Carbonyl Compounds Observed at a Suburban Site during an Unusual Wintertime Ozone Pollution Event in Guangzhou
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Site
2.2. Sample Collection and Analysis
2.3. Quality Assurance and Quality Control
2.4. Backward Trajectory Analysis
2.5. Frame for 0-D Atmospheric Modeling (F0AM)
2.6. Relative Incremental Reactivity (RIR)
2.7. Calculation of O3 Formation Potential (OFP)
3. Results and Discussion
3.1. Overview
3.2. Temporal Variations of Carbonyl Compounds
3.3. Impact of Carbonyls on Ozone Formation
3.4. Source Implications on Carbonyls
3.4.1. Secondary Formation of Formaldehyde
3.4.2. Characteristic Ratios
3.4.3. Back Trajectories Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Atkinson, R. Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 2000, 34, 2063–2101. [Google Scholar] [CrossRef]
- World Health Organization. Regional Office for Europe. Air quality guidelines for Europe, 2nd ed.; World Health Organization. Regional Office for Europe: Copenhagen, Denmark, 2000. [Google Scholar]
- Zhang, L.P.; Steinmaus, C.; Eastmond, D.A.; Xin, X.K.; Smith, M.T. Formaldehyde exposure and leukemia: A new meta-analysis and potential mechanisms. Mutat. Res. 2009, 681, 150–168. [Google Scholar] [CrossRef] [PubMed]
- Villanueva, F.; Tapia, A.; Notario, A.; Albaladejo, J.; Martínez, E. Ambient levels and temporal trends of VOCs, including carbonyl compounds, and ozone at Cabaneros National Park border, Spain. Atmos. Environ. 2014, 85, 256–265. [Google Scholar] [CrossRef]
- da Silva, D.B.N.; Martins, E.M.; Corrêa, S.M. Role of carbonyls and aromatics in the formation of tropospheric ozone in Rio de Janeiro, Brazil. Environ. Monit. Assess. 2016, 188, 289. [Google Scholar] [CrossRef]
- Yang, X.; Xue, L.K.; Yao, L.; Li, Q.Y.; Wen, L.; Zhu, Y.H.; Chen, T.S.; Wang, X.F.; Yang, L.X.; Wang, T.; et al. Carbonyl compounds at Mount Tai in the North China Plain: Characteristics, sources, and effects on ozone formation. Atmos. Res. 2017, 196, 53–61. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, G.; Hu, S.H.; Wang, J.H.; Zhang, P.C.; Zhong, X.L.; Song, H.Y. Summertime carbonyl compounds in an urban area in the North China Plain: Identification of sources, key precursors and their contribution to O3 formation. Environ. Pollut. 2023, 331, 121908. [Google Scholar] [CrossRef]
- Chai, W.X.; Wang, M.; Li, J.Y.; Tang, G.G.; Zhang, G.H.; Chen, W.T. Pollution characteristics, sources, and photochemical roles of ambient carbonyl compounds in summer of Beijing, China. Environ. Pollut. 2023, 336, 122403. [Google Scholar] [CrossRef]
- Huang, X.F.; Zhang, B.; Xia, S.Y.; Han, Y.; Wang, C.; Yu, G.H.; Feng, N. Sources of oxygenated volatile organic compounds (OVOCs) in urban atmospheres in North and South China. Environ. Pollut. 2020, 261, 114152. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Xue, L.K.; Li, H.Y.; Chen, T.S.; Mu, J.S.; Dong, C.; Sun, L.; Liu, H.D.; Zhao, Y.; Wu, D.; et al. Source apportionment of regional ozone pollution observed at Mount Tai, North China: Application of lagrangian photochemical trajectory model and implications for control policy. J. Geophys. Res.-Atmos. 2021, 126, e2020JD033519. [Google Scholar] [CrossRef]
