The Effects of a Cultivar and Silicon Treatments on Grain Parameters and Bioactive Compound Content in Organic Spring Wheat
Abstract
1. Introduction
2. Materials and Methods
2.1. Characteristics of Sites, Agronomic Practices, and Design of Experiment
2.2. Plant Material
2.3. Grain Yield
2.4. Assessment of Plant Infestation by Pathogens
2.5. Meteorological Conditions
2.6. Chemicals
2.7. Analyses of Phenolic Acids (PAs)
2.7.1. Extraction of PAs from Spring Wheat Cultivars
2.7.2. UPLC Analysis Conditions for PAs
2.7.3. Quantitative Determination of PAs
2.7.4. Antiradical Activity of PAs
2.8. Analysis of Alkylresorcinols (ARs, Resorcinolic Lipids)
2.8.1. Extraction of ARs from Wheat Samples
2.8.2. LC-APCI-MS Analysis of ARs
2.8.3. Free Radical Scavenging Activity of ARs
2.9. Statistical Analysis
3. Results and Discussion
3.1. Effect of Silicon Treatments on the Yield and One Thousand Grain Weight
3.2. Evaluation of Plant Infestation by Pathogens and Fusarium spp. Occurrence
3.3. Quantitative and Qualitative Analysis of PAs and Their Antiradical Activity
3.4. Quantitative and Qualitative Analysis of Alkylresorcinols (ARs, Resorcinolic Lipids) and Their Antiradical Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Sendhil, R.; Ramasundaram, P.; Subash, S.P.; Ram, S.; Kumar, A.; Singh, S.; Singh, G.P. Policy Imperatives for Wheat Procurement; Social Science Research Network: Rochester, NY, USA, 2020; Available online: https://papers.ssrn.com/abstract=3708800 (accessed on 20 February 2025).
- Górska-Warsewicz, H.; Rejman, K.; Ganczewski, G.; Kwiatkowski, B. Chapter 18—Economic Importance of Nutritional and Healthy Cereals and/or Cereal Products. In Developing Sustainable and Health Promoting Cereals and Pseudocereals; Rakszegi, M., Papageorgiou, M., Rocha, J.M., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 433–450. [Google Scholar] [CrossRef]
- Le Gouis, J.; Oury, F.-X.; Charmet, G. How Changes in Climate and Agricultural Practices Influenced Wheat Production in Western Europe. J. Cereal Sci. 2020, 93, 102960. [Google Scholar] [CrossRef]
- Saquee, F.S.; Diakite, S.; Kavhiza, N.J.; Pakina, E.; Zargar, M. The Efficacy of Micronutrient Fertilizers on the Yield Formulation and Quality of Wheat Grains. Agronomy 2023, 13, 566. [Google Scholar] [CrossRef]
- Tripathi, S.; Srivastava, P.; Devi, R.S.; Bhadouria, R. Chapter 2—Influence of Synthetic Fertilizers and Pesticides on Soil Health and Soil Microbiology. In Agrochemicals Detection, Treatment and Remediation; Prasad, M.N.V., Ed.; Butterworth-Heinemann: Oxford, UK, 2020; pp. 25–54. [Google Scholar] [CrossRef]
