Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = VOC-limited regime

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1633 KiB  
Article
Machine Learning Modeling Reveals Divergent Air Pollutant Responses to Stringent Emission Controls in the Yangtze River Delta Region
by Qiufang Yao, Linhao Wang, Wenjing Qiu, Yutong Shi, Qi Xu, Yanping Xiao, Jiacheng Zhou, Shilong Li, Haobin Zhong and Jinsong Liu
Atmosphere 2025, 16(6), 710; https://doi.org/10.3390/atmos16060710 - 12 Jun 2025
Viewed by 1019
Abstract
Ozone (O3) and fine particulate matter (PM2.5) are critical atmospheric pollutants whose complex chemical coupling presents significant challenges for multi-pollutant control strategies. This study investigated the spatiotemporal variations and driving mechanisms of O3 and PM2.5 in Jiaxing, [...] Read more.
Ozone (O3) and fine particulate matter (PM2.5) are critical atmospheric pollutants whose complex chemical coupling presents significant challenges for multi-pollutant control strategies. This study investigated the spatiotemporal variations and driving mechanisms of O3 and PM2.5 in Jiaxing, China, during different COVID-19 lockdown periods from November 2019 to January 2024. Using high-resolution monitoring data, random forest modeling, and HYSPLIT backward trajectory analysis, we quantified the relative contributions of anthropogenic emissions, meteorological conditions, and regional transport to the formation and variation of O3 and PM2.5 concentrations. The results revealed a distinct inverse relationship between O3 and PM2.5, with meteorologically normalized PM2.5 decreasing significantly (−5.0 μg/m3 compared to the pre-lockdown baseline of 0.6 μg/m3), while O3 increased substantially (15.2 μg/m3 compared to the baseline of 5.3 μg/m3). Partial dependency analysis revealed that PM2.5-O3 relationships evolved from linear to non-linear patterns across lockdown periods, while NO2-O3 interactions indicated shifts from VOC-limited to NOx-limited regimes. Regional transport patterns exhibited significant temporal variations, with source regions shifting from predominantly northern areas pre-lockdown to more diverse directional contributions afterward. Notably, the partial lockdown period demonstrated the most balanced pollution control outcomes, maintaining reduced PM2.5 levels while avoiding O3 increases. These findings provide critical insights for developing targeted multi-pollutant control strategies in the Yangtze River Delta region and similar urban environments. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

15 pages, 19055 KiB  
Technical Note
Ground-Based MAX-DOAS Observations of Tropospheric Ozone and Its Precursors for Diagnosing Ozone Formation Sensitivity
by Yuanyuan Qian, Dan Wang, Zhiyan Li, Ge Yan, Minjie Zhao, Haijin Zhou, Fuqi Si and Yuhan Luo
Remote Sens. 2025, 17(4), 658; https://doi.org/10.3390/rs17040658 - 14 Feb 2025
Viewed by 569
Abstract
Diagnosing ozone (O3) formation sensitivity using tropospheric observations of O3 and its precursors is important for formulating O3 pollution control strategies. Photochemical reactions producing O3 occur at the earth’s surface and in the elevated layers, indicating the importance [...] Read more.
Diagnosing ozone (O3) formation sensitivity using tropospheric observations of O3 and its precursors is important for formulating O3 pollution control strategies. Photochemical reactions producing O3 occur at the earth’s surface and in the elevated layers, indicating the importance of diagnosing O3 formation sensitivity at different layers. Synchronous measurements of tropospheric O3 and its precursors nitrogen dioxide (NO2) and formaldehyde (HCHO) were performed in urban Hefei to diagnose O3 formation sensitivity at different atmospheric layers using multi-axis differential optical absorption spectroscopy observations. The retrieved surface NO2 and O3 were validated with in situ measurements (correlation coefficients (R) = 0.81 and 0.80), and the retrieved NO2 and HCHO vertical column densities (VCDs) were consistent with TROPOMI results (R = 0.81 and 0.77). The regime transitions of O3 formation sensitivity at different layers were derived using HCHO/NO2 ratios and O3 profiles, with contributions of VOC-limited, VOC-NOx-limited, and NOx-limited regimes of 74.19%, 7.33%, and 18.48%, respectively. In addition, the surface O3 formation sensitivity between HCHO/NO2 ratios and O3 (or increased O3, ΔO3) had similar regime transitions of 2.21–2.46 and 2.39–2.71, respectively. Moreover, the O3 formation sensitivity of the lower planetary boundary layer on polluted and non-polluted days was analyzed. On non-polluted days, the contributions of the VOC-limited regime were predominant in the lower planetary boundary layer, whereas those of the NOx-limited regime were predominant in the elevated layers during polluted days. These results will help us understand the evolution of O3 formation sensitivity and formulate O3 mitigation strategies in the Yangtze River Delta region. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Graphical abstract

