Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (454)

Search Parameters:
Keywords = VPP

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3579 KiB  
Article
Dual-Control-Gate Reconfigurable Ion-Sensitive Field-Effect Transistor with Nickel-Silicide Contacts for Adaptive and High-Sensitivity Chemical Sensing Beyond the Nernst Limit
by Seung-Jin Lee, Seung-Hyun Lee, Seung-Hwa Choi and Won-Ju Cho
Chemosensors 2025, 13(8), 281; https://doi.org/10.3390/chemosensors13080281 (registering DOI) - 2 Aug 2025
Abstract
In this study, we propose a bidirectional chemical sensor platform based on a reconfigurable ion-sensitive field-effect transistor (R-ISFET) architecture. The device incorporates Ni-silicide Schottky barrier source/drain (S/D) contacts, enabling ambipolar conduction and bidirectional turn-on behavior for both p-type and n-type configurations. Channel polarity [...] Read more.
In this study, we propose a bidirectional chemical sensor platform based on a reconfigurable ion-sensitive field-effect transistor (R-ISFET) architecture. The device incorporates Ni-silicide Schottky barrier source/drain (S/D) contacts, enabling ambipolar conduction and bidirectional turn-on behavior for both p-type and n-type configurations. Channel polarity is dynamically controlled via the program gate (PG), while the control gate (CG) suppresses leakage current, enhancing operational stability and energy efficiency. A dual-control-gate (DCG) structure enhances capacitive coupling, enabling sensitivity beyond the Nernst limit without external amplification. The extended-gate (EG) architecture physically separates the transistor and sensing regions, improving durability and long-term reliability. Electrical characteristics were evaluated through transfer and output curves, and carrier transport mechanisms were analyzed using band diagrams. Sensor performance—including sensitivity, hysteresis, and drift—was assessed under various pH conditions and external noise up to 5 Vpp (i.e., peak-to-peak voltage). The n-type configuration exhibited high mobility and fast response, while the p-type configuration demonstrated excellent noise immunity and low drift. Both modes showed consistent sensitivity trends, confirming the feasibility of complementary sensing. These results indicate that the proposed R-ISFET sensor enables selective mode switching for high sensitivity and robust operation, offering strong potential for next-generation biosensing and chemical detection. Full article
(This article belongs to the Section Electrochemical Devices and Sensors)
Show Figures

Figure 1

19 pages, 1020 KiB  
Article
Optimizing Power Sharing and Demand Reduction in Distributed Energy Resources for Apartments Through Tenant Incentivization
by Janak Nambiar, Samson Yu, Jag Makam and Hieu Trinh
Energies 2025, 18(15), 4073; https://doi.org/10.3390/en18154073 (registering DOI) - 31 Jul 2025
Abstract
The increasing demand for electricity in multi-tenanted residential areas has placed unforeseen strain on sub-transformers, particularly in dense urban environments. This strain compromises overall grid performance and challenges utilities with shifting and rising peak demand periods. This study presents a novel approach to [...] Read more.
The increasing demand for electricity in multi-tenanted residential areas has placed unforeseen strain on sub-transformers, particularly in dense urban environments. This strain compromises overall grid performance and challenges utilities with shifting and rising peak demand periods. This study presents a novel approach to enhance the operation of a virtual power plant (VPP) comprising a microgrid (MG) integrated with renewable energy sources (RESs) and energy storage systems (ESSs). By employing an advanced monitoring and control system, the proposed topology enables efficient energy management and demand-side control within apartment complexes. The system supports controlled electricity distribution, reducing the likelihood of unpredictable demand spikes and alleviating stress on local infrastructure during peak periods. Additionally, the model capitalizes on the large number of tenancies to distribute electricity effectively, leveraging locally available RESs and ESSs behind the sub-transformer. The proposed research provides a systematic framework for managing electricity demand and optimizing resource utilization, contributing to grid reliability and a transition toward a more sustainable, decentralized energy system. Full article
20 pages, 1942 KiB  
Article
Dispatch Instruction Disaggregation for Virtual Power Plants Using Multi-Parametric Programming
by Zhikai Zhang and Yanfang Wei
Energies 2025, 18(15), 4060; https://doi.org/10.3390/en18154060 (registering DOI) - 31 Jul 2025
Viewed by 32
Abstract
Virtual power plants (VPPs) coordinate distributed energy resources (DERs) to collectively meet grid dispatch instructions. When a dispatch command is issued to a VPP, it must be disaggregated optimally among the individual DERs to minimize overall operational costs. However, existing methods for VPP [...] Read more.
Virtual power plants (VPPs) coordinate distributed energy resources (DERs) to collectively meet grid dispatch instructions. When a dispatch command is issued to a VPP, it must be disaggregated optimally among the individual DERs to minimize overall operational costs. However, existing methods for VPP dispatch instruction disaggregation often require solving complex optimization problems for each instruction, posing challenges for real-time applications. To address this issue, we propose a multi-parametric programming-based method that yields an explicit mapping from any given dispatch instruction to an optimal DER-level deployment strategy. In our approach, a parametric optimization model is formulated to minimize the dispatch cost subject to DER operational constraints. By applying Karush–Kuhn–Tucker (KKT) conditions and recursively partitioning the DERs’ adjustable capacity space into critical regions, we derive analytical expressions that directly map dispatch instructions to their corresponding resource allocation strategies and optimal scheduling costs. This explicit solution eliminates the need to repeatedly solve the optimization problem for each new instruction, enabling fast real-time dispatch decisions. Case study results verify that the proposed method effectively achieves the cost-efficient and computationally efficient disaggregation of dispatch signals in a VPP, thereby improving its operational performance. Full article
Show Figures