- Kowalska, I.; Mołdoch, J.; Pawelec, S.; Podolska, G.; von Cossel, M.; Derycke, V.; Haesaert, G.; Lana, M.A.; da Silva Lopes, M.; Riche, A.B.; et al. Environmental and Cultivar Variability in Composition, Content and Biological Activity of Phenolic Acids and Alkylresorcinols of Winter Wheat Grains from a Multi-Site Field Trial across Europe. J. Cereal Sci. 2022, 107, 103527. [Google Scholar] [CrossRef]
- Chen, J.; Yang, J.; Ma, L.; Li, J.; Shahzad, N.; Kim, C.K. Structure-Antioxidant Activity Relationship of Methoxy, Phenolic Hydroxyl, and Carboxylic Acid Groups of Phenolic Acids. Sci. Rep. 2020, 10, 2611. [Google Scholar] [CrossRef]
- Boulebd, H.; Spiegel, M. Computational Assessment of the Primary and Secondary Antioxidant Potential of Alkylresorcinols in Physiological Media. RSC Adv. 2023, 13, 29463–29476. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, I.; Pawelec, S.; Pecio, Ł.; Feledyn-Szewczyk, B. The Effects of a Cultivar and Production System on the Qualitative and Quantitative Composition of Bioactive Compounds in Spring Wheat (Triticum sp.). Molecules 2024, 29, 4106. [Google Scholar] [CrossRef]
- Kowalska, I.; Soluch, A.; Mołdoch, J.; Jończyk, K. The Effect of Farming Systems and Cultivars on the Qualitative and Quantitative Composition of Bioactive Compounds in Winter Wheat (Triticum aestivum L.). Molecules 2025, 30, 902. [Google Scholar] [CrossRef]
- Poljsak, B.; Kovač, V.; Milisav, I. Antioxidants, Food Processing and Health. Antioxidants 2021, 10, 433. [Google Scholar] [CrossRef]
- Zeb, A. Concept, Mechanism, and Applications of Phenolic Antioxidants in Foods. J. Food Biochem. 2020, 44, e13394. [Google Scholar] [CrossRef]
- Kayim, M.; Nawaz, H.; Alsalmo, A.; Kayim, M.; Nawaz, H.; Alsalmo, A. Fungal Diseases of Wheat. In Wheat—Recent Advances; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Rashad, Y.; Aseel, D.; Hammad, S. Phenolic Compounds Against Fungal and Viral Plant Diseases. In Plant Phenolics in Sustainable Agriculture: Volume 1; Lone, R., Shuab, R., Kamili, A.N., Eds.; Springer: Singapore, 2020; pp. 201–219. [Google Scholar] [CrossRef]
- Khodaei, D.; Javanmardi, F.; Khaneghah, A.M. The Global Overview of the Occurrence of Mycotoxins in Cereals: A Three-Year Survey. Curr. Opin. Food Sci. 2021, 39, 36–42. [Google Scholar] [CrossRef]
- Salam, U.; Ullah, S.; Tang, Z.-H.; Elateeq, A.A.; Khan, Y.; Khan, J.; Khan, A.; Ali, S. Plant Metabolomics: An Overview of the Role of Primary and Secondary Metabolites against Different Environmental Stress Factors. Life 2023, 13, 706. [Google Scholar] [CrossRef] [PubMed]
- Hasanuzzaman, M.; Hawrylak-Nowak, B.; Islam, T.; Fujita, M. Biostimulants for Crop Production and Sustainable Agriculture; CABI: Boston, MA, USA, 2022. [Google Scholar]