15 pages, 3578 KiB  
Article
Investigation of the Earliest Ozone Pollution Events in Hangzhou Bay, China Based on Observations and ERA5 Reanalysis Data
by Tianen Yao, Xinhao Li, Zhi Li, Xinyu Yang, Jinjia Zhang, Yaqi Wang, Jianhui Guo and Jing Li
Toxics 2025, 13(2), 99; https://doi.org/10.3390/toxics13020099 - 27 Jan 2025
Viewed by 756
Abstract
Ozone pollution in Hangzhou Bay, one of the seven petrochemical clusters in China, is severe. Early ozone pollution has been detected recently, such as the maximum daily 8 h average (MDA8) ozone concentration in Jiaxing achieving 171.0 μg/m3 on 7 March 2023. [...] Read more.
Ozone pollution in Hangzhou Bay, one of the seven petrochemical clusters in China, is severe. Early ozone pollution has been detected recently, such as the maximum daily 8 h average (MDA8) ozone concentration in Jiaxing achieving 171.0 μg/m3 on 7 March 2023. Satellites have observed tropospheric column concentrations of ozone precursors formaldehyde (HCHO) and nitrogen dioxide (NOx), and quantitative models are proposed to reveal the causes of the early onset of ozone pollution. VOC-limited and transitional regimes dominate most areas in Hangzhou Bay, and NOx-limited regimes dominate the region around Hangzhou Bay, such as northeastern Jiangsu Province. Results show that HCHO column concentrations are increasing in VOC-limited regions, and NOx column concentrations are increasing more rapidly than HCHO in NOx-limited regions. According to multivariate linear regression (MLR), early spring ozone pollution in Hangzhou Bay is mainly caused by meteorological drivers. Hangzhou Bay has formed an atmospheric meteorological environment with high temperature and low humidity. The richer solar radiation intensifies the photochemical reactions associated with tropospheric ozone formation, producing more tropospheric ozone. Based on the Shapley Additive Explanation (SHAP) algorithm, ozone pollution increases when solar radiation exceeds 12 million J/m2 and is accompanied by high temperatures. Overall, reducing VOC emissions helps to mitigate ozone growth in Shanghai and northern Hangzhou Bay, while reducing NOx emissions is more effective in northeastern Jiangsu Province. Full article
Show Figures

Figure 1

21 pages, 7736 KiB  
Article
Carbonyl Compounds Observed at a Suburban Site during an Unusual Wintertime Ozone Pollution Event in Guangzhou
by Aoqi Ge, Zhenfeng Wu, Shaoxuan Xiao, Xiaoqing Huang, Wei Song, Zhou Zhang, Yanli Zhang and Xinming Wang
Atmosphere 2024, 15(10), 1235; https://doi.org/10.3390/atmos15101235 - 16 Oct 2024
Viewed by 1262
Abstract
Carbonyl compounds are important oxygenated volatile organic compounds (VOCs) that play significant roles in the formation of ozone (O3) and atmospheric chemistry. This study presents comprehensive field observations of carbonyl compounds during an unusual wintertime ozone pollution event at a suburban [...] Read more.
Carbonyl compounds are important oxygenated volatile organic compounds (VOCs) that play significant roles in the formation of ozone (O3) and atmospheric chemistry. This study presents comprehensive field observations of carbonyl compounds during an unusual wintertime ozone pollution event at a suburban site in Guangzhou, South China, from 19 to 28 December 2020. The aim was to investigate the characteristics and sources of carbonyls, as well as their contributions to O3 formation. Formaldehyde, acetone, and acetaldehyde were the most abundant carbonyls detected, with average concentrations of 7.11 ± 1.80, 5.21 ± 1.13, and 3.00 ± 0.94 ppbv, respectively, on pollution days, significantly higher than those of 2.57 ± 1.12, 2.73 ± 0.88, and 1.10 ± 0.48 ppbv, respectively, on nonpollution days. The Frame for 0-D Atmospheric Modeling (F0AM) box model simulations revealed that local production accounted for 62–88% of observed O3 concentrations during the pollution days. The calculated ozone formation potentials (OFPs) for various precursors (carbonyls and VOCs) indicated that carbonyl compounds contributed 32.87% of the total OFPs on nonpollution days and 36.71% on pollution days, respectively. Formaldehyde, acetaldehyde, and methylglyoxal were identified as the most reactive carbonyls, and formaldehyde ranked top in OFPs, and it alone contributed 15.92% of total OFPs on nonpollution days and 18.10% of total OFPs on pollution days, respectively. The calculation of relative incremental reactivity (RIR) indicates that ozone sensitivity was a VOC-limited regime, and carbonyls showed greater RIRs than other groups of VOCs. The model simulation showed that secondary formation has a significant impact on formaldehyde production, which is primarily controlled by alkenes and biogenic VOCs. The characteristic ratios and backward trajectory analysis also indicated the indispensable impacts of local primary sources (like industrial emissions and vehicle emissions) and regional sources (like biomass burning) through transportation. This study highlights the important roles of carbonyls, particularly formaldehyde, in forming ozone pollution in megacities like the Pearl River Delta region. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

