Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = Upper Awash Basin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 3036 KB  
Article
Agricultural Productivity of Solar Pump and Water Harvesting Irrigation Technologies and Their Impacts on Smallholder Farmers’ Income and Food Security: Evidence from Ethiopia
by Mebratu Negera, Zeleke Agide Dejen, Dagmawi Melaku, Desalegn Tegegne, Muluken Elias Adamseged and Amare Haileslassie
Sustainability 2025, 17(4), 1486; https://doi.org/10.3390/su17041486 - 11 Feb 2025
Cited by 1 | Viewed by 3895
Abstract
Irrigation plays a crucial role in enhancing food production, increasing land productivity, and improving the livelihoods of smallholder farmers in Sub-Saharan Africa (SSA). Solar pumps and water harvesting ponds have emerged as promising technologies for sustainable agriculture for smallholders in SSA and beyond. [...] Read more.
Irrigation plays a crucial role in enhancing food production, increasing land productivity, and improving the livelihoods of smallholder farmers in Sub-Saharan Africa (SSA). Solar pumps and water harvesting ponds have emerged as promising technologies for sustainable agriculture for smallholders in SSA and beyond. The socio-economic impacts of these systems are less studied in the existing literature. This study examined the agricultural productivity of solar pump and water harvesting irrigation technologies and their impacts on income and food security among smallholder farmers in the Central Rift Valley, Lake Hawassa, and Upper Awash sub-basin areas in Ethiopia. Data were collected from 161 farming households that were selected randomly from woredas where solar pump and water harvesting pond irrigation systems had been implemented. The sample size was determined using the power calculation method. Bio-physical observation and measurements were also conducted at field levels. The benefit–cost ratio (BCR) and net water value (NWV) from the use of solar pump and water harvesting pond irrigations were analyzed to assess the viability of these systems. The household food consumption score (HFCS) and household dietary diversity score (HDDS) were calculated to measure food security, while the revenue from crop production was used to measure crop income. An endogenous switching regression model was applied to address the endogeneity nature of the adoption of the irrigation technologies. The counterfactual analysis, specifically the Average Treatment Effect on the Treated (ATT), was used to evaluate the impacts of the irrigation technologies on income and food security. Results indicate that the ATT of crop income, HFCS, and HDDS are positive and statistically significant, illustrating the role of these irrigation systems in enhancing smallholder farmers’ welfare. Moreover, smallholder farmers’ solar pump irrigation systems were found to be economically viable for few crops, with a BCR greater than 1.0 and an NWV ranging from 0.21 to 1.53 USD/m³. It was also found that bundling agricultural technologies with solar pump irrigation systems leads to enhanced agricultural outputs and welfare. The sustainable adoption and scale-up of these irrigation systems demand addressing technical and financial constraints, as well as input and output market challenges. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

14 pages, 6561 KB  
Article
Assessing Heavy Metal Contamination Using Biosensors and a Multi-Branch Integrated Catchment Model in the Awash River Basin, Ethiopia
by Li Jin, Cordelia Rampley, Yosef Abebe, Gianbattista Bussi, Trang Quynh To, Duane Ager and Paul G. Whitehead
Water 2023, 15(23), 4073; https://doi.org/10.3390/w15234073 - 24 Nov 2023
Cited by 5 | Viewed by 2110
Abstract
Metal pollution in rivers from untreated industrial and domestic wastewater is a major issue in economically developing countries worldwide. The Awash River Basin in Ethiopia is one of those rivers that faces rising heavy metal concentrations due to poor wastewater management and loose [...] Read more.
Metal pollution in rivers from untreated industrial and domestic wastewater is a major issue in economically developing countries worldwide. The Awash River Basin in Ethiopia is one of those rivers that faces rising heavy metal concentrations due to poor wastewater management and loose law enforcement controlling effluent discharge into rivers. In this study, surface water and wastewater samples were collected within the Awash River Basin, with metals analysis using ICP-MS techniques. Acute toxicity of water was determined using new molecular biosensor technology based on engineered luminescent bacteria. A multi-branch Integrated Catchment Model (INCA) for metals, including Arsenic, Cadmium, Chromium, Copper, Lead, Manganese, and Zinc was applied to the Awash River Basin to simulate the impact of tannery discharge on the river water pollution levels and to evaluate a set of treatment scenarios for pollution control. Results show that all samples from tannery wastewater have high levels of metals, such as Chromium and Manganese with high levels of toxicities. River water samples from upper Awash near Addis Ababa showed elevated concentrations of heavy metals due to the untreated wastewater from the dense population and a large number of industries in that area. The modeling scenarios indicate that improved wastewater management will reduce the metal concentration significantly. With a 50% reduction in effluent concentrations, the mean concentrations of heavy metals (such as Chromium) over two years would be able to reach 20 to 50% reduction in river water samples. Full article
(This article belongs to the Special Issue Water Quality Assessment and Modelling)
Show Figures