- Datnoff, L.E.; Snyder, G.H.; Korndörfer, G.H. Silicon in Agriculture; Elsevier: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Walsh, O.S.; Shafian, S.; McClintick-Chess, J.R.; Belmont, K.M.; Blanscet, S.M. Potential of Silicon Amendment for Improved Wheat Production. Plants 2018, 7, 26. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, M.M.; Mathur, P.; Roy, S. Chapter 2—Silicon and Nano-Silicon: New Frontiers of Biostimulants for Plant Growth and Stress Amelioration. In Silicon and Nano-silicon in Environmental Stress Management and Crop Quality Improvement; Etesami, H., Al Saeedi, A.H., El-Ramady, H., Fujita, M., Pessarakli, M., Anwar Hossain, M., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 17–36. [Google Scholar] [CrossRef]
- Ayed, S.; Bouhaouel, I.; Jebari, H.; Hamada, W. Use of Biostimulants: Towards Sustainable Approach to Enhance Durum Wheat Performances. Plants 2022, 11, 133. [Google Scholar] [CrossRef] [PubMed]
- Azad, M.O.K.; Park, B.S.; Adnan, M.D.; Germ, M.; Kreft, I.; Woo, S.H.; Park, C.H. Silicon Biostimulant Enhances the Growth Characteristics and Fortifies the Bioactive Compounds in Common and Tartary Buckwheat Plant. J. Crop Sci. Biotechnol. 2021, 24, 51–59. [Google Scholar] [CrossRef]
- Kowalska, J.; Tyburski, J.; Bocianowski, J.; Krzymińska, J.; Matysiak, K. Methods of silicon application on organic spring wheat (Triticum aestivum L. spp. vulgare) cultivars grown across two contrasting precipitation years. Agronomy 2020, 10, 1655. [Google Scholar] [CrossRef]
- Żuchowski, J.; Kapusta, I.; Szajwaj, B.; Jończyk, K.; Oleszek, W. Phenolic acid content of organic and conventionally grown winter wheat. Cereal Res. Commun. 2009, 37, 189–197. [Google Scholar] [CrossRef]
- Kowalska, I.; Jędrejek, D.; Jończyk, K.; Stochmal, A. UPLC–PDA–ESI–MS analysis and TLC–DPPH· activity of wheat varieties. Acta Chromatogr. 2019, 31, 151–156. [Google Scholar] [CrossRef]
- Kowalska, I.; Jędrejek, D. Benzoxazinoid and alkylresorcinol content, and their antioxidant potential, in a grain of spring and winter wheat cultivated under different production systems. J. Cereal Sci. 2020, 95, 103063. [Google Scholar] [CrossRef]
- Hammer, O.; Harper, D.A.T.; Ryan, P.D. PAST. Paleontological Statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Ahmad, F.; Aziz, T.; Maqsood, M.A.; Tahir, M.A.; Kanwal, S. Effect of silicon application on wheat (Triticum aestivum L.) growth under water deficiency stress. Emir. J. Food Agric. 2007, 19, 1–7. [Google Scholar] [CrossRef]
- Kowalska, J.; Tyburski, J.; Jakubowska, M.; Krzymińska, J. Effect of Different Forms of Silicon on Growth of Spring Wheat Cultivated in Organic Farming System. Silicon 2021, 13, 211–217. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, Z.; Ke, Y.; Xiao, C.; Peng, Z.; Wu, L.; Zhong, S. Effects of silicate fertilizer on nutrition of leaves. yield and sugar of sugarcanes. J. Trop. Subtrop. Soil Sci. 1997, 6, 242–246. [Google Scholar]