17 pages, 5942 KiB  
Article
Long-Term Variability of Surface Ozone and Its Associations with NOx and Air Temperature Changes from Air Quality Monitoring at Belsk, Poland, 1995–2023
by Izabela Pawlak, Janusz Krzyścin and Janusz Jarosławski
Atmosphere 2024, 15(8), 960; https://doi.org/10.3390/atmos15080960 - 12 Aug 2024
Viewed by 1055
Abstract
Surface ozone (O3) and nitrogen oxides (NOx = NO + NO2) measured at the rural station in Belsk (51.83° N, 20.79° E), Poland, over the period of 1995–2023, were examined for long-term variability of O3 and its [...] Read more.
Surface ozone (O3) and nitrogen oxides (NOx = NO + NO2) measured at the rural station in Belsk (51.83° N, 20.79° E), Poland, over the period of 1995–2023, were examined for long-term variability of O3 and its relationship to changes in the air temperature and NOx. Negative and positive trends were found for the 95th and 5th percentile, respectively, in the O3 data. A weak positive correlation (statistically significant) of 0.33 was calculated between O3 and the temperature averaged from sunrise to sunset during the photoactive part of the year (April–September). Recently, O3 maxima have become less sensitive to temperature changes, reducing the incidence of photochemical smog. The ozone–climate penalty factor decreased from 4.4 µg/m3/°C in the 1995–2004 period to 3.9 µg/m3/°C in the 2015–2023 period. The relationship between Ox (O3 + NO2) and NOx concentrations averaged from sunrise to sunset determined the local and regional contribution to Ox variability. The seasonal local and regional contributions remained unchanged in the period of 1995–2023, stabilizing the average O3 level at Belsk. “NOx-limited” and “VOC-limited” photochemical regimes prevailed in the summer and autumn, respectively. For many winter and spring seasons between 1995 and 2023, the type of photochemical regime could not be accurately determined, making it difficult to build an effective O3 mitigation policy. Full article
(This article belongs to the Special Issue Measurement and Variability of Atmospheric Ozone)
Show Figures

Figure 1

35 pages, 20348 KiB  
Article
WRF-Chem Modeling of Tropospheric Ozone in the Coastal Cities of the Gulf of Finland
by Georgii Nerobelov, Yana Virolainen, Dmitry Ionov, Alexander Polyakov and Eugene Rozanov
Atmosphere 2024, 15(7), 775; https://doi.org/10.3390/atmos15070775 - 28 Jun 2024
Viewed by 1727
Abstract
Ozone in the troposphere is a pollutant and greenhouse gas. Atmospheric models can add valuable information to observations for studying the spatial and temporal variations in tropospheric ozone content. The present study is intended to evaluate the variability in tropospheric ozone and its [...] Read more.
Ozone in the troposphere is a pollutant and greenhouse gas. Atmospheric models can add valuable information to observations for studying the spatial and temporal variations in tropospheric ozone content. The present study is intended to evaluate the variability in tropospheric ozone and its precursors near the Gulf of Finland with a focus on St. Petersburg (Russia) and Helsinki (Finland) in 2016–2019, using the WRF-Chem 3-D numerical model with a spatial resolution of 10 km, together with observations. The diurnal cycle of the near-surface ozone concentrations (NSOCs) in both cities is caused by the variability in NO2 emissions, planetary boundary layer height, and local meteorological conditions. The seasonal variations in NSOCs and tropospheric ozone content (TrOC) are caused by the variability in total ozone content and in ozone formation in the troposphere. The model reveals a VOC-limited regime in the ~0–1 km layer around St. Petersburg, Helsinki, and the Gulf of Finland and a pronounced NOx-limited regime in the 0–2 km layer in the forests of southern Finland, Karelia, some Russian regions, and the Baltic countries in July. The WRF-Chem model overestimates the measured NSOCs by 10.7–43.5% and the TrOC by 7–10.4%. The observed differences are mainly caused by the errors in chemical boundary conditions and emissions of ozone precursors and by the coarse spatial resolution of the modeling. Full article
(This article belongs to the Special Issue Measurement and Variability of Atmospheric Ozone)
Show Figures

