y.H. Manual on Entomology in Visceral Leishmaniasis; World Health Organization: New Delhi, India, 1988. [Google Scholar]
- Ilango, K. A taxonomic reassessment of the Phlebotomus argentipes species complex (Diptera: Psychodidae: Phlebotominae). J. Med. Entomol. 2010, 47, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Sambrook, J.; Russell, D.W. Purification of nucleic acids by extraction with phenol:chloroform. CSH Protoc. 2006, 1, prot4455. [Google Scholar] [CrossRef]
- Casaril, A.E.; De Oliveira, L.P.; Alonso, D.P.; de Oliveira, E.F.; Barrios, S.P.G.; Infran, J.d.O.M.; Fernandes, W.d.S.; Oshiro, E.T.; Ferreira, A.M.T.; Ribolla, P.E.M.; et al. Standardization of DNA extraction from sand flies: Application to genotyping by next generation sequencing. Exp. Parasitol. 2017, 177, 66–72. [Google Scholar]
- Ashigar, M.A.; Ab Majid, A.H. 16S rRNA metagenomic data of microbial diversity of Pheidole decarinata Santschi (Hymenoptera: Formicidae) workers. Data Brief 2020, 31, 106037. [Google Scholar] [CrossRef]
- Lu, J.; Salzberg, S.L. Ultrafast and accurate 16S rRNA microbial community analysis using Kraken 2. Microbiome 2020, 8, 124. [Google Scholar] [CrossRef]
- Wood, D.E.; Lu, J.; Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019, 20, 257. [Google Scholar] [CrossRef]
- Odom, A.R.; Faits, T.; Castro-Nallar, E.; Crandall, K.A.; Johnson, W.E. Metagenomic profiling pipelines improve taxonomic classification for 16S amplicon sequencing data. Sci. Rep. 2023, 13, 13957. [Google Scholar] [CrossRef]
- Dillon, R.J.; Dillon, V.M. The gut bacteria of insects: Non-pathogenic interactions. Annu. Rev. Entomol. 2004, 49, 71–92. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.H.; Gamez, S.; Raban, R.R.; Marshall, J.M.; Alphey, L.; Li, M.; Rasgon, J.L.; Akbari, O.S. Combating mosquito-borne diseases using genetic control technologies. Nat. Commun. 2021, 12, 4388. [Google Scholar] [CrossRef] [PubMed]
- Tikhe, C.V.; Issiaka, S.; Dong, Y.; Kefi, M.; Tavadia, M.; Bilgo, E.; Corder, R.M.; Marshall, J.; Diabate, A.; Dimopoulos, G. Chromobacterium biopesticide overcomes insecticide resistance in malaria vector mosquitoes. Sci. Adv. 2024, 10, eads3658. [Google Scholar]
- Mfopit, Y.M.; Bilgo, E.; Boma, S.; Somda, M.B.; Gnambani, J.E.; Konkobo, M.; Diabate, A.; Dayo, G.-K.; Mamman, M.; Kelm, S.; et al. Symbiotic bacteria Sodalis glossinidius, Spiroplasma sp. and Wolbachia do not favour Trypanosoma grayi coexistence in wild population of tsetse flies collected in Bobo-Dioulasso, Burkina Faso. BMC Microbiol. 2024, 24, 373. [Google Scholar] [CrossRef]
- Akhoundi, M.; Bakhtiari, R.; Guillard, T.; Baghaei, A.; Tolouei, R.; Sereno, D.; Toubas, D.; Depaquit, J.; Abyaneh, M.R. Diversity of the bacterial and fungal microflora from the midgut and cuticle of phlebotomine sand flies collected in North-Western Iran. PLoS ONE 2012, 7, e50259. [Google Scholar] [CrossRef]
- Campolina, T.B.; Villegas, L.E.M.; Monteiro, C.C.; Pimenta, P.F.P.; Secundino, N.F.C. Tripartite interactions: Leishmania, microbiota and Lutzomyia longipalpis. PLoS Negl. Trop. Dis. 2020, 14, e0008666. [Google Scholar] [CrossRef]
- Sant’Anna, M.R.V.; Darby, A.C.; Brazil, R.P.; Montoya-Lerma, J.; Dillon, V.M.; Bates, P.A.; Dillon, R.J. Investigation of the bacterial communities associated with females of Lutzomyia sandfly species from South America. PLoS ONE 2012, 7, e42531. [Google Scholar] [CrossRef]