- Guevel, M.H.; Menzies, J.G.; Belanger, R.R. Effect of root and foliar applications of soluble silicon on powdery mildew control and growth of wheat plants. Eur. J. Plant Pathol. 2007, 119, 429–436. [Google Scholar] [CrossRef]
- Segalin, S.R.; Huth, C.; Rosa, T.A.; Pahins, D.B.; Mertz, L.M.; Nunes, U.R. Foliar application of silicon and the effect on wheat seed yield and quality. J. Seed Sci. 2013, 35, 86–91. [Google Scholar] [CrossRef]
- Radzikowski, P.; Jończyk, K.; Feledyn-Szewczyk, B.; Jóźwicki, T. Assessment of Resistance of Different Varieties of Winter Wheat to Leaf Fungal Diseases in Organic Farming. Agriculture 2023, 13, 875. [Google Scholar] [CrossRef]
- Feledyn-Szewczyk, B.; Nakielska, M.; Jończyk, K.; Berbeć, A.K.; Kopiński, J. Assessment of the Suitability of 10 Winter Triticale Cultivars (x Triticosecale Wittm. ex A. Camus) for Organic Agriculture: Polish Case Study. Agronomy 2020, 10, 1144. [Google Scholar] [CrossRef]
- Artyszak, A. Effect of silicon fertilization on crop yield quantity and quality-A Literature Review in Europe. Plants 2018, 7, 54. [Google Scholar] [CrossRef]
- Li, L.; Shewry, P.R.; Ward, J.L. Phenolic acids in wheat varieties in the HEALTHGRAIN diversity screen. J. Agric. Food Chem. 2008, 56, 9732–9739. [Google Scholar] [CrossRef]
- Kurasiak-Popowska, D.; Stuper-Szablewska, K.; Nawracała, J.; Tomkowiak, A.; Perkowski, J. Phenolic acid content in wheat grain (Triticum spp.) of different genotypes. Rev. Fac. Cienc. Agrar. UNCuyo 2016, 48, 1–7. [Google Scholar]
- Carneiro-Carvalho, A.; Aires, A.; Anjos, R.; Martins, L.; Pinto, T.; Peixoto, F.; Gomes-Laranjo, J. The role of silicon fertilization in the synthesis of phenolic compounds on chestnut plants infected with P. cinnamomi and C. parasitica. J. Plant Dis. Prot. 2020, 127, 211–227. [Google Scholar] [CrossRef]
- Yao, X.; Chu, J.; Cai, K.; Liu, L.; Shi, J.; Geng, W. Silicon improves the tolerance of wheat seedlings to ultraviolet-B stress. Biol. Trace Elem. Res. 2011, 143, 507–517. [Google Scholar] [CrossRef] [PubMed]
- Fleck, A.T.; Schulze, S.; Hinrichs, M.; Specht, A.; Wassmann, F.; Schreiber, L.; Schenk, M.K. Silicon promotes exodermal casparian band formation in Si accumulating and Si-excluding species by forming phenol complexes. PLoS ONE 2015, 10, 0138555. [Google Scholar] [CrossRef]
- Song, A.; Xue, G.; Cui, P.; Fan, F.; Liu, H.; Yin, C.; Sun, W.; Liang, Y. The role of silicon in enhancing resistance to bacterial blight of hydroponic- and soil-cultured rice. Sci. Rep. 2016, 6, 24640. [Google Scholar] [CrossRef] [PubMed]
- Kidd, P.S.; Llugany, M.; Poschenrieder, C.H.; Gunsé, B.; Barceló, J. The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.). J. Exp. Bot. 2001, 52, 1339–1352. [Google Scholar]