Figure 1

27 pages, 7347 KB  
Article
Scenario-Based LULC Dynamics Projection Using the CA–Markov Model on Upper Awash Basin (UAB), Ethiopia
by Selamawit Haftu Gebresellase, Zhiyong Wu, Huating Xu and Wada Idris Muhammad
Sustainability 2023, 15(2), 1683; https://doi.org/10.3390/su15021683 - 16 Jan 2023
Cited by 14 | Viewed by 3278
Abstract
Understanding the spatiotemporal changes in land use and land cover (LULC) in the watershed is crucial for maintaining the sustainability of land resources. This study intents to understand the historical (1972–2015) and future (2030–2060) spatiotemporal distribution of LULC changes in the Upper Awash [...] Read more.
Understanding the spatiotemporal changes in land use and land cover (LULC) in the watershed is crucial for maintaining the sustainability of land resources. This study intents to understand the historical (1972–2015) and future (2030–2060) spatiotemporal distribution of LULC changes in the Upper Awash Basin (UAB). The supervised Maximum Likelihood Classifier technique (MLC) was implemented for historical LULC classification. The Cellular Automata-Markov (CA–Markov) model was employed to project two scenarios of LULC, ‘business-as-usual’ (BAU) and ‘governance’ (Gov). Results from the historical LULC of the study area show that urban and cropland areas increased from 52.53 km2 (0.45%) to 354.14 km2 (3.01%) and 6040.75 km2 (51.25%) to 8472.45 km2 (71.97%), respectively. Whereas grassland, shrubland, and water bodies shrunk from 2052.08 km2 (17.41%) to 447.63 km2 (3.80%), 2462.99 km2 (20.89%) to 1399.49 km2 (11.89%) and 204.87 km2 (1.74%) to 152.44 km2 (1.29%), respectively, from 1972 to 2015. The historical LULC results indicated that the forest area was highly vulnerable and occupied by urban and cropland areas. The projected LULC under the BAU scenario shows substantial cropland and urban area expansion, increasing from 8472.45 km2 (71.97%) in 2015 to 9159.21 km2 (77.71%) in 2060 and 354.14 km2 (3.1%) in 2015, 1196.78 km2 (10.15%) in 2060, respectively, at the expense of vegetation cover. These results provide insight intothe LULC changes in the area, thus requiring urgent attention by watershed managers, policymakers, and stakeholders to provide sustainable practices for the UAB. Meanwhile, the Gov scenario indicates an increase in vegetable covers and a decrease in cropland, encouraging sustainable development compared to the BAU scenario. Full article
Show Figures