- Yasika, Y.; Shivakumar, M.S. A comprehensive account of functional role of insect gut microbiome in insect orders. J. Nat. Pestic. Res. 2025, 11, 100110. [Google Scholar] [CrossRef]
- Hofstad, T. The genus Fusobacterium. In The Prokaryotes; Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., Stackebrandt, E., Eds.; Springer: New York, NY, USA, 2006; pp. 1016–1027. [Google Scholar]
- Lee, K.C.Y.; Dunfield, P.F.; Stott, M.B. The Phylum Armatimonadetes. In The Prokaryotes: Other Major Lineages of Bacteria and the Archaea; Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 447–458. [Google Scholar]
- Liu, X.-D.; Guo, H.-F. Importance of endosymbionts Wolbachia and Rickettsia in insect resistance development. Curr. Opin. Insect Sci. 2019, 33, 84–90. [Google Scholar] [CrossRef]
- Zhang, J.; Kelly, P.J.; Lu, G.; Cruz-Martinez, L.; Wang, C. Rickettsia in mosquitoes, Yangzhou, China. Emerg. Microbes Infect. 2016, 5, e95. [Google Scholar] [CrossRef]
- Socolovschi, C.; Parola, P.; Raoult, D. Rickettsia species in African and European mosquitoes. Parasites Vectors 2012, 5, 103. [Google Scholar] [CrossRef]
- Barua, S.; Hoque, M.M.; Kelly, P.J.; Poudel, A.; Adekanmbi, F.; Kalalah, A.; Yang, Y.; Wang, C. First report of Rickettsia felis in mosquitoes, USA. Emerg. Microbes Infect. 2020, 9, 1008–1010. [Google Scholar] [CrossRef] [PubMed]
- Ticha, L.; Volfova, V.; Mendoza-Roldan, J.A.; Bezerra-Santos, M.A.; Maia, C.; Sadlova, J.; Otranto, D.; Volf, P. Experimental feeding of Sergentomyia minuta on reptiles and mammals: Comparison with Phlebotomus papatasi. Parasites Vectors 2023, 16, 126. [Google Scholar] [CrossRef] [PubMed]
Parameters | P. argentipes (PAG-1) | S. babu (SBG-2) |
---|---|---|
No. of raw reads | 378,038 | 321,964 |
No. of taxonomic assignments | 629 | 641 |
Total Number of bases | 113,789,438 | 96,911,164 |
Average read length (bp) | 301 | 301 |
GC content (%) | 55 | 55 |
Average read quality score | 32.75 | 32.81 |
Taxa Level | P. argentipes (PAG-1) | S. babu (SBG-2) |
---|---|---|
Phyla | 18 | 14 |
Classes | 41 | 40 |
Orders | 100 | 96 |
Families | 181 | 108 |
Genera | 315 | 327 |
Species | 145 | 164 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tom, A.; Yellapu, N.K.; Rahi, M.; Saini, P. Metagenomic Analyses of Gut Bacteria of Two Sandfly Species from Western Ghats, India, Differing in Their Vector Competence for Leishmaniasis. Microorganisms 2025, 13, 1615. https://doi.org/10.3390/microorganisms13071615
Tom A, Yellapu NK, Rahi M, Saini P. Metagenomic Analyses of Gut Bacteria of Two Sandfly Species from Western Ghats, India, Differing in Their Vector Competence for Leishmaniasis. Microorganisms. 2025; 13(7):1615. https://doi.org/10.3390/microorganisms13071615
Chicago/Turabian StyleTom, Anns, Nanda Kumar Yellapu, Manju Rahi, and Prasanta Saini. 2025. "Metagenomic Analyses of Gut Bacteria of Two Sandfly Species from Western Ghats, India, Differing in Their Vector Competence for Leishmaniasis" Microorganisms 13, no. 7: 1615. https://doi.org/10.3390/microorganisms13071615
APA StyleTom, A., Yellapu, N. K., Rahi, M., & Saini, P. (2025). Metagenomic Analyses of Gut Bacteria of Two Sandfly Species from Western Ghats, India, Differing in Their Vector Competence for Leishmaniasis. Microorganisms, 13(7), 1615. https://doi.org/10.3390/microorganisms13071615