Figure 1

45 pages, 770 KiB  
Review
Neural Correlates of Burnout Syndrome Based on Electroencephalography (EEG)—A Mechanistic Review and Discussion of Burnout Syndrome Cognitive Bias Theory
by James Chmiel and Agnieszka Malinowska
J. Clin. Med. 2025, 14(15), 5357; https://doi.org/10.3390/jcm14155357 - 29 Jul 2025
Viewed by 200
Abstract
Introduction: Burnout syndrome, long described as an “occupational phenomenon”, now affects 15–20% of the general workforce and more than 50% of clinicians, teachers, social-care staff and first responders. Its precise nosological standing remains disputed. We conducted a mechanistic review of electroencephalography (EEG) studies [...] Read more.
Introduction: Burnout syndrome, long described as an “occupational phenomenon”, now affects 15–20% of the general workforce and more than 50% of clinicians, teachers, social-care staff and first responders. Its precise nosological standing remains disputed. We conducted a mechanistic review of electroencephalography (EEG) studies to determine whether burnout is accompanied by reproducible brain-function alterations that justify disease-level classification. Methods: Following PRISMA-adapted guidelines, two independent reviewers searched PubMed/MEDLINE, Scopus, Google Scholar, Cochrane Library and reference lists (January 1980–May 2025) using combinations of “burnout,” “EEG”, “electroencephalography” and “event-related potential.” Only English-language clinical investigations were eligible. Eighteen studies (n = 2194 participants) met the inclusion criteria. Data were synthesised across three domains: resting-state spectra/connectivity, event-related potentials (ERPs) and longitudinal change. Results: Resting EEG consistently showed (i) a 0.4–0.6 Hz slowing of individual-alpha frequency, (ii) 20–35% global alpha-power reduction and (iii) fragmentation of high-alpha (11–13 Hz) fronto-parietal coherence, with stage- and sex-dependent modulation. ERP paradigms revealed a distinctive “alarm-heavy/evaluation-poor” profile; enlarged N2 and ERN components signalled hyper-reactive conflict and error detection, whereas P3b, Pe, reward-P3 and late CNV amplitudes were attenuated by 25–50%, indicating depleted evaluative and preparatory resources. Feedback processing showed intact or heightened FRN but blunted FRP, and affective tasks demonstrated threat-biassed P3a latency shifts alongside dampened VPP/EPN to positive cues. These alterations persisted in longitudinal cohorts yet normalised after recovery, supporting trait-plus-state dynamics. The electrophysiological fingerprint differed from major depression (no frontal-alpha asymmetry, opposite connectivity pattern). Conclusions: Across paradigms, burnout exhibits a coherent neurophysiological signature comparable in magnitude to established psychiatric disorders, refuting its current classification as a non-disease. Objective EEG markers can complement symptom scales for earlier diagnosis, treatment monitoring and public-health surveillance. Recognising burnout as a clinical disorder—and funding prevention and care accordingly—is medically justified and economically imperative. Full article
(This article belongs to the Special Issue Innovations in Neurorehabilitation)
Show Figures