Figure 1

28 pages, 1134 KB  
Article
Understanding Future Climate in the Upper Awash Basin (UASB) with Selected Climate Model Outputs under CMIP6
by Yonas Abebe Balcha, Andreas Malcherek and Tena Alamirew
Climate 2022, 10(12), 185; https://doi.org/10.3390/cli10120185 - 22 Nov 2022
Cited by 10 | Viewed by 3279
Abstract
Climate change makes the climate system of a given region unpredictable and increases the risk of water-related problems. GCMs (global climate models) help in understanding future climate conditions over a given region. In this study, 12 GCMs from the CMIP6 (coupled model intercomparison [...] Read more.
Climate change makes the climate system of a given region unpredictable and increases the risk of water-related problems. GCMs (global climate models) help in understanding future climate conditions over a given region. In this study, 12 GCMs from the CMIP6 (coupled model intercomparison project six) were evaluated and ranked based on their abilities to describe the historical observed series. The ensemble mean of bias-adjusted best five models of average annual precipitation showed an increment with an uncertainty range of (2.0–11.9) and change in the mean of 6.4% for SSP2-4.5 and (6.1–16.1) 10.6% for SSP5-8.5 in 2040–2069 relative to the historical period. Similarly, for 2070–2099, increments of (2.2–15.0) 7.9% and (11.8–29.4) 19.7% were predicted for the two scenarios, respectively. The average annual maximum temperature series showed increments of (1.3–2.0) 1.6 °C for SSP2-4.5 and (1.7–2.3) 2.0 °C for SSP5-8.5 in 2040–2069. At the same time, increments of (1.7–2.3) 2.0 °C and (2.8–3.2) 3.0 °C were predicted for 2070–2099. Furthermore, it was predicted that the average annual minimum temperature series will have increments of (1.6–2.3) 2.0 °C and (2.2–2.9) 2.5 °C for 2040–2069 and (2.1–2.7) 2.4 °C and (3.7–4.2) 4.0 °C for 2070–2099 for the two scenarios, respectively. An increase in precipitation with increased land degradation in the sub-basin results in a higher risk of flood events in the future. Improved soil and water conservation practices may minimize the adverse impacts of future climate change on the loss of agricultural productivity. Full article
Show Figures

Figure 1

29 pages, 12106 KB  
Article
Quantitatively Assessing the Future Land-Use/Land-Cover Changes and Their Driving Factors in the Upper Stream of the Awash River Based on the CA–Markov Model and Their Implications for Water Resources Management
by Mekonnen H. Daba and Songcai You
Sustainability 2022, 14(3), 1538; https://doi.org/10.3390/su14031538 - 28 Jan 2022
Cited by 76 | Viewed by 6772
Abstract
Despite the rapid economic and population growth, the risks related to the current dynamics of land use and land cover (LULC) have attracted a lot of attention in Ethiopia. Therefore, a complete investigation of past and future LULC changes is essential for sustainable [...] Read more.
Despite the rapid economic and population growth, the risks related to the current dynamics of land use and land cover (LULC) have attracted a lot of attention in Ethiopia. Therefore, a complete investigation of past and future LULC changes is essential for sustainable water resources and land-use planning and management. Since the 1980s, LULC change has been detected in the upper stream of the Awash River basin. The main purpose of this research was to investigate the current dynamics of LULC and use the combined application of the cellular automata and the Markov chain (CA–Markov) model to simulate the year 2038 LULC in the future; key informant interviews, household surveys, focus group discussions, and field observations were used to assess the consequences and drivers of LULC changes in the upstream Awash basin (USAB). This research highlighted the importance of remote sensing (RS) and geographic information system (GIS) techniques for analyzing the LULC changes in the USAB. Multi-temporal cloud-free Landsat images of three sequential data sets for the periods (1984, 2000, and 2019) were employed to classify based on supervised classification and map LULC changes. Satellite imagery enhancement techniques were performed to improve and visualize the image for interpretation. ArcGIS10.4 and IDRISI software was used for LULC classification, data processing, and analyses. Based on Landsat 5 TM-GLS 1984, Landsat 7 ETM-GLS 2000, and Landsat 8 2019 OLI-TIRS, the supervised maximum likelihood image classification method was used to map the LULC dynamics. Landsat images from 1984, 2000, and 2019 were classified to simulate possible LULC in 2019 and 2038. The result reveals that the maximum area is covered by agricultural land and shrubland. It showed, to the areal extent, a substantial increase in agricultural land and urbanization and a decrease in shrubland, forest, grassland, and water. The LULC dynamics showed that those larger change rates were observed from forest and shrubland to agricultural areas. The results of the study show the radical changes in LULC during 1984–2019; the main reasons for this were agricultural expansion and urbanization. From 1984 to 2019, agriculture increased by 62%, urban area increased by 570.5%, and forest decreased by 88.7%. In the same year, the area of shrubland decreased by 68.6%, the area of water decreased by 65.5%, and the area of grassland decreased by 57.7%. In view of the greater increase in agricultural land and urbanization, as well as the decrease in shrubland, it means that the LULC of the region has changed. This research provides valuable information for water resources managers and land-use planners to make changes in the improvement of future LULC policies and development of sub-basin management strategies in the context of sustainable water resources and land-use planning and management. Full article
Show Figures

