Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,281)

Search Parameters:
Keywords = UPLC/MS/MS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5013 KiB  
Article
Relationship Between Volatile Aroma Components and Amino Acid Metabolism in Crabapple (Malus spp.) Flowers, and Development of a Cultivar Classification Model
by Jingpeng Han, Yuxing Yao, Wenhuai Kang, Yang Wang, Jingchuan Li, Huizhi Wang and Ling Qin
Horticulturae 2025, 11(7), 845; https://doi.org/10.3390/horticulturae11070845 (registering DOI) - 17 Jul 2025
Abstract
The integration of HS-SPME-GC/MS and UPLC-MS/MS techniques enabled the profiling of volatile organic compounds (VOCs) and amino acids (AAs) in 18 crabapple flower cultivars, facilitating the development of a novel VOC–AA model. Among the 51 identified VOCs, benzyl alcohol, benzaldehyde, and ethyl benzoate [...] Read more.
The integration of HS-SPME-GC/MS and UPLC-MS/MS techniques enabled the profiling of volatile organic compounds (VOCs) and amino acids (AAs) in 18 crabapple flower cultivars, facilitating the development of a novel VOC–AA model. Among the 51 identified VOCs, benzyl alcohol, benzaldehyde, and ethyl benzoate were predominant, categorizing cultivars into fruit-almond, fruit-sweet, and mixed types. The amino acids, namely glutamic acid (Glu), asparagine (Asn), aspartic acid (Asp), serine (Ser), and alanine (Ala) constituted 83.6% of the total AAs identified. Notably, specific amino acids showed positive correlations with key VOCs, suggesting a metabolic regulatory mechanism. The Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) model, when combined with volatile organic compounds (VOCs) and amino acid profiles, enabled more effective aroma type classification, providing a robust foundation for further studies on aroma mechanisms and targeted breeding. Full article
Show Figures

Figure 1

17 pages, 4202 KiB  
Article
The Dichloromethane Fraction of Sanguisorba tenuifolia Inhibits Inflammation in Cells Through Modulation of the p38/ERK/MAPK and NF-κB Signaling Pathway
by Yue Wang, Yiming Lu, Fuao Niu, Siqi Fa, Li Nan and Hyeon Hwa Nam
Int. J. Mol. Sci. 2025, 26(14), 6732; https://doi.org/10.3390/ijms26146732 - 14 Jul 2025
Viewed by 70
Abstract
Sanguisorba tenuifolia is a wild plant of the genus Sanguisorba officinalis. This study aimed to investigate the regulatory effect of the dichloromethane fraction of Sanguisorba tenuifolia on LPS-induced inflammatory responses in RAW264.7 cells, thereby providing a new scientific basis for the medicinal [...] Read more.
Sanguisorba tenuifolia is a wild plant of the genus Sanguisorba officinalis. This study aimed to investigate the regulatory effect of the dichloromethane fraction of Sanguisorba tenuifolia on LPS-induced inflammatory responses in RAW264.7 cells, thereby providing a new scientific basis for the medicinal development of Sanguisorba tenuifolia. Initially, we used 75% ethanol to crudely extract the roots of Sanguisorba tenuifolia, followed by fractional extraction using dichloromethane (CH2Cl2), ethyl acetate (EtOAc), butanol (BuOH), and distilled water (DW) as solvents. By measuring the inhibitory effects of each fractionated extract on NO production, we determined that the SCE (Dichloromethane fraction of Sanguisorba tenuifolia) exhibited the most potent anti-inflammatory activity, leading to its progression to the next experimental stage. Subsequently, we evaluated the effects of SCE on cell viability and LPS-induced inflammatory cytokine secretion in RAW264.7 cells. A rat model of reflux esophagitis was also used to validate the in vivo anti-inflammatory effects of SCE. Additionally, we utilized UPLC/MS-MS to identify and analyze the active components of SCE. The results indicated that SCE could effectively inhibit LPS-induced cellular inflammation by modulating the p38/ERK/MAPK and NF-κB signaling pathways, and also reduced the damage of the esophageal mucosa in rats with reflux esophagitis. UPLC/MS-MS analysis of SCE identified 423 compounds, including 12 active ingredients such as triterpenoids, phenols, and steroids. This discovery not only provides scientific support for the potential of Sanguisorba tenuifolia as an anti-inflammatory agent but also lays the groundwork for the development of new therapeutics for the treatment of inflammatory diseases. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