Figure 1

27 pages, 3602 KiB  
Article
Optimal Dispatch of a Virtual Power Plant Considering Distributed Energy Resources Under Uncertainty
by Obed N. Onsomu, Erman Terciyanlı and Bülent Yeşilata
Energies 2025, 18(15), 4012; https://doi.org/10.3390/en18154012 - 28 Jul 2025
Viewed by 268
Abstract
The varying characteristics of grid-connected energy resources necessitate a clear and effective approach for managing and scheduling generation units. Without proper control, high levels of renewable integration can pose challenges to optimal dispatch, especially as more generation sources, like wind and solar PV, [...] Read more.
The varying characteristics of grid-connected energy resources necessitate a clear and effective approach for managing and scheduling generation units. Without proper control, high levels of renewable integration can pose challenges to optimal dispatch, especially as more generation sources, like wind and solar PV, are introduced. As a result, conventional power sources require an advanced management system, for instance, a virtual power plant (VPP), capable of accurately monitoring power supply and demand. This study thoroughly explores the dispatch of battery energy storage systems (BESSs) and diesel generators (DGs) through a distributionally robust joint chance-constrained optimization (DR-JCCO) framework utilizing the conditional value at risk (CVaR) and heuristic-X (H-X) algorithm, structured as a bilevel optimization problem. Furthermore, Binomial expansion (BE) is employed to linearize the model, enabling the assessment of BESS dispatch through a mathematical program with equilibrium constraints (MPECs). The findings confirm the effectiveness of the DRO-CVaR and H-X methods in dispatching grid network resources and BE under the MPEC framework. Full article
(This article belongs to the Special Issue Review Papers in Energy Storage and Related Applications)
Show Figures

Figure 1

86 pages, 10602 KiB  
Article
Optimizing Virtual Power Plants Cooperation via Evolutionary Game Theory: The Role of Reward–Punishment Mechanisms
by Lefeng Cheng, Pengrong Huang, Mengya Zhang, Kun Wang, Kuozhen Zhang, Tao Zou and Wentian Lu
Mathematics 2025, 13(15), 2428; https://doi.org/10.3390/math13152428 - 28 Jul 2025
Viewed by 193
Abstract
This paper addresses the challenge of fostering cooperation among virtual power plant (VPP) operators in competitive electricity markets, focusing on the application of evolutionary game theory (EGT) and static reward–punishment mechanisms. This investigation resolves four critical questions: the minimum reward–punishment thresholds triggering stable [...] Read more.
This paper addresses the challenge of fostering cooperation among virtual power plant (VPP) operators in competitive electricity markets, focusing on the application of evolutionary game theory (EGT) and static reward–punishment mechanisms. This investigation resolves four critical questions: the minimum reward–punishment thresholds triggering stable cooperation, the influence of initial market composition on equilibrium selection, the sufficiency of static versus dynamic mechanisms, and the quantitative mapping between regulatory parameters and market outcomes. The study establishes the mathematical conditions under which static reward–punishment mechanisms transform competitive VPP markets into stable cooperative systems, quantifying efficiency improvements of 15–23% and renewable integration gains of 18–31%. Through rigorous evolutionary game-theoretic analysis, we identify critical parameter thresholds that guarantee cooperation emergence, resolving longstanding market coordination failures documented across multiple jurisdictions. Numerical simulations and sensitivity analysis demonstrate that static reward–punishment systems enhance cooperation, optimize resources, and increase renewable energy utilization. Key findings include: (1) Reward–punishment mechanisms effectively promote cooperation and system performance; (2) A critical region exists where cooperation dominates, enhancing market outcomes; and (3) Parameter adjustments significantly impact VPP performance and market behavior. The theoretical contributions of this research address documented market failures observed across operational VPP implementations. Our findings provide quantitative foundations for regulatory frameworks currently under development in seven national energy markets, including the European Union’s proposed Digital Single Market for Energy and Japan’s emerging VPP aggregation standards. The model’s predictions align with successful cooperation rates achieved by established VPP operators, suggesting practical applicability for scaled implementations. Overall, through evolutionary game-theoretic analysis of 156 VPP implementations, we establish precise conditions under which static mechanisms achieve 85%+ cooperation rates. Based on this, future work could explore dynamic adjustments, uncertainty modeling, and technologies like blockchain to further improve VPP resilience. Full article
(This article belongs to the Special Issue Modeling, Simulation and Control of Dynamical Systems)
Show Figures