Figure 1

27 pages, 4619 KB  
Article
Impact of Climate Change on the Hydrology of the Upper Awash River Basin, Ethiopia
by Nega Chalie Emiru, John Walker Recha, Julian R. Thompson, Abrham Belay, Ermias Aynekulu, Alen Manyevere, Teferi D. Demissie, Philip M. Osano, Jabir Hussein, Mikias Biazen Molla, Girma Moges Mengistu and Dawit Solomon
Hydrology 2022, 9(1), 3; https://doi.org/10.3390/hydrology9010003 - 23 Dec 2021
Cited by 41 | Viewed by 7364
Abstract
This study investigated the impacts of climate change on the hydrology of the Upper Awash Basin, Ethiopia. A soil and water assessment tool (SWAT) model was calibrated and validated against observed streamflow using SWAT CUP. The Mann–Kendall trend test (MK) was used to [...] Read more.
This study investigated the impacts of climate change on the hydrology of the Upper Awash Basin, Ethiopia. A soil and water assessment tool (SWAT) model was calibrated and validated against observed streamflow using SWAT CUP. The Mann–Kendall trend test (MK) was used to assess climate trends. Meteorological drought (SPEI) and hydrological drought (SDI) were also investigated. Based on the ensemble mean of five global climate models (GCMs), projected increases in mean annual maximum temperature over the period 2015–2100 (compared with a 1983–2014 baseline) range from 1.16 to 1.73 °C, while increases in minimum temperature range between 0.79 and 2.53 °C. Increases in mean annual precipitation range from 1.8% at Addis Ababa to 45.5% over the Hombole area. High streamflow (Q5) declines at all stations except Ginchi. Low flows (Q90) also decline with Q90 equaling 0 m3 s−1 (i.e., 100% reduction) at some gauging stations (Akaki and Hombole) for individual GCMs. The SPEI confirmed a significant drought trend in the past, while the frequency and severity of drought will increase in the future. The basin experienced conditions that varied from modest dry periods to a very severe hydrological drought between 1986 and 2005. The projected SDI ranges from modestly dry to modestly wet conditions. Climate change in the basin would enhance seasonal variations in hydrological conditions. Both precipitation and streamflow will decline in the wet seasons and increase in the dry seasons. These changes are likely to have an impact on agricultural activities and other human demands for water resources throughout the basin and will require the implementation of appropriate mitigation measures. Full article
(This article belongs to the Section Hydrology–Climate Interactions)
Show Figures

Figure 1

28 pages, 3441 KB  
Article
Analysis of Smallholders’ Livelihood Vulnerability to Drought across Agroecology and Farm Typology in the Upper Awash Sub-Basin, Ethiopia
by Husen Maru, Amare Haileslassie, Tesfaye Zeleke and Befikadu Esayas
Sustainability 2021, 13(17), 9764; https://doi.org/10.3390/su13179764 - 31 Aug 2021
Cited by 38 | Viewed by 5295
Abstract
Assessing the magnitude of smallholder farmers’ livelihood vulnerability to drought is an initial step in identifying the causal factors and proposing interventions that mitigate the impacts of drought. This study aimed to assess smallholders’ livelihood vulnerability to the drought in the upper Awash [...] Read more.
Assessing the magnitude of smallholder farmers’ livelihood vulnerability to drought is an initial step in identifying the causal factors and proposing interventions that mitigate the impacts of drought. This study aimed to assess smallholders’ livelihood vulnerability to the drought in the upper Awash sub-basin, Ethiopia. Household (HH) and climate data were used for indicators related to sensitivity, exposure, and adaptive capacity that define vulnerability to drought. The vulnerability of farmers’ livelihood to drought was compared among the studies agroecological zone (AEZ) and farm typologies. The result illustrated a diverse magnitude of vulnerability index (VI) ranging from −1.956 to −4.253 for AEZ. The highest magnitude of VI was estimated for livelihood in the lowland AEZ, while the lowest magnitude of VI was estimated in midland AEZ. This could be accounted for by the fact that lowland farmers shown the highest exposure (0.432) and sensitivity (0.420) and the lowest adaptive capacity (0.288). A closer look at farmers’ livelihood typology, in each of the AEZ, showed substantial diversity of farmers’ livelihood vulnerability to drought, implying potential aggregations at AEZ. Accordingly, the vulnerability index for livestock and on-farm-income-based livelihood and marginal and off-farm-income-based livelihood typologies were higher than the intensive-irrigation-farming-based smallholders’ livelihood typology. Based on the result, we concluded that procedures for smallholders’ livelihood resilience-building efforts should better target AEZ to prioritize the focus region and farmers’ livelihood typology to tailor technologies to farms. Although the result emphasizes the importance of irrigation-based livelihood strategy, the overall enhancement of farmers adaptive capacity needs to focus on action areas such as reducing the sensitivity and exposure of the households, improving farmers usage of technologies, diversify farmers’ livelihood options, and, hence, long-term wealth accumulation to strengthen farmers’ adaptive capacity toward drought impacts. Full article
Show Figures