- Chen, G.J.; Ji, X.T.; Chen, J.S.; Xu, L.L.; Hu, B.Y.; Lin, Z.Y.; Fan, X.L.; Li, M.R.; Hong, Y.W.; Chen, J.F. Photochemical pollution during summertime in a coastal city of Southeast China: Ozone formation and influencing factors. Atmos. Res. 2024, 301, 107270. [Google Scholar] [CrossRef]
- Wang, F.L.; Ho, S.S.H.; Man, C.L.; Qu, L.L.; Wang, Z.; Ning, Z.; Ho, K.F. Characteristics and sources of oxygenated VOCs in Hong Kong: Implications for ozone formation. Sci. Total Environ. 2024, 912, 169156. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Xue, L.K.; Wang, T.; Wang, X.F.; Gao, J.; Lee, S.C.; Blake, D.R.; Chai, F.H.; Wang, W.X. Observations and explicit Modeling of summertime carbonyl formation in Beijing: Identification of key precursor species and their impact on atmospheric oxidation chemistry. J. Geophys. Res. -Atmos. 2018, 123, 1426–1440. [Google Scholar] [CrossRef]
- Qin, J.J.; Wang, X.B.; Yang, Y.R.; Qin, Y.Y.; Shi, S.X.; Xu, P.H.; Chen, R.Z.; Zhou, X.M.; Tan, J.H.; Wang, X.M. Source apportionment of VOCs in a typical medium-sized city in North China Plain and implications on control policy. J. Environ. Sci. 2021, 107, 26–37. [Google Scholar] [CrossRef]
- Chen, T.S.; Zheng, P.G.; Zhang, Y.N.; Dong, C.; Han, G.X.; Li, H.; Yang, X.; Liu, Y.H.; Sun, J.J.; Li, H.Y.; et al. Characteristics and formation mechanisms of atmospheric carbonyls in an oilfield region of northern China. Atmos. Environ. 2022, 274, 118958. [Google Scholar] [CrossRef]
- Liu, C.T.; Zhang, C.L.; Liu, J.F.; Liu, P.F.; Mu, Y.J. Characteristics and sources of volatile organic compounds during summertime in Tai’an, China. Atmos. Pollut. Res. 2022, 13, 101340. [Google Scholar] [CrossRef]
- Wu, Z.F.; Zhang, Y.L.; Pei, C.L.; Huang, Z.Z.; Wang, Y.J.; Chen, Y.N.; Yan, J.H.; Huang, X.Q.; Xiao, S.X.; Luo, S.L.; et al. Real-world emissions of carbonyls from vehicles in an urban tunnel in South China. Atmos. Environ. 2021, 258, 118491. [Google Scholar] [CrossRef]
- Wang, Y.F.; Cui, J.; Qiao, X.Q.; Sun, M.; Zhang, J.B. Real-world emission characteristics of carbonyl compounds from on-road vehicles in Beijing and Zhengzhou, China. Sci. Total Environ. 2024, 916, 170135. [Google Scholar] [CrossRef]
- Kim, K.-H.; Hong, Y.-J.; Pal, R.; Jeon, E.-C.; Koo, Y.-S.; Sunwoo, Y. Investigation of carbonyl compounds in air from various industrial emission sources. Chemosphere 2008, 70, 807–820. [Google Scholar] [CrossRef]
- Wang, M.; Chen, W.T.; Shao, M.; Lu, S.H.; Zeng, L.M.; Hu, M. Investigation of carbonyl compound sources at a rural site in the Yangtze River Delta region of China. J. Environ. Sci. 2015, 28, 128–136. [Google Scholar] [CrossRef]
- Zhang, J.F.; Smith, K.R. Emissions of carbonyl compounds from various cookstoves in China. Environ. Sci. Technol. 1999, 33, 2311–2320. [Google Scholar] [CrossRef]
- Rottenberger, S.; Kuhn, U.; Wolf, A.; Schebeske, G.; Oliva, S.T.; Tavares, T.M.; Kesselmeier, J. Exchange of short-chain aldehydes between Amazonian vegetation and the atmosphere. Ecol. Appl. 2004, 14, S247–S262. [Google Scholar] [CrossRef]