Figure 1

24 pages, 5404 KiB  
Article
Elucidating the Effects of COVID-19 Lockdowns in the UK on the O3-NOx-VOC Relationship
by Rayne Holland, Katya Seifert, Eric Saboya, M. Anwar H. Khan, Richard G. Derwent and Dudley E. Shallcross
Atmosphere 2024, 15(5), 607; https://doi.org/10.3390/atmos15050607 - 16 May 2024
Cited by 5 | Viewed by 1713
Abstract
The unprecedented reductions in anthropogenic emissions over the COVID-19 lockdowns were utilised to investigate the response of ozone (O3) concentrations to changes in its precursors across various UK sites. Ozone, volatile organic compounds (VOCs) and NOx (NO+NO2) data [...] Read more.
The unprecedented reductions in anthropogenic emissions over the COVID-19 lockdowns were utilised to investigate the response of ozone (O3) concentrations to changes in its precursors across various UK sites. Ozone, volatile organic compounds (VOCs) and NOx (NO+NO2) data were obtained for a 3-year period encompassing the pandemic period (January 2019–December 2021), as well as a pre-pandemic year (2017), to better understand the contribution of precursor emissions to O3 fluctuations. Compared with pre-lockdown levels, NO and NO2 declined by up to 63% and 42%, respectively, over the lockdown periods, with the most significant changes in pollutant concentrations recorded across the urban traffic sites. O3 levels correspondingly increased by up to 30%, consistent with decreases in the [NO]/[NO2] ratio for O3 concentration response. Analysis of the response of O3 concentrations to the NOx reductions suggested that urban traffic, suburban background and suburban industrial sites operate under VOC-limited regimes, while urban background, urban industrial and rural background sites are NOx-limited. This was in agreement with the [VOC]/[NOx] ratios determined for the London Marylebone Road (LMR; urban traffic) site and the Chilbolton Observatory (CO; rural background) site, which produced values below and above 8, respectively. Conversely, [VOC]/[NOx] ratios for the London Eltham (LE; suburban background) site indicated NOx-sensitivity, which may suggest the [VOC]/[NOx] ratio for O3 concentration response may have had a slight NOx-sensitive bias. Furthermore, O3 concentration response with [NO]/[NO2] and [VOC]/[NOx] were also investigated to determine their relevance and accuracy in identifying O3-NOx-VOC relationships across UK sites. While the results obtained via utilisation of these metrics would suggest a shift in photochemical regime, it is likely that variation in O3 during this period was primarily driven by shifts in oxidant (OX; NO2 + O3) equilibrium as a result of decreasing NO2, with increased O3 transported from Europe likely having some influence. Full article
(This article belongs to the Special Issue Mechanisms of Urban Ozone Pollution)
Show Figures