Figure 1

18 pages, 18287 KB  
Article
Integrated Hydrological Analysis of Little Akaki Watershed Using SWAT-MODFLOW, Ethiopia
by Mesfin Benti Tolera and Il-Moon Chung
Appl. Sci. 2021, 11(13), 6011; https://doi.org/10.3390/app11136011 - 28 Jun 2021
Cited by 14 | Viewed by 3670
Abstract
In Ethiopia, groundwater is the main source of freshwater to support human consumption and socio-economic development. Little Akaki watershed is located in Upper Awash basin, known for its high annual rainfall and considered as the potential groundwater recharge zone. On the contrary, urbanization [...] Read more.
In Ethiopia, groundwater is the main source of freshwater to support human consumption and socio-economic development. Little Akaki watershed is located in Upper Awash basin, known for its high annual rainfall and considered as the potential groundwater recharge zone. On the contrary, urbanization and industrial expansion are increasing at an alarming rate in the area. This became a concern threatening the groundwater resources’ sustainability. To address these challenges, integrated analysis of groundwater recharge and groundwater numerical simulations were made. For groundwater recharge estimation, SWAT model was used. The result indicated that recharge in the watershed mostly occurs from July to October with maximum values in August. On average, the estimated annual catchment recharge was 179 mm. For the numerical simulation and prediction of the groundwater flow system, MODFLOW 2005 was used. The model simulations indicated that the groundwater head converges towards the main river and, finally, to the outlet of the watershed. The study indicated areas of interactions between the river and groundwater. The scenario examination result reveals increasing the present pumping rate by over fifty percent (by 50%, 100%, and 200%) will surely cause visible groundwater head decline near the outlet of the watershed, and substantial river baseflow reduction. The recharge reduction scenario also indicates the huge risk of groundwater sustainability in the area. Full article
Show Figures

Figure 1

17 pages, 3285 KB  
Article
Hydroclimate Trend Analysis of Upper Awash Basin, Ethiopia
by Fekadu Aduna Duguma, Fekadu Fufa Feyessa, Tamene Adugna Demissie and Krystyna Januszkiewicz
Water 2021, 13(12), 1680; https://doi.org/10.3390/w13121680 - 17 Jun 2021
Cited by 12 | Viewed by 4164
Abstract
The Awash River basin is classified into the upper basin, middle basin, and lower basin. The upper basin is the most irrigated and socio-economically important, wherein early and modern agriculture started. This study aimed to assess the upper basin’s hydroclimate variability under climate [...] Read more.
The Awash River basin is classified into the upper basin, middle basin, and lower basin. The upper basin is the most irrigated and socio-economically important, wherein early and modern agriculture started. This study aimed to assess the upper basin’s hydroclimate variability under climate change from 1991 to 2015 following the county’s land-use policy change. Distinguished topographical settings, namely, lowland, midland, and highland, are used for upper Awash basin hydroclimate trend analysis. Lowland stations revealed a nonsignificant seasonal and annual increasing trend except for the Autumn season. Midland stations showed a decreased seasonal rainfall. Except for Sendafa, the increased station, the highland area exhibited an annual decreasing trend. The Awash-Hombole and Mojo main tributaries are used for the evaluation of basin streamflow. The Awash-Hombole main tributary resulted in annually growing trends during the summer season. Mojo main tributary resulted in a significantly decreasing trend during the spring, summer, and autumn seasons with a 99% level of significance. Therefore, following the basin’s topographic nature, the change of hydroclimatic elements, mainly of the rainfall and streamflow, is observed. Accordingly, its hydroclimate variated by 11 and 38% with precipitation and streamflow, respectively, from the mean value within the study time series. Full article
Show Figures