- Seco, R.; Penuelas, J.; Filella, I. Short-chain oxygenated VOCs: Emission and uptake by plants and atmospheric sources, sinks, and concentrations. Atmos. Environ. 2007, 41, 2477–2499. [Google Scholar] [CrossRef]
- Zarzana, K.J.; Min, K.-E.; Washenfelder, R.A.; Kaiser, J.; Krawiec-Thayer, M.; Peischl, J.; Neuman, J.A.; Nowak, J.B.; Wagner, N.L.; Dube, W.P.; et al. Emissions of Glyoxal and Other Carbonyl Compounds from Agricultural Biomass Burning Plumes Sampled by Aircraft. Environ. Sci. Technol. 2017, 51, 11761–11770. [Google Scholar] [CrossRef] [PubMed]
- Cheng, P.H.; Liu, Z.Y.; Feng, Y.L.; Han, Y.; Peng, Y.; Cai, J.J.; Chen, Y.J. Emission characteristics and formation pathways of carbonyl compounds from the combustion of biomass and their cellulose, hemicellulose, and lignin at different temperatures and oxygen concentrations. Atmos. Environ. 2022, 291, 119387. [Google Scholar] [CrossRef]
- Shen, J.; Zhang, Y.H.; Wang, X.S.; Li, J.F.; Chen, H.; Liu, R.; Zhong, L.J.; Jiang, M.; Yue, D.L.; Chen, D.H.; et al. An ozone episode over the Pearl River Delta in October 2008. Atmos. Environ. 2015, 122, 852–863. [Google Scholar] [CrossRef]
- Wang, X.Q.; Zhang, T.S.; Xiang, Y.; Lv, L.H.; Fan, G.Q.; Ou, J.P. Investigation of atmospheric ozone during summer and autumn in Guangdong Province with a lidar network. Sci. Total Environ. 2021, 751, 141740. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.L.; Xiao, S.X.; Wu, Z.F.; Wang, X.M. Ozone formation at a suburban site in the Pearl River Delta Region, China: Role of biogenic volatile organic compounds. Atmosphere 2023, 14, 609. [Google Scholar] [CrossRef]
- Feng, Y.L.; Wen, S.; Chen, Y.J.; Wang, X.M.; Lü, H.X.; Bi, X.H.; Sheng, G.Y.; Fu, J.M. Ambient levels of carbonyl compounds and their sources in Guangzhou, China. Atmos. Environ. 2005, 39, 1789–1800. [Google Scholar] [CrossRef]
- Feng, Y.L.; Wen, S.; Wang, X.M.; Sheng, G.Y.; He, Q.S.; Tang, J.H.; Fu, J.M. Indoor and outdoor carbonyl compounds in the hotel ballrooms in Guangzhou, China. Atmos. Environ. 2004, 38, 103–112. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Wang, X.M.; Barletta, B.; Simpson, I.J.; Blake, D.R.; Fu, X.X.; Zhang, Z.; He, Q.F.; Liu, T.Y.; Zhao, X.Y.; et al. Source attributions of hazardous aromatic hydrocarbons in urban, suburban and rural areas in the Pearl River Delta (PRD) region. J. Hazard. Mater. 2013, 250, 403–411. [Google Scholar] [CrossRef]
- Yang, W.Q.; Zhang, Y.L.; Wang, X.M.; Li, S.; Zhu, M.; Yu, Q.Q.; Li, G.H.; Huang, Z.H.; Zhang, H.N.; Wu, Z.F.; et al. Volatile organic compounds at a rural site in Beijing: Influence of temporary emission control and wintertime heating. Atmos. Chem. Phys. 2018, 18, 12663–12682. [Google Scholar] [CrossRef]
- Qin, J.J.; Zhou, X.M.; Yang, Y.R.; Tan, J.H.; Zhang, K.; Duan, J.C.; Li, Y.; Hu, J.N.; Chen, R.Z.; He, K.B. Chemical characteristics of atmospheric carbonyls over the South China Sea: Influence of continental outflow. Atmos. Environ. 2019, 208, 141–149. [Google Scholar] [CrossRef]