22 pages, 12756 KiB  
Article
The Antidiabetic Mechanisms of Cinnamon Extract: Insights from Network Pharmacology, Gut Microbiota, and Metabolites
by Rong Wang, Kuan Yang, Xuefeng Liu, Yiye Zhang, Yunmei Chen, Nana Wang, Lili Yu, Shaojing Liu, Yaqi Hu and Bei Qin
Curr. Issues Mol. Biol. 2025, 47(7), 543; https://doi.org/10.3390/cimb47070543 - 12 Jul 2025
Viewed by 174
Abstract
The progression of type 2 diabetes mellitus (T2DM) is shaped by a multifaceted interplay among genetic, behavioral, and environmental factors, alongside gut dysbiosis. Cinnamon, being abundant in polyphenols and flavonoids, shows significant antioxidant effects. Studies have substantiated that cinnamon contributes to the management [...] Read more.
The progression of type 2 diabetes mellitus (T2DM) is shaped by a multifaceted interplay among genetic, behavioral, and environmental factors, alongside gut dysbiosis. Cinnamon, being abundant in polyphenols and flavonoids, shows significant antioxidant effects. Studies have substantiated that cinnamon contributes to the management of glucose and lipid metabolism. However, the anti-diabetic efficacy of cinnamon is not completely understood. The objective of this research was to clarify the anti-diabetic mechanism associated with cinnamon extract through a combination of chemical profiling, network pharmacology, and in vivo investigations. The results indicated that 32 chemical ingredients, including quercetin, were identified through UPLC-Q-TOF-MS. Network pharmacology revealed that 471 targets related to 14 compounds were screened. The analysis of GO enrichment revealed that the primary pathways were notably enhanced in the metabolism of insulin and glucose. In vivo analyses showed that cinnamon could effectively alleviate hyperglycemia, insulin resistance, and lipid metabolism abnormalities via increased relative abundance of Akkermansia and Ligilactobacillus at the genus level and a decreased Firmicutes/Bacteroidetes ratio at the phylum level. Moreover, cinnamon reduced the serum levels of lipopolysaccharide (LPS) and proinflammatory cytokines (IL-6 and TNF-α) and significantly increased the colon Zonula occludens-1 (ZO-1) and occludin protein levels. It was also observed that cinnamon improved the fecal SCFA levels (acetic, propionic, butyric, valeric and caproic acid), while also modifying the bile acid (BA) profile and increasing the conjugated-to-unconjugated BA ratio. The Western blotting analysis further demonstrated that cinnamon activated intestinal FXR/FGF15 and hepatic PI3K/AKT signaling pathways. In summary, the finding confirmed that cinnamon ameliorated glucose and lipid metabolism disorders by safeguarding the intestinal barrier and modulating the gut microbiota and metabolites, thereby activating intestinal FXR/FGF15 and hepatic PI3K/AKT signaling pathways. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