Graphical abstract

19 pages, 3536 KB  
Article
Integrating Satellite Rainfall Estimates with Hydrological Water Balance Model: Rainfall-Runoff Modeling in Awash River Basin, Ethiopia
by Girma Berhe Adane, Birtukan Abebe Hirpa, Belay Manjur Gebru, Cholho Song and Woo-Kyun Lee
Water 2021, 13(6), 800; https://doi.org/10.3390/w13060800 - 15 Mar 2021
Cited by 16 | Viewed by 4475
Abstract
Hydrologic models play an indispensable role in managing the scarce water resources of a region, and in developing countries, the availability and distribution of data are challenging. This research aimed to integrate and compare the satellite rainfall products, namely, Tropical Rainfall Measuring Mission [...] Read more.
Hydrologic models play an indispensable role in managing the scarce water resources of a region, and in developing countries, the availability and distribution of data are challenging. This research aimed to integrate and compare the satellite rainfall products, namely, Tropical Rainfall Measuring Mission (TRMM 3B43v7) and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR), with a GR2M hydrological water balance model over a diversified terrain of the Awash River Basin in Ethiopia. Nash–Sutcliffe efficiency (NSE), percent bias (PBIAS), coefficient of determination (R2), and root mean square error (RMSE) and Pearson correlation coefficient (PCC) were used to evaluate the satellite rainfall products and hydrologic model performances of the basin. The satellite rainfall estimations of both products showed a higher PCC (above 0.86) with areal observed rainfall in the Uplands, the Western highlands, and the Lower sub-basins. However, it was weakly associated in the Upper valley and the Eastern catchments of the basin ranging from 0.45 to 0.65. The findings of the assimilated satellite rainfall products with the GR2M model exhibited that 80% of the calibrated and 60% of the validated watersheds in a basin had lower magnitude of PBIAS (<±10), which resulted in better accuracy in flow simulation. The poor performance with higher PBIAS (≥±25) of the GR2M model was observed only in the Melka Kuntire (TRMM 3B43v7 and PERSIANN-CDR), Mojo (PERSIANN-CDR), Metehara (in all rainfall data sets), and Kessem (TRMM 3B43v7) watersheds. Therefore, integrating these satellite rainfall data, particularly in the data-scarce basin, with hydrological data, generally appeared to be useful. However, validation with the ground observed data is required for effective water resources planning and management in a basin. Furthermore, it is recommended to make bias corrections for watersheds with poorlyww performing satellite rainfall products of higher PBIAS before assimilating with the hydrologic model. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

22 pages, 14016 KB  
Article
Assessment of Climate Change Impacts on River Flow Regimes in the Upstream of Awash Basin, Ethiopia: Based on IPCC Fifth Assessment Report (AR5) Climate Change Scenarios
by Mekonnen H. Daba and Songcai You
Hydrology 2020, 7(4), 98; https://doi.org/10.3390/hydrology7040098 - 20 Dec 2020
Cited by 58 | Viewed by 7241
Abstract
The Awash River Basin is the most irrigated area in Ethiopia, which is facing critical water resources problems. The main objective of this study was to assess the impacts of climate change on river flows in the upper Awash Subbasin, Ethiopia, using the [...] Read more.
The Awash River Basin is the most irrigated area in Ethiopia, which is facing critical water resources problems. The main objective of this study was to assess the impacts of climate change on river flows in the upper Awash Subbasin, Ethiopia, using the soil and water assessment tool (SWAT) hydrological model. The ensemble of two global climate models (CSIRO-Mk3-6-0 and MIROC-ESM-CHEM with RCP4.5 and RCP8.5) for climate data projections (the 2020s, 2050s, and 2080s) and historical climate data from 1981–2010 was considered. Bias-corrections were made for both the GCM data. SWAT model was calibrated and validated to simulate future hydrologic variables in response to changes in rainfall and temperature. The results showed that the projected climate change scenarios were an increase in rainfall for the period of the 2020s but reduced for the periods of 2050s and 2080s. The annual mean temperature increases, ranging from 0.5 to 0.9 °C under RCP4.5 and 0.6 to 1.2 °C under RCP8.5 for all time slices. In the 2020s, annual mean rainfall increases by 5.77% under RCP4.5 and 7.80% under RCP8.5, while in 2050s and 2080s time slices, rainfall decrements range from 3.31 to 9.87% under RCP4.5 and 6.80 to 16.22% under RCP8.5. The change in rainfall and temperature probably leads to increases in the annual streamflow by 5.79% for RCP4.5 and 7.20% for RCP8.5 in the 2020s, whereas decreases by 10.39% and 11.45% under RCP4.5; and 10.79% and −12.38% for RCP8.5 in 2050s and 2080s, respectively. Similarly, in the 2020s, an increment of annual runoff was 10.73% for RCP4.5 and 12.08% for RCP8.5. Runoff reduces by 12.03% and 4.12% under RCP4.5; and 12.65% and 5.31% under RCP8.5 in the 2050s and the 2080s, respectively. Overall, the results revealed that changes in rainfall and temperature would have significant impacts on the streamflow and surface runoff, causing a possible reduction in the total water availability in the subbasin. This study provides useful information for future water resource planning and management in the face of climate change in the upper Awash River basin. Full article
Show Figures