- Wolfe, G.M.; Marvin, M.R.; Roberts, S.J.; Travis, K.R.; Liao, J. The Framework for 0-D Atmospheric Modeling (F0AM) v3.1. Geosci. Model Dev. 2016, 9, 3309–3319. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.L.; Wu, Z.F.; Luo, S.L.; Song, W.; Wang, X.M. Ozone episodes during and after the 2018 Chinese National Day holidays in Guangzhou: Implications for the control of precursor VOCs. J. Environ. Sci. 2022, 114, 322–333. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.L.; Zhao, W.X.; Wu, Z.F.; Luo, S.L.; Zhang, H.N.; Zhou, H.S.; Song, W.; Zhang, W.J.; Wang, X.M. Observationally constrained modeling of peroxy radical during an ozone episode in the Pearl River Delta Region, China. J. Geophys. Res. -Atmos. 2023, 128, e2022JD038279. [Google Scholar] [CrossRef]
- Carter, W.P.L.; Atkinson, R. Computer modeling study of incremental hydrocarbon reactivity. Environ. Sci. Technol. 1989, 23, 864–880. [Google Scholar] [CrossRef]
- Cardelino, C.A.; Chameides, W.L. An observation-based model for analyzing ozone precursor relationships in the urban atmosphere. J. Air Waste Manag. Assoc. 1995, 45, 161–180. [Google Scholar] [CrossRef]
- Carter, W.P.L. Development of ozone reactivity scales for volatile organic-compounds. J. Air Waste Manag. Assoc. 1994, 44, 881–899. [Google Scholar] [CrossRef]
- Carter, W.P.L. Updated maximum incremental reactivity scale and hydrocarbon bin reactivities for regulatory applications. Calif. Air Resour. Board Contract 2010, 1, 07–339. [Google Scholar]
- Amnuaylojaroen, T.; Kaewkanchanawong, P.; Panpeng, P. Distribution and meteorological control of PM2.5 and its effect on visibility in Northern Thailand. Atmosphere 2023, 14, 538. [Google Scholar] [CrossRef]
- Duo, B.; Cui, L.; Wang, Z.Z.; Li, R.; Zhang, L.W.; Fu, H.B.; Chen, J.M.; Zhang, H.F.; Qiong, A. Observations of atmospheric pollutants at Lhasa during 2014–2015: Pollution status and the influence of meteorological factors. J. Environ. Sci. 2018, 63, 28–42. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhou, Y.; Wang, H.L.; Li, M.Y.; Li, H.M.; Wang, P.Y.; Yue, X.; Li, K.; Zhu, J.; Liao, H. Meteorological characteristics of extreme ozone pollution events in China and their future predictions. Atmos. Chem. Phys. 2024, 24, 1177–1191. [Google Scholar] [CrossRef]
- Bao, J.M.; Li, H.; Wu, Z.H.; Zhang, X.; Zhang, H.; Li, Y.F.; Qian, J.; Chen, J.H.; Deng, L.Q. Atmospheric carbonyls in a heavy ozone pollution episode at a metropolis in Southwest China: Characteristics, health risk assessment, sources analysis. J. Environ. Sci. 2022, 113, 40–54. [Google Scholar] [CrossRef] [PubMed]
- Ling, Z.H.; Guo, H.; Chen, G.X.; Lam, S.H.M.; Fan, S.J. Formaldehyde and Acetaldehyde at Different Elevations in Mountainous Areas in Hong Kong. Aerosol Air Qual. Res. 2016, 16, 1868–1878. [Google Scholar] [CrossRef]
- Lui, K.H.; Ho, S.S.H.; Louie, P.K.K.; Chan, C.S.; Lee, S.C.; Hu, D.; Chan, P.W.; Lee, J.C.W.; Ho, K.F. Seasonal behavior of carbonyls and source characterization of formaldehyde (HCHO) in ambient air. Atmos. Environ. 2017, 152, 51–60. [Google Scholar] [CrossRef]
- Yuan, B.; Chen, W.T.; Shao, M.; Wang, M.; Lu, S.H.; Wang, B.; Liu, Y.; Chang, C.-C.; Wang, B.G. Measurements of ambient hydrocarbons and carbonyls in the Pearl River Delta (PRD), China. Atmos. Res. 2012, 116, 93–104. [Google Scholar] [CrossRef]