18 pages, 4846 KiB  
Article
Formation Mechanism of Lipid and Flavor of Lard Under the Intervention of Heating Temperature via UPLC-TOF-MS/MS with OPLS-DA and HS-GC-IMS Analysis
by Erlin Zhai, Jing Zhang, Jiancai Zhu, Rujuan Zhou, Yunwei Niu and Zuobing Xiao
Foods 2025, 14(14), 2441; https://doi.org/10.3390/foods14142441 - 11 Jul 2025
Viewed by 215
Abstract
Lard imparts unique organoleptic properties that underpin its essential role in Chinese gastronomy; however, the specific lipid precursors contributing to its aroma remain unclear. This study explores the flavor formation mechanism of lard by comparing its texture and aroma at two preparation temperatures, [...] Read more.
Lard imparts unique organoleptic properties that underpin its essential role in Chinese gastronomy; however, the specific lipid precursors contributing to its aroma remain unclear. This study explores the flavor formation mechanism of lard by comparing its texture and aroma at two preparation temperatures, 130 °C and 100 °C. We identified a total of 256 and 253 lipids at these temperatures, respectively, with triacylglycerols (TGs) and diacylglycerols (DGs) being the predominant lipid species. An HS-GC-IMS analysis detected 67 volatile compounds, predominantly aldehydes, acids, and alcohols. A subsequent Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA) identified 49 discriminatory lipids and 20 differential volatiles. A correlation analysis showed a positive relationship between aldehydes and unsaturated triglycerides in lard, with TG (16:1-16:1-18:0), TG (17:2-18:1-18:1), TG (16:1-17:1-18:1), and TG (18:1-18:1-20:1) identified as characteristic markers at both temperatures. Furthermore, there was a positive correlation between ketones and alcohols and phospholipids and sphingolipids containing unsaturated fatty acid chains. TGs and glycerophospholipids (GPs), rich in polyunsaturated fatty acids, are likely key precursors driving the formation of distinct flavors during lard processing. This study elucidates the mechanistic interactions between lipids and volatile organic compounds, providing a framework for optimizing lard processing protocols and flavor modulation. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

17 pages, 3653 KiB  
Article
Significant Increase of Cinnamic Acid in Metabolites of Chicks Infected with Infectious Bronchitis Virus and Its Remarkable Antiviral Effects In Vitro and In Vivo
by Lan-Ping Wei, Tao-Ni Zhang, Yu Zhang, Li-Na Ren, Yan-Peng Lu, Tian-Chao Wei, Teng Huang, Jian-Ni Huang and Mei-Lan Mo
Microorganisms 2025, 13(7), 1633; https://doi.org/10.3390/microorganisms13071633 - 10 Jul 2025
Viewed by 143
Abstract
Avian infectious bronchitis virus (IBV) infection has caused significant economic losses to the poultry industry. Unfortunately, there is currently no effective cure for this disease. Understanding the pathogenic mechanism is crucial for the treatment of the disease. Studying the pathogenic mechanism of IBV [...] Read more.
Avian infectious bronchitis virus (IBV) infection has caused significant economic losses to the poultry industry. Unfortunately, there is currently no effective cure for this disease. Understanding the pathogenic mechanism is crucial for the treatment of the disease. Studying the pathogenic mechanism of IBV based on metabolomics analysis is helpful for identifying antiviral drugs. However, studies on metabolomics analysis of IBV infection have been relatively limited, particularly without metabolomics analysis in sera after IBV infection. In this study, 17-day-old SPF chicks were infected with the IBV GX-YL5 strain, and serum samples were collected 7 days post-infection (DPI) for metabolomics analysis using ultraperformance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). A total of 143 differential metabolites were identified across 20 metabolic pathways, with the phenylalanine pathway showing the most significant changes. The level of cinnamic acid (CA), an upstream metabolite in the phenylalanine pathway, was notably increased following IBV infection. To investigate the antiviral effects of CA, chicken embryo kidney (CEK) cells and SPF chicks infected with IBV were treated with different concentrations of CA to assess its effect on viral replication. The results demonstrated that CA at 25 μg/mL effectively inhibited IBV replication in vitro; meanwhile, CA at 50 μg/mL and 25 μg/mL effectively inhibited IBV replication in vivo. Molecular docking and molecular dynamics simulation studies showed that CA interacts with the N domains of the IBV nucleocapsid (N) protein. In conclusion, the serum metabolite CA is significantly elevated following IBV infection and demonstrates remarkable antiviral effects both in vitro and in vivo, providing a promising avenue for the development of antiviral therapies to combat IBV infection. Full article
(This article belongs to the Special Issue Poultry Pathogens and Poultry Diseases, 2nd Edition)
Show Figures