Figure 1

14 pages, 1743 KB  
Article
Rainfall Characterization and Trend Analysis of Wet Spell Length across Varied Landscapes of the Upper Awash River Basin, Ethiopia
by Girma Berhe Adane, Birtukan Abebe Hirpa, Cholho Song and Woo-Kyun Lee
Sustainability 2020, 12(21), 9221; https://doi.org/10.3390/su12219221 - 5 Nov 2020
Cited by 17 | Viewed by 3271
Abstract
Understanding the timing and variability of rainfall is crucial for the effective management of water resources in river basins dominated by rainfed agricultural practices. Our study aimed to characterize rainfall and analyze the trends in the length of wet spells (LWS) in the [...] Read more.
Understanding the timing and variability of rainfall is crucial for the effective management of water resources in river basins dominated by rainfed agricultural practices. Our study aimed to characterize rainfall and analyze the trends in the length of wet spells (LWS) in the Upper Awash River Basin—one of the most water-stressed river basins in Ethiopia. We applied statistical descriptors and a Mann–Kendall (MK) test to determine the onset, end, and LWS for the small (Belg) and main (Kiremt) rainy seasons across different landscapes of the basin. We observed highly stable rainfall onsets in all stations during both seasons. However, unlike the Kiremt season, the LWS in the Belg season was too short and unreliable for rainfed agriculture. Based on the MK test, an increasing monotonic trend in LWS during the Kiremt season was detected only in the mountainous landscape of the basin. In contrast, we observed no trends in the remaining stations in the Upper Valley region of the basin, despite the linear regressions inferring an upward or downward pattern. Our findings provide accurate climatological information for the effective development of rainwater management strategies in the Upper Awash River Basin. Full article
(This article belongs to the Section Sustainable Management)
Show Figures

Graphical abstract

18 pages, 1927 KB  
Article
Spatial and Temporal Analysis of Dry and Wet Spells in Upper Awash River Basin, Ethiopia
by Girma Berhe Adane, Birtukan Abebe Hirpa, Chul-Hee Lim and Woo-Kyun Lee
Water 2020, 12(11), 3051; https://doi.org/10.3390/w12113051 - 30 Oct 2020
Cited by 23 | Viewed by 4265
Abstract
This study aimed to analyze the probability of the occurrence of dry/wet spell rainfall using the Markov chain model in the Upper Awash River Basin, Ethiopia. The rainfall analysis was conducted in the short rainy (Belg) and long rainy (Kiremt) [...] Read more.
This study aimed to analyze the probability of the occurrence of dry/wet spell rainfall using the Markov chain model in the Upper Awash River Basin, Ethiopia. The rainfall analysis was conducted in the short rainy (Belg) and long rainy (Kiremt) seasons on a dekadal (10–day) scale over a 30-year period. In the Belg season, continuous, three-dekad dry spells were prevalent at all stations. Persistent dry spells might result in meteorological, hydrological, and socio-economic drought (in that order) and merge with the Kiremt season. The consecutive wet dekads of the Kiremt season indicate a higher probability of wet dekads at all stations, except Metehara. This station experienced a short duration (dekads 20–23) of wet spells, in which precipitation is more than 50% likely. Nevertheless, surplus rainwater may be recorded at Debrezeit and Wonji only in the Kiremt season because of a higher probability of wet spells in most dekads (dekads 19–24). At these stations, rainfall can be harvested for better water management practices to supply irrigation during the dry season, to conserve moisture, and to reduce erosion. This reduces the vulnerability of the farmers around the river basin, particularly in areas where dry spell dekads are dominant. Full article
(This article belongs to the Special Issue Hydrometeorological Observation and Modeling)
Show Figures