Figure 1

18 pages, 687 KiB  
Article
A Low-Carbon and Economic Optimal Dispatching Strategy for Virtual Power Plants Considering the Aggregation of Diverse Flexible and Adjustable Resources with the Integration of Wind and Solar Power
by Xiaoqing Cao, He Li, Di Chen, Qingrui Yang, Qinyuan Wang and Hongbo Zou
Processes 2025, 13(8), 2361; https://doi.org/10.3390/pr13082361 - 24 Jul 2025
Viewed by 218
Abstract
Under the dual-carbon goals, with the rapid increase in the proportion of fluctuating power sources such as wind and solar energy, the regulatory capacity of traditional thermal power generation can no longer meet the demand for intra-day fluctuations. There is an urgent need [...] Read more.
Under the dual-carbon goals, with the rapid increase in the proportion of fluctuating power sources such as wind and solar energy, the regulatory capacity of traditional thermal power generation can no longer meet the demand for intra-day fluctuations. There is an urgent need to tap into the potential of flexible load-side regulatory resources. To this end, this paper proposes a low-carbon economic optimal dispatching strategy for virtual power plants (VPPs), considering the aggregation of diverse flexible and adjustable resources with the integration of wind and solar power. Firstly, the method establishes mathematical models by analyzing the dynamic response characteristics and flexibility regulation boundaries of adjustable resources such as photovoltaic (PV) systems, wind power, energy storage, charging piles, interruptible loads, and air conditioners. Subsequently, considering the aforementioned diverse adjustable resources and aggregating them into a VPP, a low-carbon economic optimal dispatching model for the VPP is constructed with the objective of minimizing the total system operating costs and carbon costs. To address the issue of slow convergence rates in solving high-dimensional state variable optimization problems with the traditional plant growth simulation algorithm, this paper proposes an improved plant growth simulation algorithm through elite selection strategies for growth points and multi-base point parallel optimization strategies. The improved algorithm is then utilized to solve the proposed low-carbon economic optimal dispatching model for the VPP, aggregating diverse adjustable resources. Simulations conducted on an actual VPP platform demonstrate that the proposed method can effectively coordinate diverse load-side adjustable resources and achieve economically low-carbon dispatching, providing theoretical support for the optimal aggregation of diverse flexible resources in new power systems. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

17 pages, 2690 KiB  
Article
Impact Analysis of Price Cap on Bidding Strategies of VPP Considering Imbalance Penalty Structures
by Youngkook Song, Yongtae Yoon and Younggyu Jin
Energies 2025, 18(15), 3927; https://doi.org/10.3390/en18153927 - 23 Jul 2025
Viewed by 207
Abstract
Virtual power plants (VPPs) enable the efficient participation of distributed renewable energy resources in electricity markets by aggregating them. However, the profitability of VPPs is challenged by market volatility and regulatory constraints, such as price caps and imbalance penalties. This study examines the [...] Read more.
Virtual power plants (VPPs) enable the efficient participation of distributed renewable energy resources in electricity markets by aggregating them. However, the profitability of VPPs is challenged by market volatility and regulatory constraints, such as price caps and imbalance penalties. This study examines the joint impact of varying price cap levels and imbalance penalty structures on the bidding strategies and revenues of VPPs. A stochastic optimization model was developed, where a three-stage scenario tree was utilized to capture the uncertainty in electricity prices and renewable generation output. Simulations were performed under various market conditions using real-world price and generation data from the Korean electricity market. The analysis reveals that higher price cap coefficients lead to greater revenue and more segmented bidding strategies, especially under asymmetric penalty structures. Segment-wise analysis of bid price–quantity pairs shows that over-bidding is preferred under upward-only penalty schemes, while under-bidding is preferred under downward-only ones. Notably, revenue improvement tapers off beyond a price cap coefficient of 0.8, which indicates that there exists an optimal threshold for regulatory design. The findings of this study suggest the need for coordination between price caps and imbalance penalties to maintain market efficiency while supporting renewable energy integration. The proposed framework also offers practical insights for market operators and policymakers seeking to balance profitability, adaptability, and stability in VPP-integrated electricity markets. Full article
(This article belongs to the Section C: Energy Economics and Policy)
Show Figures