- Wang, J.H.; Sun, S.Y.; Zhang, C.X.; Xue, C.Y.; Liu, P.F.; Zhang, C.L.; Mu, Y.J.; Wu, H.; Wang, D.F.; Chen, H.; et al. The pollution levels, variation characteristics, sources and implications of atmospheric carbonyls in a typical rural area of North China Plain during winter. J. Environ. Sci. 2020, 95, 256–265. [Google Scholar] [CrossRef]
- Ochs, S.d.M.; Albuquerque, F.C.; Massa, M.C.G.P.; Pereira Netto, A.D. Evaluation of C1–C13 carbonyl compounds by RRLC-UV in the atmosphere of Niterói City, Brazil. Atmos. Environ. 2011, 45, 5183–5190. [Google Scholar] [CrossRef]
- Delikhoon, M.; Fazlzadeh, M.; Sorooshian, A.; Baghani, A.N.; Golaki, M.; Ashournejad, Q.; Barkhordari, A. Characteristics and health effects of formaldehyde and acetaldehyde in an urban area in Iran. Environ. Pollut. 2018, 242, 938–951. [Google Scholar] [CrossRef]
- Cerón, R.M.; Cerón, J.G.; Muriel, M. Diurnal and seasonal trends in carbonyl levels in a semi-urban coastal site in the Gulf of Campeche, Mexico. Atmos. Environ. 2007, 41, 63–71. [Google Scholar] [CrossRef]
- Okada, Y.; Nakagoshi, A.; Tsurukawa, M.; Matsumura, C.; Eiho, J.; Nakano, T. Environmental risk assessment and concentration trend of atmospheric volatile organic compounds in Hyogo Prefecture, Japan. Environ. Sci. Pollut. Res. 2012, 19, 201–213. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, T.; Chameides, W.L.; Cardelino, C.; Blake, D.R.; Streets, D.G. Source characteristics of volatile organic compounds during high ozone episodes in Hong Kong, Southern China. Atmos. Chem. Phys. 2008, 8, 4983–4996. [Google Scholar] [CrossRef]
- Song, M.D.; Li, X.; Yang, S.D.; Yu, X.N.; Zhou, S.X.; Yang, Y.M.; Chen, S.Y.; Dong, H.B.; Liao, K.R.; Chen, Q.; et al. Spatiotemporal variation, sources, and secondary transformation potential of volatile organic compounds in Xi’an, China. Atmos. Chem. Phys. 2021, 21, 4939–4958. [Google Scholar] [CrossRef]
- Wang, S.Y.; Zhao, Y.L.; Han, Y.; Li, R.; Fu, H.B.; Gao, S.; Duan, Y.S.; Zhang, L.W.; Chen, J.M. Spatiotemporal variation, source and secondary transformation potential of volatile organic compounds (VOCs) during the winter days in Shanghai, China. Atmos. Environ. 2022, 286, 119203. [Google Scholar] [CrossRef]
- Schauer, J.J.; Kleeman, M.J.; Cass, G.R.; Simoneit, B.R.T. Measurement of emissions from air pollution sources. 5. C1-C32 organic compounds from gasoline-powered motor vehicles. Environ. Sci. Technol. 2002, 36, 1169–1180. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Wang, X.M.; Zhang, Z.; Lü, S.J.; Shao, M.; Lee, F.S.C.; Yu, J.Z. Species profiles and normalized reactivity of volatile organic compounds from gasoline evaporation in China. Atmos. Environ. 2013, 79, 110–118. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Su, H.; Zhong, L.J.; Cheng, Y.F.; Zeng, L.M.; Wang, X.S.; Xiang, Y.R.; Wang, J.L.; Gao, D.F.; Shao, M.; et al. Regional ozone pollution and observation-based approach for analyzing ozone-precursor relationship during the PRIDE-PRD2004 campaign. Atmos. Environ. 2008, 42, 6203–6218. [Google Scholar] [CrossRef]
- Pan, W.J.; Gong, S.L.; Lu, K.D.; Zhang, L.; Xie, S.D.; Liu, Y.H.; Ke, H.B.; Zhang, X.L.; Zhang, Y.H. Multi-scale analysis of the impacts of meteorology and emissions on PM2.5 and O3 trends at various regions in China from 2013 to 2020 3. Mechanism assessment of O3 trends by a model. Sci. Total Environ. 2023, 857, 159592. [Google Scholar] [CrossRef]