Graphical abstract

20 pages, 8341 KB  
Article
Evaluating the Impacts of IWRM Policy Actions on Demand Satisfaction and Downstream Water Availability in the Upper Awash Basin, Ethiopia
by Adey Nigatu Mersha, Ilyas Masih, Charlotte De Fraiture, Jochen Wenninger and Tena Alamirew
Water 2018, 10(7), 892; https://doi.org/10.3390/w10070892 - 4 Jul 2018
Cited by 34 | Viewed by 6389
Abstract
Water scarcity problems are becoming increasingly common due to higher water demand, urbanization, economic development and climatic variability. Policies and measures based on Integrated Water Resources Management (IWRM) are often advocated to tackle the problems of competing demands and conflicts among stakeholders. Demand [...] Read more.
Water scarcity problems are becoming increasingly common due to higher water demand, urbanization, economic development and climatic variability. Policies and measures based on Integrated Water Resources Management (IWRM) are often advocated to tackle the problems of competing demands and conflicts among stakeholders. Demand management measures as part of the IWRM package are expected to offset the increased demands on water resources caused by economic growth. However, even if IWRM-based policies are in place, the potential impacts of demand management are seldom quantified while formulating water policies or development plans. To address this, we conducted scenario analysis using Water Evaluation and Planning System (WEAP21) in a case study from the Awash Basin in Ethiopia. We show that ambitious irrigation expansion plans to combat food insecurity will lead to overexploitation of water resources with increasing inequity between smallholders and commercial farmers. Demand management measures proposed by water users are insufficient to offset these consequences. Potential demand measures that are embedded in the IWRM-based policies alone are also insufficient. While water policies emphasize IWRM principles but do not indicate how to properly implement them, economic development plans are often launched without adequately considering equity and environment, two of the three pillars of IWRM. This scenario analysis shows the importance of quantitative information in IWRM formulation and monitoring. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

17 pages, 3589 KB  
Article
Evaluation of the Climate Forecast System Reanalysis Weather Data for Watershed Modeling in Upper Awash Basin, Ethiopia
by Mesfin Benti Tolera, Il-Moon Chung and Sun Woo Chang
Water 2018, 10(6), 725; https://doi.org/10.3390/w10060725 - 3 Jun 2018
Cited by 39 | Viewed by 6923
Abstract
Availability of reliable meteorological data for watershed modeling is one of the considerable challenges in the Awash River Basin in Ethiopia. To overcome this challenge, the Climate Forecast System Reanalysis (CFSR) global weather data was evaluated and compared with the limited conventional weather [...] Read more.
Availability of reliable meteorological data for watershed modeling is one of the considerable challenges in the Awash River Basin in Ethiopia. To overcome this challenge, the Climate Forecast System Reanalysis (CFSR) global weather data was evaluated and compared with the limited conventional weather data available in the Upper Awash Basin. The main objective of this study was to search for an optional data source for hydrological modeling, instead of using the limited available data, and for data-scarce areas of the basin. The Soil and Water Assessment Tool model was used to compare the performance of the two weather datasets at simulating monthly streamflow. For calibration, validation, and uncertainty analysis, the sequential uncertainty fitting algorithm was used. The model evaluation statistics showed that the CFSR global weather data performed similarly to the conventional weather data for simulating the observed streamflow at Melka Kunture. At Keleta, where the conventional data is scarce, the CFSR performed better. The CFSR performance at the two sub-basins indicated that it performed better for the large sub-basin, Melka Kunture. Generally, the CFSR weather data are a good addition to the dataset for areas where no reliable weather data exists for hydrological modeling in the basin. The precipitation data of the CFSR are slightly higher than that of the conventional data, which also resulted in a relatively higher water balance components. Full article
Show Figures

Figure 1

Back to TopTop