Figure 1

22 pages, 3160 KiB  
Article
Monthly Urban Electricity Power Consumption Prediction Using Nighttime Light Remote Sensing: A Case Study of the Yangtze River Delta Urban Agglomeration
by Shuo Chen, Dongmei Yan, Cuiting Li, Jun Chen, Jun Yan and Zhe Zhang
Remote Sens. 2025, 17(14), 2478; https://doi.org/10.3390/rs17142478 - 17 Jul 2025
Viewed by 263
Abstract
Urban electricity power consumption (EPC) prediction plays a crucial role in urban management and sustainable development. Nighttime light (NTL) remote sensing imagery has demonstrated significant potential in estimating urban EPC due to its strong correlation with human activities and energy use. However, most [...] Read more.
Urban electricity power consumption (EPC) prediction plays a crucial role in urban management and sustainable development. Nighttime light (NTL) remote sensing imagery has demonstrated significant potential in estimating urban EPC due to its strong correlation with human activities and energy use. However, most existing models focus on annual-scale estimations, limiting their ability to capture month-scale EPC. To address this limitation, a novel monthly EPC prediction model that incorporates monthly average temperature, and the interaction between NTL data and temperature was proposed in this study. The proposed method was applied to cities within the Yangtze River Delta (YRD) urban agglomeration, and was validated using datasets constructed from NPP/VIIRS and SDGSAT-1 satellite imageries, respectively. For the NPP/VIIRS dataset, the proposed method achieved a Mean Absolute Relative Error (MARE) of 7.96% during the training phase (2017–2022) and of 10.38% during the prediction phase (2023), outperforming the comparative methods. Monthly EPC spatial distribution maps from VPP/VIIRS data were generated, which not only reflect the spatial patterns of EPC but also clearly illustrate the temporal evolution of EPC at the spatial level. Annual EPC estimates also showed superior accuracy compared to three comparative methods, achieving a MARE of 7.13%. For the SDGSAT-1 dataset, leave-one-out cross-validation confirmed the robustness of the model, and high-resolution (40 m) monthly EPC maps were generated, enabling the identification of power consumption zones and their spatial characteristics. The proposed method provides a timely and accurate means for capturing monthly EPC dynamics, effectively supporting the dynamic monitoring of urban EPC at the monthly scale in the YRD urban agglomeration. Full article
Show Figures

Graphical abstract

20 pages, 8094 KiB  
Article
Deep Learning-Based Method for Operation Dispatch Strategy Generation of Virtual Power Plants
by Jie Li, Wenteng Liang, Yuheng Liu, Nan Zhou, Tao Qian and Qinran Hu
Processes 2025, 13(7), 2213; https://doi.org/10.3390/pr13072213 - 10 Jul 2025
Viewed by 305
Abstract
Centralized and distributed optimization methods used by traditional virtual power plants (VPPs) in power system dispatching face issues such as high computational complexity, difficulties in privacy protection, and slow iterative convergence. There is an urgent need to propose an accurate and efficient acceleration [...] Read more.
Centralized and distributed optimization methods used by traditional virtual power plants (VPPs) in power system dispatching face issues such as high computational complexity, difficulties in privacy protection, and slow iterative convergence. There is an urgent need to propose an accurate and efficient acceleration method for generating VPP operational dispatching strategies. This paper proposes a deep learning-based acceleration method for generating VPP operational dispatching strategies. By using the equivalent projection method to solve the operation feasible region of the VPP, the objective function and constraints of the VPP are transformed into constraints of coordination variables and submitted to the system dispatching center for optimization, thereby avoiding the slow convergence problem of iterative computation methods. The Kolmogorov–Arnold Network (KAN) is employed to predict the batch operation feasible regions of the VPP, addressing the inefficiency of individually calculating feasible regions. Tests on a 13,659-node system show that the proposed method reduces solution time by 64.40% while increasing the objective function value by only 4.74%, verifying its accuracy and speed. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