- Xue, L.K.; Wang, T.; Gao, J.; Ding, A.J.; Zhou, X.H.; Blake, D.R.; Wang, X.F.; Saunders, S.M.; Fan, S.J.; Zuo, H.C.; et al. Ground-level ozone in four Chinese cities: Precursors, regional transport and heterogeneous processes. Atmos. Chem. Phys. 2014, 14, 13175–13188. [Google Scholar] [CrossRef]
- Zeng, P.; Lyu, X.P.; Guo, H.; Cheng, H.R.; Wang, Z.W.; Liu, X.F.; Zhang, W.H. Spatial variation of sources and photochemistry of formaldehyde in Wuhan, Central China. Atmos. Environ. 2019, 214, 116826. [Google Scholar] [CrossRef]
- Dai, W.T.; Ho, S.S.H.; Ho, K.F.; Liu, W.D.; Cao, J.J.; Lee, S.C. Seasonal and diurnal variations of mono- and di-carbonyls in Xi’an, China. Atmos. Res. 2012, 113, 102–112. [Google Scholar] [CrossRef]
- Shepson, P.B.; Hastie, D.R.; Schiff, H.I.; Polizzi, M.; Bottenheim, J.W.; Anlauf, K.; Mackay, G.I.; Karecki, D.R. Atmospheric concentrations and temporal variations of C1 C3 carbonyl compounds at two rural sites in central Ontario. Atmospheric Environment. Part A. Gen. Top. 1991, 25, 2001–2015. [Google Scholar] [CrossRef]
- Grosjean, D. Atmospheric concentrations and temporal variations of C1 C3 carbonyl compounds at two rural sites in central Ontario. Atmospheric Environment. Part A. Gen. Top. 1992, 26, 349–351. [Google Scholar] [CrossRef]
- Jacob, D.J.; Wofsy, S.C. Photochemistry of biogenic emissions over the Amazon forest. J. Geophys. Res. -Atmospheres. 1988, 93, 1477–1486. [Google Scholar] [CrossRef]
- Anderson, L.G.; Lanning, J.A.; Barrell, R.; Miyagishima, J.; Jones, R.H.; Wolfe, P. Sources and sinks of formaldehyde and acetaldehyde: An analysis of Denver’s ambient concentration data. Atmos. Environ. 1996, 30, 2113–2123. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Wang, X.M.; Blake, D.R.; Li, L.F.; Zhang, Z.; Wang, S.Y.; Guo, H.; Lee, F.S.C.; Gao, B.; Chan, L.Y.; et al. Aromatic hydrocarbons as ozone precursors before and after outbreak of the 2008 financial crisis in the Pearl River Delta region, south China. J. Geophys. Res. -Atmos. 2012, 117, D15306. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, X.M.; Zhang, Y.L.; Lü, S.J.; Huang, Z.H.; Huang, X.Y.; Wang, Y.S. Ambient air benzene at background sites in China’s most developed coastal regions: Exposure levels, source implications and health risks. Sci. Total Environ. 2015, 511, 792–800. [Google Scholar] [CrossRef]
- Niu, Z.C.; Zhang, H.; Xu, Y.; Liao, X.; Xu, L.; Chen, J.S. Pollution characteristics of volatile organic compounds in the atmosphere of Haicang District in Xiamen City, Southeast China. J. Environ. Monit. 2012, 14, 1145–1152. [Google Scholar] [CrossRef]
- Wang, X.M.; Sheng, G.Y.; Fu, J.M.; Chan, C.Y.; Lee, S.C.; Chan, L.Y.; Wang, Z.S. Urban roadside aromatic hydrocarbons in three cities of the Pearl River Delta, People’s Republic of China. Atmos. Environ. 2002, 36, 5141–5148. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Yang, W.Q.; Simpson, I.; Huang, X.Y.; Yu, J.Z.; Huang, Z.H.; Wang, Z.Y.; Zhang, Z.; Liu, D.; Huang, Z.Z.; et al. Decadal changes in emissions of volatile organic compounds (VOCs) from on-road vehicles with intensified automobile pollution control: Case study in a busy urban tunnel in south China. Environ. Pollut. 2018, 233, 806–819. [Google Scholar] [CrossRef]