Figure 1

23 pages, 11933 KiB  
Article
Combined Metabolomics and Network Pharmacology to Reveal Anti-Diabetic Mechanisms and Potential Pharmacological Components of Synsepalum dulcificum
by Yong Huang, Shiyu Wang, Rong Ding and Shaohua Wu
Plants 2025, 14(14), 2132; https://doi.org/10.3390/plants14142132 - 10 Jul 2025
Viewed by 260
Abstract
The plant Synsepalum dulcificum is notable for its considerable edible and medicinal value, with a longstanding history as a folk remedy for diabetes. Its chemical constituents are rich and structurally diverse. However, there is limited information regarding the metabolic basis of these characteristics, [...] Read more.
The plant Synsepalum dulcificum is notable for its considerable edible and medicinal value, with a longstanding history as a folk remedy for diabetes. Its chemical constituents are rich and structurally diverse. However, there is limited information regarding the metabolic basis of these characteristics, and the biological activities and mechanisms underlying its blood glucose-lowering effects remain incompletely understood. In this study, we conducted a widely targeted metabolomics analysis of the stems, leaves, and fruits of S. dulcificum using UPLC-ESI-MS/MS to compare the differences in metabolite profiles among these three tissue types. Our analysis identified a total of 2544 secondary metabolites, primarily consisting of flavonoids and triterpenes, categorized into thirteen distinct compound classes. We selected differential metabolites through multivariate statistical analysis, revealing significant differences among the metabolite profiles of the three tissue types, with flavonoids being the most abundant compounds. Furthermore, we investigated the anti-diabetic mechanisms and potential pharmacological components of S. dulcificum utilizing network pharmacology and molecular docking techniques. Finally, the α-glucosidase inhibitory activity of the potential active components was evaluated using in vitro experiments. These findings establish a foundation for the future application of S. dulcificum in the prevention and treatment of diabetes. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

16 pages, 7688 KiB  
Article
Targeted Isolation of ω-3 Polyunsaturated Fatty Acids from the Marine Dinoflagellate Prorocentrum lima Using DeepSAT and LC-MS/MS and Their High Activity in Promoting Microglial Functions
by Chang-Rong Lai, Meng-Xing Jiang, Dan-Mei Tian, Wei Lu, Bin Wu, Jin-Shan Tang, Yi Zou, Song-Hui Lv and Xin-Sheng Yao
Mar. Drugs 2025, 23(7), 286; https://doi.org/10.3390/md23070286 - 10 Jul 2025
Viewed by 268
Abstract
In this study, we integrated HSQC-based DeepSAT with UPLC-MS/MS to guide the isolation of omega-3 polyunsaturated fatty acid derivatives (PUFAs) from marine resources. Through this approach, four new (14) and nine known (513) PUFA analogues [...] Read more.
In this study, we integrated HSQC-based DeepSAT with UPLC-MS/MS to guide the isolation of omega-3 polyunsaturated fatty acid derivatives (PUFAs) from marine resources. Through this approach, four new (14) and nine known (513) PUFA analogues were obtained from large-scale cultures of the marine dinoflagellate Prorocentrum lima, with lipidomic profiling identifying FA18:5 (5), FA18:4 (7), FA22:6 (8), and FA22:6 methyl ester (11) as major constituents of the algal oil extract. Structural elucidation was achieved through integrated spectroscopic analyses of IR, 1D and 2D NMR, and HR-ESI-MS data. Given the pivotal role of microglia in Alzheimer’s disease (AD) pathogenesis, we further evaluated the neuroprotective potential of these PUFAs by assessing their regulatory effects on critical microglial functions in human microglia clone 3 (HMC3) cells, including chemotactic migration and amyloid-β42 (Aβ42) phagocytic clearance. Pharmacological evaluation demonstrated that FA20:5 butanediol ester (1), FA18:5 (5), FA18:4 (7), FA22:6 (8), and (Z)-10-nonadecenoic acid (13) significantly enhanced HMC3 migration in a wound-healing assay. Notably, FA18:4 (7) also significantly promoted Aβ42 phagocytosis by HMC3 microglia while maintaining cellular viability and avoiding pro-inflammatory activation at 20 μM. Collectively, our study suggests that FA18:4 (7) modulates microglial function in vitro, indicating its potential to exert neuroprotective effects. Full article
Show Figures