25 pages, 2288 KiB  
Article
Virtual Power Plant Optimization Process Under the Electricity–Carbon–Certificate Multi-Market: A Case Study in Southern China
by Yanbin Xu, Yi Liao, Shifang Kuang, Jiaxin Ma and Ting Wen
Processes 2025, 13(7), 2148; https://doi.org/10.3390/pr13072148 - 6 Jul 2025
Viewed by 347
Abstract
Over the past decade, China has vigorously supported the development of renewable energy and has initially established the electricity–carbon–certificate multi-market. As a typical market-oriented demand-side management model, studying the optimization process and cases of virtual power plants (VPPs) under the multi-market has significant [...] Read more.
Over the past decade, China has vigorously supported the development of renewable energy and has initially established the electricity–carbon–certificate multi-market. As a typical market-oriented demand-side management model, studying the optimization process and cases of virtual power plants (VPPs) under the multi-market has significant importance for enhancing the operation level of VPPs, as well as promoting corresponding experiences. Based on the mechanisms and impacts of the electricity–carbon–certificate multi-market, this manuscript takes a VPP project in southern China as a case, constructs a sequential decision-making optimization model for the VPP under a diversified market, and solves it using reinforcement learning and Markov decision theory. The case analysis shows that, compared to energy supply income, although the proportion of income from certificate trading and carbon trading in the multi-market is relatively limited, participating in the electricity–carbon–certificate multi-market can significantly enhance VPPs’ willingness to accommodate the uncertainties of renewable energy and can significantly improve the economic and environmental performances of VPPs, which is of great significance for improving the energy structure and accelerating the process of low-carbon energy transformation. Full article
Show Figures

Figure 1

20 pages, 3502 KiB  
Article
Blockchain-Enabled Cross-Chain Coordinated Trading Strategy for Electricity-Carbon-Green Certificate in Virtual Power Plants: Multi-Market Coupling and Low-Carbon Operation Optimization
by Chao Zheng, Wei Huang, Suwei Zhai, Kaiyan Pan, Xuehao He, Xiaojie Liu, Shi Su, Cong Shen and Qian Ai
Energies 2025, 18(13), 3443; https://doi.org/10.3390/en18133443 - 30 Jun 2025
Viewed by 221
Abstract
In the context of global climate governance and the low-carbon energy transition, virtual power plant (VPP), a key technology for integrating distributed energy resources, is urgently needed to solve the problem of decentralization and lack of synergy in electricity, carbon, and green certificate [...] Read more.
In the context of global climate governance and the low-carbon energy transition, virtual power plant (VPP), a key technology for integrating distributed energy resources, is urgently needed to solve the problem of decentralization and lack of synergy in electricity, carbon, and green certificate trading. Existing studies mostly focus on single energy or carbon trading scenarios and lack a multi-market coupling mechanism supported by blockchain technology, resulting in low transaction transparency and a high risk of information tampering. For this reason, this paper proposes a synergistic optimization strategy for electricity/carbon/green certificate virtual power plants based on blockchain cross-chain transactions. First, Latin Hypercubic Sampling (LHS) is used to generate new energy output and load scenarios, and the K-means clustering method with improved particle swarm optimization are combined to cut down the scenarios and improve the prediction accuracy; second, a relay chain cross-chain trading framework integrating quota system is constructed to realize organic synergy and credible data interaction among electricity, carbon, and green certificate markets; lastly, the multi-energy optimization model of the virtual power plant is designed to integrate carbon capture, Finally, a virtual power plant multi-energy optimization model is designed, integrating carbon capture, power-to-gas (P2G) and other technologies to balance the economy and low-carbon goals. The simulation results show that compared with the traditional model, the proposed strategy reduces the carbon emission intensity by 13.3% (1.43 tons/million CNY), increases the rate of new energy consumption to 98.75%, and partially offsets the cost through the carbon trading revenue, which verifies the Pareto improvement of environmental and economic benefits. This study provides theoretical support for the synergistic optimization of multi-energy markets and helps to build a low-carbon power system with a high proportion of renewable energy. Full article
Show Figures

Figure 1

26 pages, 805 KiB  
Review
Review and Prospects of Artificial Intelligence Technology in Virtual Power Plants
by Xinxing Liu and Ciwei Gao
Energies 2025, 18(13), 3325; https://doi.org/10.3390/en18133325 - 25 Jun 2025
Viewed by 1045
Abstract
With the rapid development of global renewable energy, the virtual power plant (VPP), as an emerging power management model, has attracted increasing attention. Traditional manual management is difficult to effectively deal with because of the complexity and uncertainty of the VPP. The application [...] Read more.
With the rapid development of global renewable energy, the virtual power plant (VPP), as an emerging power management model, has attracted increasing attention. Traditional manual management is difficult to effectively deal with because of the complexity and uncertainty of the VPP. The application of artificial intelligence (AI) technology provides new solutions for the VPP to cope with these problems. This review presents the research of AI technology in the VPP. Firstly, the basic concepts and theoretical framework of the VPP are presented. Then, the application of AI technology in VPP functional modules is discussed. Finally, the challenges of the VPP in coping with uncertainty, improving algorithmic interpretability and ensuring data security are pointed out, which provides theoretical support for subsequent research in the field of VPPs. Full article
Show Figures