Figure 1

21 pages, 6516 KiB  
Article
Evaluating Phoenix Metropolitan Area Ozone Behavior Using Ground-Based Sampling, Modeling, and Satellite Retrievals
by Jason A. Miech, Pierre Herckes, Matthew P. Fraser, Avelino F. Arellano, Mohammad Amin Mirrezaei and Yafang Guo
Atmosphere 2024, 15(5), 555; https://doi.org/10.3390/atmos15050555 - 30 Apr 2024
Cited by 3 | Viewed by 2602
Abstract
An oxidizing and harmful pollutant gas, tropospheric ozone is a product of a complex set of photochemical reactions that can make it difficult to enact effective control measures. A better understanding of its precursors including volatile organic compounds (VOCs) and nitrogen oxides (NO [...] Read more.
An oxidizing and harmful pollutant gas, tropospheric ozone is a product of a complex set of photochemical reactions that can make it difficult to enact effective control measures. A better understanding of its precursors including volatile organic compounds (VOCs) and nitrogen oxides (NOx) and their spatial distribution can enable policymakers to focus their control efforts. In this study we used low-cost sensors (LCSs) to increase the spatial resolution of an existing NO2 monitoring network in addition to VOC sampling to better understand summer ozone formation in Maricopa County, Arizona, and observed that afternoon O3 values at the downwind sites were significantly correlated, ~0.27, to the morning NO2 × rate values at the urban sites. Additionally, we looked at the impact of wildfire smoke on ozone exceedances and compared non-smoke days to smoke days. The average O3 on smoke days was approximately 20% higher than on non-smoke days, however, the average NO2 concentration multiplied by estimated photolysis rate (NO2 × rate) values were only 2% higher on smoke days. Finally, we evaluated the ozone sensitivity of the region by calculating HCHO/NO2 ratios using three different datasets: ground, satellite, and model. Although the satellite dataset produced higher HCHO/NO2 ratios than the other datasets, when the proper regime thresholds are applied the three datasets consistently show transition and VOC-limited O3 production regimes over the Phoenix metro area. This suggests a need to implement more VOC emission controls in order to reach O3 attainment in the county. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

13 pages, 4680 KiB  
Article
Characteristics and Formation Mechanism of Ozone Pollution in Demonstration Zone of the Yangtze River Delta, China
by Yezheng Wu, Jun Gu, Xurong Shi, Wenyuan Shen, Hao Zhang and Xin Zhang
Atmosphere 2024, 15(3), 382; https://doi.org/10.3390/atmos15030382 - 20 Mar 2024
Cited by 3 | Viewed by 1875
Abstract
Emerging research indicates that ground-level ozone (O3) has become a leading contributor to air quality concerns in many Chinese cities, with the Yangtze River Delta (YRD) region facing particular challenges. This study investigated the characterization of air pollutants in Wujiang, which [...] Read more.
Emerging research indicates that ground-level ozone (O3) has become a leading contributor to air quality concerns in many Chinese cities, with the Yangtze River Delta (YRD) region facing particular challenges. This study investigated the characterization of air pollutants in Wujiang, which is located within the YRD demonstration zone, during the warm season (April–September) of 2022. The contributions of emission and meteorology to O3 were identified, the O3-NOX-VOC sensitivities were discussed, and the VOC sources and their contributions to O3 formation were analyzed. A random forest model revealed that the high O3 concentration was mainly caused by a combination of increased emission intensity due to the resumption of work and production after the COVID-19 pandemic, along with adverse meteorological conditions. The results revealed more than 92% of the pollution days were related to O3 during the warm season, and the impact of O3 precursor emissions was slightly greater than that of the meteorological conditions. O3 formation was in the VOC-limited regime, and emission reduction strategies targeting VOCs, particularly aromatics such as toluene and xylene, have been identified as the most effective approach for mitigating O3 pollution. Changes in O3-NOX-VOC sensitivity were also observed from the VOC-limited regime to the transitional regime, which was primarily driven by variations in the NOX concentrations. The VOC source analysis results showed that the contributions of gasoline vehicle exhaust and diesel engine exhaust (mobile source emissions) were significantly greater than those of the other sources, accounting for 20.8% and 16.5% of the total VOC emissions, respectively. This study highlights the crucial role of mobile source emission control in mitigating O3 pollution. Furthermore, prioritizing the control of VOC emission sources with minimal NOX contributions is highly recommended within the VOC-limited regime. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