- Dorneles, K.R.; Pazdiora, P.C.; Hoffmann, J.F.; Chaves, F.C.; Montec, L.G.; Rodrigues, F.A.; Dallagnol, L.J. Wheat leaf resistance to Pyrenophora tritici-repentis induced by silicon activation of phenylpropanoid metabolism. Plant Pathol. 2018, 67, 1713–1724. [Google Scholar] [CrossRef]
- Dar, F.A.; Tahir, I.; Hakeem, K.R.; Rehman, R.U. Silicon Application Enhances the Photosynthetic Pigments and Phenolic/Flavonoid Content by Modulating the Phenylpropanoid Pathway in Common Buckwheat under Aluminium Stress. Silicon 2022, 14, 323–334. [Google Scholar] [CrossRef]
- Stumpf, B.; Yan, F.; Honermeier, B. Influence of nitrogen fertilization on yield and phenolic compounds in wheat grains (Triticumm aestivum L. ssp. aestivum). J. Plant Nutr. Soil Sci. 2018, 182, 111–118. [Google Scholar] [CrossRef]
- Abdel-Haliem, M.E.F.; Hegazy, H.S.; Hassan, N.S.; Naguib, D.M. Effect of silica ions and nano silica on rice plants under salinity stress. Ecol. Eng. 2017, 99, 282–289. [Google Scholar] [CrossRef]
- Aouz, A.; Khan, I.; Chattha, M.B.; Ahmad, S.; Ali, M.; Ali, I.; Ali, A.; Alqahtani, F.M.; Hashem, M.; Albishi, T.S.; et al. Silicon Induces Heat and Salinity Tolerance in Wheat by Increasing Antioxidant Activities, Photosynthetic Activity, Nutrient Homeostasis, and Osmo-Protectant Synthesis. Plants 2023, 12, 2606. [Google Scholar] [CrossRef]
- Khan, A.; Bilal, S.; Khan, A.L.; Imran, M.; Al-Harrasi, A.; Al-Rawahi, A.; Lee, I.J. Silicon-mediated alleviation of combined salinity and cadmium stress in date palm (Phoenix dactylifera L.) by regulating physio-hormonal alteration. Ecotoxicol. Environ. Saf. 2020, 188, 109885. [Google Scholar] [CrossRef]
- Skrajda-Brdak, M.; Konopka, I.; Tańska, M.; Sulewska, H. Phenolic nutrient composition and grain morphology of winter spelt wheat (Triticum aestivum ssp. spelta) cultivated in Poland. Qual. Assur. Saf. Crops Foods 2018, 10, 285–295. [Google Scholar] [CrossRef]
- Kulawinek, M.; Jaromin, A.; Kozubek, A.; Zarnowski, R. Alkylresorcinols in selected Polish rye and wheat cereals and wholegrain cereal products. J. Agric. Food Chem. 2008, 56, 7236–7242. [Google Scholar] [CrossRef] [PubMed]
- Zarnowski, R.; Suzuki, Y.; Pietr, S.J. Alkyl- and Alkenylresorcinols of Wheat Grains and their Chemotaxonomic Significance. Z. Naturforsch. 2004, 59, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Pedrazzani, C.; Vanara, F.; Bhandari, D.; Bruni, R.; Spengler, B.; Blandino, M.; Righetti, L. 5-n-Alkylresorcinol Profiles in Different Cultivars of Einkorn, Emmer, Spelt, Common Wheat, and Tritordeum. J. Agric. Food Chem. 2021, 69, 14092–14102. [Google Scholar] [CrossRef]
Variant | Dosing of Treatments | Date of Application of Foliar Treatment | |
---|---|---|---|
Stimulation/Treatment of Seeds for Sowing | Foliar Treatments | ||
A—control | - | - | - |