- Barletta, B.; Meinardi, S.; Sherwood Rowland, F.; Chan, C.-Y.; Wang, X.; Zou, S.; Yin Chan, L.; Blake, D.R. Volatile organic compounds in 43 Chinese cities. Atmos. Environ. 2005, 39, 5979–5990. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Y.L.; Wang, X.M.; Lü, S.J.; Huang, Z.H.; Huang, X.Y.; Yang, W.Q.; Wang, Y.S.; Zhang, Q. Spatiotemporal patterns and source implications of aromatic hydrocarbons at six rural sites across China’s developed coastal regions. J. Geophys. Res. -Atmos. 2016, 121, 6669–6687. [Google Scholar] [CrossRef]
- Barletta, B.; Meinardi, S.; Simpson, I.J.; Zou, S.; Sherwood Rowland, F.; Blake, D.R. Ambient mixing ratios of nonmethane hydrocarbons (NMHCs) in two major urban centers of the Pearl River Delta (PRD) region: Guangzhou and Dongguan. Atmos. Environ. 2008, 42, 4393–4408. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, D.; Kumar, K.; Singh, B.B.; Jain, V.K. Distribution of VOCs in urban and rural atmospheres of subtropical India: Temporal variation, source attribution, ratios, OFP and risk assessment. Sci. Total Environ. 2018, 613–614, 492–501. [Google Scholar] [CrossRef]
- Wang, W.J.; Yan, Y.Z.; Fang, H.; Li, J.; Zha, S.P.; Wu, T. Volatile organic compound emissions from typical industries: Implications for the importance of oxygenated volatile organic compounds. Atmos. Pollut. Res. 2023, 14, 101640. [Google Scholar] [CrossRef]
- Mo, Z.W.; Shao, M.; Lu, S.H. Compilation of a source profile database for hydrocarbon and OVOC emissions in China. Atmos. Environ. 2016, 143, 209–217. [Google Scholar] [CrossRef]
- Ou, J.M.; Zheng, J.Y.; Li, R.R.; Huang, X.B.; Zhong, Z.M.; Zhong, L.J.; Lin, H. Speciated OVOC and VOC emission inventories and their implications for reactivity-based ozone control strategy in the Pearl River Delta region, China. Sci. Total Environ. 2015, 530–531, 393–402. [Google Scholar] [CrossRef]
- Zheng, J.Y.; Shao, M.; Che, W.W.; Zhang, L.J.; Zhong, L.J.; Zhang, Y.H.; Streets, D. Speciated VOC Emission Inventory and Spatial Patterns of Ozone Formation Potential in the Pearl River Delta, China. Environ. Sci. Technol. 2009, 43, 8580–8586. [Google Scholar] [CrossRef]
- Giglio, L.; Csiszar, I.; Justice, C.O. Global distribution and seasonality of active fires as observed with the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. J. Geophys. Res.-Atmos. 2006, 111, G02016. [Google Scholar] [CrossRef]
- Van der Werf, G.R.; Randerson, J.T.; Giglio, L.; Gobron, N.; Dolman, A.J. Climate controls on the variability of fires in the tropics and subtropics. Glob. Biogeochem. Cycles 2008, 22, GB3028. [Google Scholar] [CrossRef]
- Crutzen, P.J.; Andreae, M.O. Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles. Science 1990, 250, 1669–1678. [Google Scholar] [CrossRef]
- Andreae, M.O. Emission of trace gases and aerosols from biomass burning—An updated assessment. Atmos. Chem. Phys. 2019, 19, 8523–8546. [Google Scholar] [CrossRef]
Compound | Whole Mean ± SD a | Nonpollution Mean ± SD | Pollution Mean ± SD | MDL |
---|---|---|---|---|