20 pages, 24035 KiB  
Article
Composition and Reactivity of Volatile Organic Compounds and the Implications for Ozone Formation in the North China Plain
by Saimei Hao, Qiyue Du, Xiaofeng Wei, Huaizhong Yan, Miao Zhang, Youmin Sun, Shijie Liu, Lianhuan Fan and Guiqin Zhang
Atmosphere 2024, 15(2), 213; https://doi.org/10.3390/atmos15020213 - 9 Feb 2024
Cited by 5 | Viewed by 2191
Abstract
Enhanced ozone (O3) pollution has emerged as a pressing environmental concern in China, particularly for densely populated megacities and major city clusters. However, volatile organic compounds (VOCs), the key precursors to O3 formation, have not been routinely measured. In this [...] Read more.
Enhanced ozone (O3) pollution has emerged as a pressing environmental concern in China, particularly for densely populated megacities and major city clusters. However, volatile organic compounds (VOCs), the key precursors to O3 formation, have not been routinely measured. In this study, we characterize the spatial and temporal patterns of VOCs and examine the role of VOCs in O3 production in five cities (Dongying (DY), Rizhao (RZ), Yantai (YT), Weihai (WH), and Jinan (JN)) in the North China Plain (NCP) for two sampling periods (June and December) in 2021 through continuous field observations. Among various VOC categories, alkanes accounted for the largest proportion of VOCs in the cities. For VOCs, chemical reactivities, aromatic hydrocarbons, and alkenes were dominant contributors to O3 formation potential (OFP). Unlike inland regions, the contribution to OFP from OVOCs increased greatly at high O3 concentrations in coastal regions (especially YT). Model simulations during the O3 episode show that the net O3 production rates were 27.87, 10.24, and 10.37 ppbv/h in DY, RZ, and JN. The pathway of HO2 + NO contributed the most to O3 production in JN and RZ, while RO2 + NO was the largest contributor to O3 production in DY. The relative incremental reactivity (RIR) revealed that O3 formation in DY was the transitional regime, while it was markedly the VOC-limited regime in JN and RZ. The O3 production response is influenced by NOx concentration and has a clear daily variation pattern (the sensitivity is greater from 15:00 to 17:00). The most efficiencies in O3 reduction could be achieved by reducing NOx when the NOx concentration is low (less than 20 ppbv in this study). This study reveals the importance of ambient VOCs in O3 production over the NCP and demonstrates that a better grasp of VOC sources and profiles is critical for in-depth O3 regulation in the NCP. Full article
Show Figures

Figure 1

18 pages, 6837 KiB  
Article
Analysis of Ozone Formation Sensitivity in Chinese Representative Regions Using Satellite and Ground-Based Data
by Yichen Li, Chao Yu, Jinhua Tao, Xiaoyan Lu and Liangfu Chen
Remote Sens. 2024, 16(2), 316; https://doi.org/10.3390/rs16020316 - 12 Jan 2024
Cited by 5 | Viewed by 2570
Abstract
O3 poses a significant threat to human health and the ecological environment. In recent years, O3 pollution has become increasingly serious, making it difficult to accurately control O3 precursor emissions. Satellite indicator methods, such as the FNR (formaldehyde-to-nitrogen dioxide ratio [...] Read more.
O3 poses a significant threat to human health and the ecological environment. In recent years, O3 pollution has become increasingly serious, making it difficult to accurately control O3 precursor emissions. Satellite indicator methods, such as the FNR (formaldehyde-to-nitrogen dioxide ratio (HCHO/NO2 ratio)), provide an effective way to identify ozone pollution control areas on a large geographical scale due to their simple acquisition of datasets. This can help determine the primary factors contributing to O3 pollution and assist in managing it. Based on TROPOMI data from May 2018 to December 2022, combined with ground-based monitoring data from the China National Environmental Monitoring Centre, we explored the uncertainty associated with using the HCHO/NO2 ratio (FNR) as an indicator in ozone control area determination. We focused on the four representative regions in China: Jing-Jin-Ji-Lu-Yu (JJJLY), Jiang-Zhe-Hu-Wan (JZHW), Chuan-Yu (CY), and South China. By using the statistical curve-fitting method, we found that the FNR thresholds were 3.5–5.1, 2.0–4.0, 2.5–4.2, and 1.7–3.5, respectively. Meanwhile, we analyzed the spatial and temporal characteristics of the HCHO, NO2, and O3 control areas. The HCHO concentrations and NO2 concentrations had obvious cyclical patterns, with higher HCHO column densities occurring in summer and higher NO2 concentrations in winter. These high values always appeared in areas with dense population activities and well-developed economies. The distribution characteristics of the ozone control areas indicated that during O3 pollution periods, the urban areas with industrial activities and high population densities were primarily controlled by VOCs, and the suburban areas gradually shifted from VOC-limited regimes to transitional regimes and eventually reverted back to VOC-limited regimes. In contrast, the rural and other remote areas with relatively less development were mainly controlled by NOx. The FNR also exhibited periodic variations, with higher values mostly appearing in summer and lower values appearing in winter. This study identifies the main factors contributing to O3 pollution in different regions of China and can serve as a valuable reference for O3 pollution control. Full article
Show Figures