Graphical abstract

22 pages, 3291 KiB  
Article
Matrix Interference Removal Using Fe3O4@SiO2-PSA-Based Magnetic Dispersive Solid-Phase Extraction for UPLC-MS/MS Analysis of Diazepam in Aquatic Products
by Mengqiong Yang, Guangming Mei, Daoxiang Huang, Xiaojun Zhang, Pengfei He and Si Chen
Foods 2025, 14(14), 2421; https://doi.org/10.3390/foods14142421 - 9 Jul 2025
Viewed by 195
Abstract
A sensitive method was developed for detecting diazepam residues in aquatic products using magnetic dispersive solid-phase extraction (MDSPE) coupled with ultra-performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS). Samples extracted with 1% ammonia–acetonitrile were purified using synthesized Fe3O4@SiO2-PSA nanoparticles [...] Read more.
A sensitive method was developed for detecting diazepam residues in aquatic products using magnetic dispersive solid-phase extraction (MDSPE) coupled with ultra-performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS). Samples extracted with 1% ammonia–acetonitrile were purified using synthesized Fe3O4@SiO2-PSA nanoparticles via MDSPE before UPLC-MS/MS analysis. Separation was performed on a C18 column with gradient elution using 0.1% formic acid–2 mM ammonium acetate/methanol. Detection employed positive electrospray ionization (ESI+) in multiple reaction monitoring (MRM) mode. Characterization confirmed Fe3O4@SiO2-PSA’s mesoporous structure with excellent adsorption capacity and magnetic properties. The method showed good linearity (0.1–10 μg/L, r > 0.99) with an LOD and LOQ of 0.20 μg/kg and 0.50 μg/kg, respectively. Recoveries at 0.5–15.0 µg/kg spiking levels were 74.9–109% (RSDs 1.24–11.6%). This approach provides rapid, accurate, and high-precision analysis of diazepam in aquatic products, meeting regulatory requirements. Full article
Show Figures

Figure 1

21 pages, 736 KiB  
Article
The Effects of a Cultivar and Silicon Treatments on Grain Parameters and Bioactive Compound Content in Organic Spring Wheat
by Iwona Kowalska, Mariusz Kowalczyk, Jarosław Mołdoch, Sylwia Pawelec, Paweł Radzikowski and Beata Feledyn-Szewczyk
Foods 2025, 14(14), 2406; https://doi.org/10.3390/foods14142406 - 8 Jul 2025
Viewed by 177
Abstract
To address the need for improved nutritional value of organically grown wheat, this study investigated the impact of silicon treatments (AdeSil, ZumSil) on yield, health status, and bioactive compound content in spring wheat cultivars. The 2019–2020 research evaluated different application variants: seed dressing, [...] Read more.
To address the need for improved nutritional value of organically grown wheat, this study investigated the impact of silicon treatments (AdeSil, ZumSil) on yield, health status, and bioactive compound content in spring wheat cultivars. The 2019–2020 research evaluated different application variants: seed dressing, foliar sprays, and their combinations. Comprehensive seed dressing combined with two foliar treatments, (variant B) and two foliar treatments (variant C), significantly increased yield (by an average of 8.9% and 7.6% vs. control, respectively). These variants beneficially affected fungal disease resistance mainly in the stressful 2019; in optimal 2020, they showed no clear advantage over the control, which performed similarly or better. Seed dressing (variant D) increased total phenolic acids (PAs) content and antioxidant activity, with the spelt cv. Wirtas exhibiting the highest levels. Silicon treatments modified alkylresorcinols (ARs) content, but effects depended on the year, cultivar, and application variant, not always exceeding the control. Silicon treatments, especially when applied in combination (seed dressing and foliar application), can improve spring wheat yield and favorably modify PAs content, enhancing grain nutritional value. However, the plant response regarding health status and ARs content is strongly conditioned by cultivar specificity and the prevailing environmental conditions of the growing year. Full article
Show Figures