Formaldehyde | 3.48 ± 2.23 | 2.57 ± 1.12 | 7.11 ± 1.80 | 3 |
Acetaldehyde | 1.48 ± 0.97 | 1.10 ± 0.48 | 3.00 ± 0.94 | 5 |
Acetone | 3.23 ± 1.36 | 2.73 ± 0.88 | 5.21 ± 1.13 | 9 |
Propanal | 0.13 ± 0.12 | 0.09 ± 0.06 | 0.32 ± 0.12 | 6 |
2-butanone | 0.32 ± 0.26 | 0.23 ± 0.18 | 0.67 ± 0.25 | 2 |
Butyraldehyde | 0.06 ± 0.08 | 0.03 ± 0.04 | 0.18 ± 0.08 | 7 |
Benzaldehyde | 0.08 ± 0.07 | 0.05 ± 0.06 | 0.18 ± 0.04 | 6 |
Cyclohexanone | 0.16 ± 0.20 | 0.11 ± 0.15 | 0.36 ± 0.25 | 3 |
Pentanal | 0.02 ± 0.03 | 0.01 ± 0.02 | 0.07 ± 0.04 | 6 |
Hexanal | 0.03 ± 0.06 | 0.01 ± 0.02 | 0.10 ± 0.11 | 4 |
2,5-dimethylbenzaldehyde | 0.06 ± 0.04 | 0.06 ± 0.05 | 0.06 ± 0.01 | 1 |
Nonanal | 0.13 ± 0.07 | 0.12 ± 0.05 | 0.17 ± 0.09 | 2 |
Decanal | 0.02 ± 0.02 | 0.02 ± 0.02 | 0.01 ± 0.02 | 2 |
Glyoxal | 0.10 ± 0.03 | 0.09 ± 0.02 | 0.13 ± 0.03 | 10 |
Methylglyoxal | 0.28 ± 0.19 | 0.21 ± 0.10 | 0.58 ± 0.19 | 12 |
Total | 9.58 ± 5.43 | 7.42 ± 2.88 | 18.22 ± 4.61 |
Location | Type | Formaldehyde | Acetaldehyde | Acetone | F/A | Period | Reference |
---|---|---|---|---|---|---|---|
Guangzhou | Suburban | 3.48 ± 2.23 | 1.48 ± 0.97 | 3.23 ± 1.36 | 2.35 | 2020.12 | This study |
Linyi | Urban | 3.90 ± 3.60 | 1.66 ± 1.00 | 2.03 ± 0.84 | 2.36 | 2020.6 | [7] |
Shenzhen | Urban | 1.60 ± 0.86 | 1.16 ± 10.90 | 2.31 ± 1.32 | 1.38 | 2018.5–6 | [9] |
Beijing | Urban | 6.31 ± 2.79 | 2.90 ± 1.36 | 4.16 ± 1.44 | 2.18 | 2018.4 | [9] |
Chengdu | Suburban | 9.86 ± 4.41 | 3.57 ± 2.19 | 4.11 ± 2.32 | 2.76 | 2019.8 | [44] |
Hongkong | Urban | 2.70 ± 0.20 | 1.40 ± 0.10 | - | 1.92 | 2010.9–11 | [45] |
Hongkong | Rural | 1.11 ± 0.30 | 0.73 ± 0.40 | - | 1.52 | 2012–2013 | [46] |
Guangzhou | Urban | 6.03 ± 1.80 | 3.54 ± 0.54 | - | 1.70 | 2006.6 | [47] |
Baoding | Rural | 3.73 | 3.19 | 2.46 | 1.17 | 2017.11–12 | [48] |
Niterói | Urban | 2.62 | 3.62 | 3.06 | 0.72 | 2010.1 | [49] |
Shiraz | Urban | 6.98 ± 4.82 | 1.95 ± 0.94 | - | 3.58 | 2017.12–2018.1 | [50] |
Campeche | Suburban | 2.45 | 1.72 | 2.87 | 1.42 | 2004.2–5 | [51] |
Sumoto | Urban | 2.93 | 2.11 | 3.54 | 1.39 | 2005–2009 | [52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, A.; Wu, Z.; Xiao, S.; Huang, X.; Song, W.; Zhang, Z.; Zhang, Y.; Wang, X. Carbonyl Compounds Observed at a Suburban Site during an Unusual Wintertime Ozone Pollution Event in Guangzhou. Atmosphere 2024, 15, 1235. https://doi.org/10.3390/atmos15101235
Ge A, Wu Z, Xiao S, Huang X, Song W, Zhang Z, Zhang Y, Wang X. Carbonyl Compounds Observed at a Suburban Site during an Unusual Wintertime Ozone Pollution Event in Guangzhou. Atmosphere. 2024; 15(10):1235. https://doi.org/10.3390/atmos15101235
Chicago/Turabian StyleGe, Aoqi, Zhenfeng Wu, Shaoxuan Xiao, Xiaoqing Huang, Wei Song, Zhou Zhang, Yanli Zhang, and Xinming Wang. 2024. "Carbonyl Compounds Observed at a Suburban Site during an Unusual Wintertime Ozone Pollution Event in Guangzhou" Atmosphere 15, no. 10: 1235. https://doi.org/10.3390/atmos15101235
APA StyleGe, A., Wu, Z., Xiao, S., Huang, X., Song, W., Zhang, Z., Zhang, Y., & Wang, X. (2024). Carbonyl Compounds Observed at a Suburban Site during an Unusual Wintertime Ozone Pollution Event in Guangzhou. Atmosphere, 15(10), 1235. https://doi.org/10.3390/atmos15101235