Graphical abstract

16 pages, 6062 KiB  
Article
Ozone Sensitivity Analysis and Ozone Formation Regimes Division in the Beijing–Tianjin–Hebei Region Based on Satellite Remote Sensing Data
by Hanyang Song, Wenji Zhao, Xingchuan Yang, Wenxing Hou, Linhan Chen and Pengfei Ma
Atmosphere 2023, 14(11), 1637; https://doi.org/10.3390/atmos14111637 - 31 Oct 2023
Cited by 3 | Viewed by 2265
Abstract
In recent years, the concentration of surface ozone (O3) has increased in China. The formation regime of ozone is closely related to the ratio of volatile organic compounds (VOCs) to nitrogen oxides (NOx). To explain this increase in ozone, [...] Read more.
In recent years, the concentration of surface ozone (O3) has increased in China. The formation regime of ozone is closely related to the ratio of volatile organic compounds (VOCs) to nitrogen oxides (NOx). To explain this increase in ozone, we determined the sensitivity of ozone generation by determining the regional threshold of the ratio of formaldehyde to nitrogen dioxide (HCHO/NO2) in the satellite troposphere. The different FNR(HCHO/NO2) ratio ranges indicate three formation regimes: VOC limited, transitional, and NOx limited. Polynomial fitting models were used to determine the threshold range for the transitional regime in the BTH region (2.0, 3.1). The ozone formation regime in the BTH (Beijing–Tianjin–Hebei) region mainly exhibited a transitional and NOx-limited regime. VOC-limited regimes are mainly distributed in urban agglomeration areas, transitional regimes are mainly concentrated in urban expansion areas, and non-urban areas are mainly controlled by NOx. The concentrations of HCHO and NO2 in the BTH region showed a trend of urban agglomeration areas > urban expansion areas > non-urban areas in different land types from 2019 to 2022, whereas the FNR showed an opposite trend. Full article
(This article belongs to the Special Issue Study of Air Pollution Based on Remote Sensing)
Show Figures

Figure 1

21 pages, 15819 KiB  
Article
Few-Shot Object Detection with Local Feature Enhancement and Feature Interrelation
by Hefeng Lai and Peng Zhang
Electronics 2023, 12(19), 4036; https://doi.org/10.3390/electronics12194036 - 25 Sep 2023
Cited by 2 | Viewed by 2458
Abstract
Few-shot object detection (FSOD) aims at designing models that can accurately detect targets of novel classes in a scarce data regime. Existing research has improved detection performance with meta-learning-based models. However, existing methods continue to exhibit certain imperfections: (1) Only the interacting global [...] Read more.
Few-shot object detection (FSOD) aims at designing models that can accurately detect targets of novel classes in a scarce data regime. Existing research has improved detection performance with meta-learning-based models. However, existing methods continue to exhibit certain imperfections: (1) Only the interacting global features of query and support images lead to ignoring local critical features in the imprecise localization of objects from new categories. (2) Convolutional neural networks (CNNs) encounter difficulty in learning diverse pose features from exceedingly limited labeled samples of unseen classes. (3) Local context information is not fully utilized in a global attention mechanism, which means the attention modules need to be improved. As a result, the detection performance of novel-class objects is compromised. To overcome these challenges, a few-shot object detection network is proposed with a local feature enhancement module and an intrinsic feature transformation module. In this paper, a local feature enhancement module (LFEM) is designed to raise the importance of intrinsic features of the novel-class samples. In addition, an Intrinsic Feature Transform Module (IFTM) is explored to enhance the feature representation of novel-class samples, which enriches the feature space of novel classes. Finally, a more effective cross-attention module, called Global Cross-Attention Network (GCAN), which fully aggregates local and global context information between query and support images, is proposed in this paper. The crucial features of novel-class objects are extracted effectively by our model before the feature fusion between query images and support images. Our proposed method increases, on average, the detection performance by 0.93 (nAP) in comparison with previous models on the PASCAL VOC FSOD benchmark dataset. Extensive experiments demonstrate the effectiveness of our modules under various experimental settings. Full article
(This article belongs to the Topic Computer Vision and Image Processing)
Show Figures