Figure 1

18 pages, 3442 KiB  
Article
Study on the Variation Patterns of Main Components and Chromaticity During the Developmental Process of Magnoliae Flos (Magnolia biondii)
by Chenxi Bu, Qinqin Zhang, Xiaoya Sun and Suiqing Chen
Horticulturae 2025, 11(7), 806; https://doi.org/10.3390/horticulturae11070806 - 7 Jul 2025
Viewed by 234
Abstract
Analyze the quality differences of Magnoliae Flos (MF) at different developmental stages and determine its optimal harvest period. In this study, a detection method for the main chemical components of MF was established based on GC-MS and UPLC, and the volatile oil and [...] Read more.
Analyze the quality differences of Magnoliae Flos (MF) at different developmental stages and determine its optimal harvest period. In this study, a detection method for the main chemical components of MF was established based on GC-MS and UPLC, and the volatile oil and lignan components were determined. The quality differences between MF at different developmental stages were compared based on chemical composition. Chromaticity values of MF samples were measured using electronic eye technology, followed by correlation analysis to reveal the relationship between internal compositional changes and external color differences. The results indicated that the harvesting period significantly affected the chemical composition of MF. Specifically, the contents of volatile oils and lignans initially increased and then decreased as the flower buds developed. There are obvious correlations between six different volatile components and some lignans of MF and their chromaticity values (p < 0.05). This study clarified the dynamic changes in relevant indicators during the development of MF, which can provide a reference for the rational utilization and scientific harvesting of MF resources. Full article
Show Figures

Figure 1

21 pages, 6308 KiB  
Article
Revealing Serotonin Derivatives in Safflower Seed Meal as Potential Anti-Ulcerative Colitis Drugs: In Vitro and Computational Evidence
by Liang Zhang, Md Hasan Ali, Chao Jiang, Furong Fan, Furong Zhu, Yating Lu, Mengwei Jia, Haipeng Yin, Jianwang Wei, Dongsen Wu, Shenghui Chu and Min Liu
Molecules 2025, 30(13), 2886; https://doi.org/10.3390/molecules30132886 - 7 Jul 2025
Viewed by 253
Abstract
This study evaluated the in vitro anti-inflammatory activity of serotonin derivatives from safflower seed powder and elucidated their mechanism against ulcerative colitis using network pharmacology. Compounds were extracted and purified via silica gel column chromatography, Sephadex LH-20 and semi-preparative HPLC. Structural characterization employed [...] Read more.
This study evaluated the in vitro anti-inflammatory activity of serotonin derivatives from safflower seed powder and elucidated their mechanism against ulcerative colitis using network pharmacology. Compounds were extracted and purified via silica gel column chromatography, Sephadex LH-20 and semi-preparative HPLC. Structural characterization employed NMR and UPLC-Q-TOF-MS/MS with literature comparisons. Anti-inflammatory efficacy was assessed in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. Network pharmacology predicted targets, molecular docking analyzed binding interactions and molecular dynamics simulations assessed complex stability. Eleven serotonin derivatives were isolated; N-trans-Feruloyl-3,5-dihydroxyindolin-2-one (1) and Bufoserotonin A (2) were identified in safflower seed meal for the first time. Compounds 1, 37 and 10 significantly reduced inflammatory factors, with N-feruloyl serotonin (4, FS) showing the strongest activity. Mechanistic studies revealed FS targets key molecules (STAT3, EGFR, ESR1, PTGS2, NF-κB1, and JUN), modulating PI3K-Akt, MAPK and cancer-related pathways. Molecular dynamics simulations confirmed FS-EGFR complex stability. Thus, two novel derivatives were isolated and FS demonstrated significant anti-inflammatory and potential anti-ulcerative colitis effects through multi-target, multi-pathway synergy, providing a foundation for developing safflower seed meal therapeutics. Full article
Show Figures