B—seed dressing with silicon treatments + foliar treatments with silicon preparations (2 ×) | AdeSil 0.5 kg per 100 kg of grain + 1% ZumSil solution to improve the stickiness of diatoms at a dose of 0.5 L per 100 kg of seeds | ZumSil 0.5 L/ha (2 ×) | BBCH 23–25 (3 to 5 tillers) BBCH 32–34 (third to fourth nodes) |
C—only foliar treatments (2 ×) | - | ZumSil 0.5 L/ha (2 ×) | BBCH 23–25 (3 to 5 tillers) BBCH 32–34 (third to fourth nodes) |
D—only seed dressing with silicon treatments AdeSil + ZumSil | AdeSil 0.5 kg per 100 kg of grain + 1% ZumSil solution to improve the stickiness of diatoms at a dose of 0.5 L per 100 kg of seeds | - | - |
Compound Name | Molecular Formula | Retention Time (min) | m/z of the [M+H]+ Ion |
---|---|---|---|
5-n-heptadecylresorcinol (C17:0) | C23H40O2 | 10.05 | 349.3101 |
5-n-nonadecenylresorcinol (C19:1) | C25H42O2 | 10.25 | 375.3258 |
5-n-nonadecylresorcinol (C19:0) | C25H44O2 | 10.53 | 377.3414 |
5-n-heneicosenylresorcinol (C21:1) | C27H46O2 | 10.67 | 403.3571 |
5-n-heneicosylresorcinol (C21:0) | C27H48O2 | 11.05 | 405.3727 |
5-n-tricosylresorcinol (C23:0) | C29H52O2 | 11.57 | 433.4040 |
5-n-pentacosylresorcinol (C25:0) | C31H56O2 | 12.06 | 461.4353 |
Cultivar | Silicon Treatments | Mean | |||
---|---|---|---|---|---|
A | B | C | D | ||
2019 | |||||
Harenda | 4.02 * ± 0.30 a (100.0%) # | 4.25 ± 0.25 a (105.7%) | 4.21 ± 0.13 a (104.7%) | 4.16 ± 0.41 a (103.5%) | 4.16 ± 0.30 A |
Serenada | 3.84 ± 0.21 b (100.0%) | 4.20 ± 0.40 ab (109.4%) | 4.35 ± 0.10 a (113.2%) | 4.15 ± 0.20 ab (108.1%) | 4.14 ± 0.38 A |
Rusałka | 3.90 ± 0.28 b (100.0%) | 4.36 ± 0.15 a (111.8%) | 4.35 ± 0.31 a (115.4%) | 4.20 ± 0.12 ab (107.7%) | 4.20 ± 0.30 A |
Wirtas | 3.40 ± 0.29 c (100.0%) | 3.70 ± 0.10 a (108.8%) | 3.41 ± 0.35 bc (100.3%) | 3.54 ± 0.13 a–c (104.1%) | 3.51 ± 0.27 B |
Mean | 3.79 ± 0.40 b (100.0%) | 4.13 ± 0.41 a (108.9%) | 4.08 ± 0.50 a (107.7%) | 4.01 ± 0.40 ab (105.8%) | 4.00 ± 0.45 |
2020 | |||||
Harenda | 4.04 ± 0.51 b (100.0%) | 4.79 ± 0.19 a (118.6%) | 4.76 ± 0.35 a (117.8%) | 4.37 ± 0.25 ab (108.2%) | 4.49 ± 0.50 A |
Serenada | 3.95 ± 0.52 b (100.0%) | 4.61 ± 0.30 a (116.7%) | 4.49 ± 0.30 b (113.7%) | 4.35 ± 0.17 b (110.1%) | 4.35 ± 0.47 A |
Rusałka | 3.91 ± 0.15 b (100.0%) | 4.49 ± 0.21 a (114.8%) | 4.28 ± 0.10 b (109.5%) | 4.33 ± 0.18 a (110.7%) | 4.25 ± 0.30 A |
Wirtas | 3.13 ± 0.12 b (100.0%) | 3.50 ± 0.14 a (111.8%) | 3.47 ± 0.25 a (110.9%) | 3.27 ± 0.10 b (104.5%) | 3.34 ± 0.24 B |
Mean | 3.76 ± 0.60 c (100.0%) | 4.34 ± 0.65 a (115.4%) | 4.25 ± 0.71 b (113.1%) | 4.08 ± 0.63 bc (108.5%) | 4.10 ± 0.72 |
Cultivar | Silicon Treatments | Mean | |||
---|---|---|---|---|---|
A | B | C | D | ||
2019 | |||||
Harenda | 35.5 * ± 0.3 a (100.0%) # | 35.6 ± 0.5 a (100.3%) | 35.2 ± 0.9 a (99.2%) | 35.4 ± 0.4 a (99.7%) | 35.4 ± 0.5 C |
Serenada | 42.3 ± 0.7 a (100.0%) | 42.1 ± 0.7 a (99.5%) | 42.2 ± 0.7 a (99.8%) | 42.7 ± 0.1 a (100.9%) | 42.3 ± 0.6 B |