Figure 1

21 pages, 1107 KiB  
Article
Coordinated Scheduling Strategy for Campus Power Grid and Aggregated Electric Vehicles Within the Framework of a Virtual Power Plant
by Xiao Zhou, Cunkai Li, Zhongqi Pan, Tao Liang, Jun Yan, Zhengwei Xu, Xin Wang and Hongbo Zou
Processes 2025, 13(7), 1973; https://doi.org/10.3390/pr13071973 - 23 Jun 2025
Viewed by 431
Abstract
The inherent intermittency and uncertainty of renewable energy generation pose significant challenges to the safe and stable operation of power grids, particularly when power demand does not match renewable energy supply, leading to issues such as wind and solar power curtailment. To effectively [...] Read more.
The inherent intermittency and uncertainty of renewable energy generation pose significant challenges to the safe and stable operation of power grids, particularly when power demand does not match renewable energy supply, leading to issues such as wind and solar power curtailment. To effectively promote the consumption of renewable energy while leveraging electric vehicles (EVs) in virtual power plants (VPPs) as distributed energy storage resources, this paper proposes an ordered scheduling strategy for EVs in campus areas oriented towards renewable energy consumption. Firstly, to address the uncertainty of renewable energy output, this paper uses Conditional Generative Adversarial Network (CGAN) technology to generate a series of typical scenarios. Subsequently, a mathematical model for EV aggregation is established, treating the numerous dispersed EVs within the campus as a collectively controllable resource, laying the foundation for their ordered scheduling. Then, to maximize renewable energy consumption and optimize EV charging scheduling, an improved Particle Swarm Optimization (PSO) algorithm is adopted to solve the problem. Finally, case studies using a real-world testing system demonstrate the feasibility and effectiveness of the proposed method. By introducing a dynamic inertia weight adjustment mechanism and a multi-population cooperative search strategy, the algorithm’s convergence speed and global search capability in solving high-dimensional non-convex optimization problems are significantly improved. Compared with conventional algorithms, the computational efficiency can be increased by up to 54.7%, and economic benefits can be enhanced by 8.6%. Full article
(This article belongs to the Special Issue Applications of Smart Microgrids in Renewable Energy Development)
Show Figures

Figure 1

15 pages, 664 KiB  
Article
A Bio-Inspired Optimization Approach for Low-Carbon Dispatch in EV-Integrated Virtual Power Plants
by Renfei Gao, Kunze Song, Bijiang Zhu and Hongbo Zou
Processes 2025, 13(7), 1969; https://doi.org/10.3390/pr13071969 - 21 Jun 2025
Viewed by 384
Abstract
With the increasing penetration of renewable energy and the large-scale integration of electric vehicles (EVs), the economic optimization dispatch of EV-integrated virtual power plants (VPPs) faces multiple uncertainties and challenges. This paper first proposes an optimized dispatching model for EV clusters to form [...] Read more.
With the increasing penetration of renewable energy and the large-scale integration of electric vehicles (EVs), the economic optimization dispatch of EV-integrated virtual power plants (VPPs) faces multiple uncertainties and challenges. This paper first proposes an optimized dispatching model for EV clusters to form large-scale coordinated regulation capabilities. Subsequently, considering diversified resources such as energy storage systems and photovoltaic (PV) generation within VPPs, a low-carbon economic optimization dispatching model is established to minimize the total system operation costs and polluted gas emissions. To address the limitations of traditional algorithms in solving high-dimensional, nonlinear dispatching problems, this paper introduces a plant root-inspired growth optimization algorithm. By simulating the nutrient-adaptive uptake mechanism and branching expansion strategy of plant roots, the algorithm achieves a balance between global optimization and local fine-grained search. Compared with the genetic algorithm, particle swarm optimization algorithm and bat algorithm, simulation results demonstrate that the proposed method can effectively enhance the low-carbon operational economy of VPPs with high PV, ESS, and EV penetration. The research findings provide theoretical support and practical references for optimal dispatch of multi-stakeholder VPPs. Full article
Show Figures

Figure 1

Back to TopTop