Figure 1

12 pages, 1407 KiB  
Article
Glucosinolate and Sugar Profiles in Space-Grown Radish
by Karl H. Hasenstein, Syed G. A. Moinuddin, Anna Berim, Laurence B. Davin and Norman G. Lewis
Plants 2025, 14(13), 2063; https://doi.org/10.3390/plants14132063 - 6 Jul 2025
Viewed by 315
Abstract
The quest to establish permanent outposts in space, the Moon, and Mars requires growing plants for nutrition, water purification, and carbon/nutrient recycling, as well as the psychological well-being of crews and personnel on extra-terrestrial platforms/outposts. To achieve these essential goals, the safety, quality, [...] Read more.
The quest to establish permanent outposts in space, the Moon, and Mars requires growing plants for nutrition, water purification, and carbon/nutrient recycling, as well as the psychological well-being of crews and personnel on extra-terrestrial platforms/outposts. To achieve these essential goals, the safety, quality, and sustainability of plant material grown in space should be comparable to Earth-grown crops. In this study, radish plants were grown at 2500 ppm CO2 in two successive grow-outs on the International Space Station and at similar CO2 partial pressure at the Kennedy Space Center. An additional control experiment was performed at the University of Louisiana Lafayette laboratory, at ambient CO2. Subsequent analyses of glucosinolate and sugar species and content showed that regardless of growth condition, glucoraphasatin, glucoraphenin, glucoerucin, glucobrassicin, 4-hydroxyglucobrassicin, 4-methoxyglucobrassicin, and three aliphatic GSLs tentatively assigned to 3-methylpentyl GSL, 4-methylpentyl GSL, and n-hexyl GSL were present in all examined plants. The most common sugars were fructose, glucose, and sucrose, but some plants also contained galactose, maltose, rhamnose, and trehalose. The variability of individual secondary metabolite abundances was not related to gravity conditions but appeared more sensitive to CO2 concentration. No indication was found that radish cultivation in space resulted in stress(es) that increased glucosinolate secondary metabolism. Flavor and nutrient components in space-grown plants were comparable to cultivation on Earth. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

21 pages, 2974 KiB  
Article
Maximizing Biomass Production and Carotenoid-like Pigments Yield in Kocuria sediminis As04 Through Culture Optimization
by Daniela Jakeline López-Mora, Andrea Goreti Flores-Dávalos, Miguel Angel Lorenzo-Santiago, Beatriz Genoveva Guardado-Fierros, Jacobo Rodriguez-Campos and Silvia Maribel Contreras-Ramos
Microorganisms 2025, 13(7), 1555; https://doi.org/10.3390/microorganisms13071555 - 2 Jul 2025
Viewed by 321
Abstract
The global chemical pigment industry faces environmental challenges despite its economic importance. This study investigates the potential of Kocuria sediminis AS04, an airborne isolate, for sustainable pigment and biomass production. Microbial kinetics were evaluated under Taguchi design conditions with temperature (30, 34, and [...] Read more.
The global chemical pigment industry faces environmental challenges despite its economic importance. This study investigates the potential of Kocuria sediminis AS04, an airborne isolate, for sustainable pigment and biomass production. Microbial kinetics were evaluated under Taguchi design conditions with temperature (30, 34, and 38 °C), stirring speed (110, 120, and 130), and pH (6.0, 6.5, and 7.0), measuring biomass through dry weight and viable cells, pigment production, and identification of its pigment using UPLC-MS/MS; structural and chemical characterization of biomass was conducted using SEM and FTIR. Among the tested conditions, the treatment at 30 °C, 130 rpm, and pH 6.5 resulted in the highest CFU count (5.7 × 109 CFU mL−1) and the greatest biomass yield (13.3 g L−1). In contrast, the highest pigment yield (0.0016 mg g−1) was obtained at 38 °C, 130 rpm, and pH 6.0. Cell extracts identified key carotenoid compounds such as β-cryptoxanthin, Rhodovibrin, and other precursors. These findings highlight the potential of Kocuria sediminis AS04 as a sustainable source of pigments and valuable bioproducts, offering promising alternatives for eco-friendly industrial applications. Full article
(This article belongs to the Special Issue Bioactive Molecules from Microbial Sources)
Show Figures