Figure 1

23 pages, 11428 KiB  
Article
Local and Regional Contributions to Tropospheric Ozone Concentrations
by Callum E. Flowerday, Ryan Thalman and Jaron C. Hansen
Atmosphere 2023, 14(8), 1262; https://doi.org/10.3390/atmos14081262 - 9 Aug 2023
Cited by 2 | Viewed by 1442
Abstract
The Wasatch Front in Utah, USA is currently a non-attainment area for ozone according to the Environmental Protection Agency’s (EPA) National Ambient Air Quality Standards (NAAQS). Nitrogen oxides (NOx = NO2 + NO) and volatile organic compounds (VOCs) in the presence [...] Read more.
The Wasatch Front in Utah, USA is currently a non-attainment area for ozone according to the Environmental Protection Agency’s (EPA) National Ambient Air Quality Standards (NAAQS). Nitrogen oxides (NOx = NO2 + NO) and volatile organic compounds (VOCs) in the presence of sunlight lead to ozone formation in the troposphere. When the rate of oxidant production, defined as the sum of O3 and NO2, is faster than the rate of NOx production, a region is said to be NOx-limited and ozone formation will be limited by the concentration of NOx species in the region. The inverse of this situation makes the region VOC-limited. Knowing if a region is NOx-limited or VOC-limited can aid in generating effective mitigation strategies. Understanding the background or regional contributions to ozone in a region, whether it be from the transport of precursors or of ozone, provides information about the lower limit for ozone concentrations that a region can obtain with regulation of local precursors. In this paper, measured oxidant and NOx concentrations are analyzed from 14 counties in the state of Utah to calculate the regional and local contributions to ozone for each region. This analysis is used to determine the nature of the atmosphere in each county by determining if the region is VOC- or NOx-limited. Furthermore, this analysis is performed for each county for the years 2012 and 2022 to determine if there has been a change in the oxidative nature and quantify the regional and local contributions to ozone over a 10-year period. All studied counties—except for Washington County—in Utah were found to be VOC-limited in 2012. This shifted in 2022 to most counties being either in a transitional state or being NOx-limited. Local contributions to ozone increased in two major counties, Cache and Salt Lake Counties, but decreased in Carbon, Davis, Duchesne, Uinta, Utah, Washington, and Weber Counties. Generally, the regional contributions to oxidant concentrations decreased across the state. A summertime spike in both regional and local contributions to oxidants was seen. Smoke from wildfires was seen to increase the regional contributions to oxidants and shift the local regime to be more NOx-limited. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

16 pages, 3653 KiB  
Article
Investigation of Summertime Ozone Formation and Sources of Volatile Organic Compounds in the Suburb Area of Hefei: A Case Study of 2020
by Hui Yu, Qianqian Liu, Nana Wei, Mingfeng Hu, Xuezhe Xu, Shuo Wang, Jiacheng Zhou, Weixiong Zhao and Weijun Zhang
Atmosphere 2023, 14(4), 740; https://doi.org/10.3390/atmos14040740 - 19 Apr 2023
Cited by 5 | Viewed by 2911
Abstract
Ground surface ozone (O3) is an emerging concern in China due to its complex formation process. In August 2020, field measurements of O3, NOx, and volatile organic compounds (VOCs) were carried out in Hefei’s western suburbs. The [...] Read more.
Ground surface ozone (O3) is an emerging concern in China due to its complex formation process. In August 2020, field measurements of O3, NOx, and volatile organic compounds (VOCs) were carried out in Hefei’s western suburbs. The pollution features of VOCs and O3 formation were thoroughly analyzed. The total VOC concentration was 42.26 ppb, with the dominant contributor being oxygenated VOCs (OVOCs). Seven emission sources were recognized using the positive matrix factorization (PMF) model, including aged air masses, combustion sources, fuel evaporation, industrial emissions, vehicular emission, solvent utilization, and biogenic emission. Ozone generation mainly occurred under an NOx-limited regime based on the zero-dimensional box model analysis. According to the scenario analysis, the 13% cut in O3 might be achieved by the 10% and 30% reduction in NOx and VOCs, respectively. The O3 budget analysis demonstrates its high ozone production rate during the pollution period. The influence of regional transport cannot be ignored for high O3 pollution. This paper provides scientific evidence for O3 production and the strategies of reducing O3 by controlling its precursors. Full article
(This article belongs to the Special Issue Source Apportionment of Regional Ozone Pollution)
Show Figures

Graphical abstract

Back to TopTop