Figure 1

19 pages, 1797 KiB  
Article
From Agricultural Waste to Functional Tea: Optimized Processing Enhances Bioactive Flavonoid Recovery and Antioxidant Capacity with Multifaceted Health Benefits in Loquat (Eriobotrya japonica Lindl.) Flowers
by Mingzheng Duan, Xi Wang, Jinghan Feng, Xu Xiao, Lingying Zhang, Sijiu He, Liya Ma, Xue Wang, Shunqiang Yang and Muhammad Junaid Rao
Horticulturae 2025, 11(7), 766; https://doi.org/10.3390/horticulturae11070766 - 2 Jul 2025
Viewed by 229
Abstract
The large-scale disposal of loquat (Eriobotrya japonica Lindl.) flowers during fruit thinning represents a significant waste of bioactive resources. This study systematically evaluated how three processing methods—fresh (FS), heat-dried (HD), and freeze-dried (FD) treatments—affect the flavonoid composition and antioxidant capacity of loquat [...] Read more.
The large-scale disposal of loquat (Eriobotrya japonica Lindl.) flowers during fruit thinning represents a significant waste of bioactive resources. This study systematically evaluated how three processing methods—fresh (FS), heat-dried (HD), and freeze-dried (FD) treatments—affect the flavonoid composition and antioxidant capacity of loquat flower extracts, with the aim of developing value-added, sugar-free functional tea ingredients. Using UPLC-MS/MS and DPPH assays, we analyzed both pre-(FS/HD/FD) and post-extraction samples (FSP/HDP/FDP) to assess processing-specific metabolic signatures and extraction efficiency. The results revealed that heat-dried powder (HDP) exhibited the highest total flavonoid content and DPPH scavenging capacity (615.24 µg Trolox/g), attributed to enhanced release of stable compounds like quercetin. Freeze-dried powder (FDP) better preserved heat-sensitive flavonoids, such as catechin-(4α→8)-gallocatechin and naringenin, but showed lower overall antioxidant activity. Multivariate analysis confirmed distinct clustering patterns, with heat-drying favoring flavonoid extractability while freeze-drying maintained metabolic diversity. These findings demonstrate that processing methods significantly influence bioactive compound retention and functionality, with heat-drying offering optimal balance between yield and practicality for industrial applications. This work provides a scientific foundation for upcycling loquat flowers into standardized nutraceutical ingredients, addressing both agricultural waste reduction and the growing demand for natural functional foods. Full article
Show Figures

Figure 1

16 pages, 2161 KiB  
Article
From Logs to Bags: A Metabolic Blueprint of Sanghuang Cultivation Revealed by UPLC-Q-TOF-MS/MS and Amino Acid Profiling
by Kefan Xu, Lingli Chen, Chenchen Wu, Haiyang Wang, Fei Wu, Jingzhe Pu and Yazhong Zhang
Molecules 2025, 30(13), 2829; https://doi.org/10.3390/molecules30132829 - 1 Jul 2025
Viewed by 209
Abstract
Sanghuang (SH), a natural fungal resource used for food and medicinal purposes, has drawn considerable attention due to its pharmacological effects and efficacy. This study focused on Wild Sanghuang (WS) and Sanghuang cultivated using two different methods: Duanmu Sanghuang and Mycelium Sanghuang. Using [...] Read more.
Sanghuang (SH), a natural fungal resource used for food and medicinal purposes, has drawn considerable attention due to its pharmacological effects and efficacy. This study focused on Wild Sanghuang (WS) and Sanghuang cultivated using two different methods: Duanmu Sanghuang and Mycelium Sanghuang. Using UPLC-O-TOF-MS, we conducted an in-depth analysis of the secondary metabolites present in SH. The content of 18 amino acids was measured using an automated amino acid analyzer. The results demonstrated major differences in secondary metabolites, including flavonoids, organic acids, amino acids, and their derivatives, between WS and cultivated Sanghuang (CS). The total amino acid content in WS surpassed that of CS, with segmental trunk SH exhibiting a total amino acid content 1.3 times (p < 0.05) greater than that of bag material SH. This variation may be linked to the biosynthetic pathways of valine, leucine, isoleucine, and flavonoids. By comparing the metabolomic and amino acidomic differences between WS and artificially CS, this study aims to provide a scientific basis for understanding the nutritional and medicinal value of various cultivation methods for SH and offer theoretical support for the future development of SH-related products. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

Back to TopTop