Rusałka | 41.3 ± 0.3 a (100.0%) | 41.2 ± 0.7 a (99.8%) | 41.6 ± 0.2 a (100.7%) | 41.2 ± 0.7 a (99.8%) | 41.3 ± 0.5 B |
Wirtas ** | 58.1 ± 1.0 a (100.0%) | 58.5 ± 0.9 a (100.7%) | 59.0 ± 0.7 a (101.5%) | 58.9 ± 0.8 a (101.4%) | 58.6 ± 0.9 A |
Mean | 44.3 ± 8.6 a (100.0%) | 44.3 ± 8.6 a (100.0%) | 44.5 ± 1.2 a (100.5%) | 44.5 ± 9.0 a (100.5%) | 44.4 ± 8.7 |
2020 | |||||
Harenda | 36.9 ± 0.6 a (100.0%) | 37.3 ± 0.6 a (101.1%) | 36.7 ± 0.5 a (99.5%) | 36.8 ± 0.2 a (99.7%) | 36.9 ± 0.5 C |
Serenada | 42.6 ± 0.6 b (100.0%) | 43.8 ± 0.8 a (102.8%) | 43.7 ± 0.5 a (102.6%) | 43.3 ± 0.6 ab (101.6%) | 43.4 ± 0.7 B |
Rusałka | 38.5 ± 0.1 b (100.0%) | 39.3 ± 0.5 a (102.1%) | 38.9 ± 0.1 b (101.1%) | 38.7 ± 0.5 b (100.5%) | 38.9 ± 0.5 BC |
Wirtas ** | 62.8 ± 0.2 b (100.0%) | 64.4 ±1.5 a (102.5%) | 63.2 ± 0.3 b (100.6%) | 63.2 ± 0.3 b (100.6%) | 63.4 ± 0.9 A |
Mean | 45.2 ± 10.7 b (100.0%) | 46.2 ± 11.1 a (102.2%) | 45.6 ± 10.8 b (100.9%) | 45.5 ± 10.9 b (100.7%) | 45.6 ± 10.6 |
Total Infestation | Brown Rust | Septoria Blotch | Tan Wpot | Mildew | Fusarium Wilt | ||
---|---|---|---|---|---|---|---|
2019 | |||||||
Harenda | A | 2.50 ± 1.24 ab | 1.00 ± 0.00 b | 0.80 ± 0.89 b | 0.70 ± 0.80 a | 0.00 ± 0.00 b | 0.00 ± 0.00 b |
B | 2.00 ± 1.17 b | 1.25 ± 0.55 ab | 0.40 ± 0.75 bc | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.35 ± 0.67 a | |
C | 2.55 ± 0.89 ab | 1.50 ± 0.69 a | 0.00 ± 0.00 c | 0.70 ± 0.80 a | 0.00 ± 0.00 b | 0.35 ± 0.67 a | |
D | 3.85 ± 2.50 a | 1.00 ± 0.00 b | 1.75 ± 1.62 a | 0.35 ± 0.67 ab | 0.50 ± 0.89 a | 0.25 ± 0.64 ab | |
Serenada | A | 15.20 ± 11.7 ab | 12.50 ± 12.5 ab | 0.80 ± 0.89 a | 0.35 ± 0.67 a | 0.50 ± 0.89 a | 1.05 ± 0.76 ab |
B | 16.65 ± 20.8 a | 14.00 ± 21.64 a | 0.40 ± 0.75 ab | 0.35 ± 0.67 a | 0.50 ± 0.89 a | 1.40 ± 0.50 a | |
C | 9.10 ± 8.78 b | 7.50 ± 7.65 ab | 0.40 ± 0.75 ab | 0.00 ± 0.00 a | 0.50 ± 0.89 a | 0.70 ± 0.80 b | |
D | 2.35 ± 0.99 c | 2.00 ± 0.65 b | 0.00 ± 0.00 b | 0.35 ± 0.67 a | 0.00 ± 0.00 b | 0.00 ± 0.00 c | |
Rusałka | A | 59.30 ± 15.75 a | 57.50 ± 16.42 a | 1.75 ± 1.62 a | 0.05 ± 0.22 b | 0.00 ± 0.00 a | 0.00 ± 0.00 c |
B | 41.75 ± 10.62 b | 41.00 ± 11.19 b | 0.40 ± 0.75 b | 0.00 ± 0.00 b | 0.00 ± 0.00 a | 0.35 ± 0.67 b | |
C | 54.45 ± 20.09 a | 53.00 ± 19.96 a | 0.40 ± 0.75 b | 0.70 ± 0.80 a | 0.00 ± 0.00 a | 0.35 ± 0.67 b | |
D | 60.50 ± 16.77 a | 57.50 ± 16.42 a | 1.60 ± 0.50 a | 0.00 ± 0.00 b | 0.00 ± 0.00 a | 1.40 ± 0.50 a | |
Wirtas | A | 29.35 ± 7.44 a | 29.00 ± 7.18 a | 0.00 ± 0.00 b | 0.35 ± 0.67 b | 0.00 ± 0.00 a | 0.00 ± 0.00 a |
B | 23.35 ± 6.47 b | 23.00 ± 6.57 b | 0.00 ± 0.00 b | 0.35 ± 0.67 b | 0.00 ± 0.00 a | 0.00 ± 0.00 a | |
C | 14.05 ± 9.44 c | 13.00 ± 8.80 c | 0.00 ± 0.00 b | 1.05 ± 0.76 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | |
D | 21.40 ± 8.84 bc | 21.00 ± 8.21 b | 0.40 ± 0.75 a | 0.00 ± 0.00 c | 0.00 ± 0.00 a | 0.00 ± 0.00 a | |
2020 | |||||||
Harenda | A | 1.72 ± 2.04 b | 0.05 ± 0.21 a | 1.35 ± 2.06 a | 0.05 ± 0.30 a | 0.28 ± 0.70 a | 0.00 ± 0.00 a |
B | 2.83 ± 3.46 a | 0.27 ± 1.57 a | 2.02 ± 3.09 a | 0.10 ± 0.44 a | 0.44 ± 0.84 a | 0.00 ± 0.00 a | |
C | 2.87 ± 2.85 a | 0.03 ± 0.16 a | 2.08 ± 2.61 a | 0.15 ± 0.54 a | 0.44 ± 1.05 a | 0.18 ± 0.85 a | |
D | 2.59 ± 2.27 ab | 0.00 ± 0.00 a | 1.80 ± 1.96 a | 0.44 ± 1.64 a | 0.29 ± 0.72 a | 0.05 ± 0.31 a | |
Serenada | A | 3.02 ± 1.84 a | 0.10 ± 0.49 a | 0.73 ± 1.30 a | 0.20 ± 0.60 b | 2.00 ± 1.94 a | 0.00 ± 0.00 a |
B | 2.00 ± 1.59 b | 0.08 ± 0.27 a | 0.10 ± 0.44 b | 0.18 ± 0.84 b | 1.65 ± 1.46 a | 0.00 ± 0.00 a | |
C | 2.88 ± 1.58 a | 0.24 ± 0.69 a | 0.52 ± 0.89 a | 0.38 ± 0.79 ab | 1.74 ± 1.52 a | 0.00 ± 0.00 a | |
D | 3.73 ± 3.32 a | 0.12 ± 0.33 a | 1.15 ± 2.72 a | 0.63 ± 1.28 a | 1.83 ± 1.72 a | 0.00 ± 0.00 a | |
Rusałka | A | 2.75 ± 2.47 b | 0.35 ± 1.59 b | 1.80 ± 2.17 b | 0.00 ± 0.00 a | 0.60 ± 1.28 a | 0.00 ± 0.00 a |
B | 4.05 ± 4.23 ab | 0.63 ± 1.03 a | 3.18 ± 3.88 ab | 0.00 ± 0.00 a | 0.25 ± 0.67 a | 0.00 ± 0.00 a | |
C | 5.03 ± 4.91 a | 0.45 ± 0.75 ab | 4.33 ± 4.76 a | 0.05 ± 0.32 a | 0.20 ± 0.61 a | 0.00 ± 0.00 a | |
D | 4.95 ± 4.81 a | 1.44 ± 1.93 a | 2.92 ± 4.34 ab | 0.00 ± 0.00 a | 0.59 ± 1.12 a | 0.00 ± 0.00 a | |
Wirtas | A | 1.66 ± 2.33 ab | 0.68 ± 0.91 c | 0.27 ± 0.92 b | 0.37 ± 0.99 a | 0.34 ± 1.61 a | 0.00 ± 0.00 a |
B | 2.58 ± 2.85 a | 1.58 ± 1.87 a | 0.78 ± 1.85 a | 0.05 ± 0.32 b | 0.18 ± 0.84 a | 0.00 ± 0.00 a | |
C | 1.55 ± 1.34 b | 0.78 ± 0.80 bc | 0.60 ± 0.93 ab | 0.05 ± 0.32 b | 0.13 ± 0.79 a | 0.00 ± 0.00 a | |
D | 2.59 ± 2.56 a | 1.41 ± 1.45 ab | 0.80 ± 2.03 a | 0.20 ± 0.60 ab | 0.17 ± 0.83 a | 0.00 ± 0.00 a |
Phenolic Acid | Year | Cultivar | Silicon Treatments | |||||||
---|---|---|---|---|---|---|---|---|---|---|
2019 | 2020 | Harenda | Serenada | Rusałka | Wirtas | A | B | C | D | |
Protocatechuic acid | 3.75 ± 0.17 a | 3.73 ± 0.16 a | 3.18 ± 0.03 c | 3.31 ± 0.02 b | 3.30 ± 0.03 bc | 5.18 ± 0.31 a | 3.27 ± 0.03 d | 3.80 ± 0.22 b | 3.57 ± 0.11 c | 4.33 ± 0.36 a |
p-OH-Benzoic acid | 8.54 ± 0.39 a | 8.53 ± 0.40 a | 5.58 ± 0.05 d | 8.91 ± 0.08 b | 7.05 ± 0.09 c | 12.60 ± 0.21 a | 8.63 ± 0.57 ab | 8.28 ± 0.47 b | 8.52 ± 0.56 ab | 8.71 ± 0.63 a |
Vanillic acid | 34.03 ±1.41 a | 34.55 ±1.43 a | 26.03 ± 0.27 d | 29.04 ± 0.18 c | 31.53 ± 0.25 b | 50.56 ± 0.59 a | 33.92 ± 1.99 b | 33.83 ± 1.87 b | 33.80 ± 2.08 b | 35.61 ± 2.16 a |
Caffeic acid | 29.19 ± 0.32 a | 29.62 ± 0.32 a | 26.79 ± 0.40 c | 30.87 ± 0.29 a | 30.19 ± 0.34 ab | 29.76 ± 0.26 b | 29.67 ± 0.27 ab | 28.13 ± 0.56 c | 29.37 ± 0.40 b | 30.44 ± 0.43 a |
Syringic acid | 29.56 ± 1.06 a | 29.60 ± 1.06 a | 21.51 ± 0.21 d | 26.97 ± 0.25 c | 28.87 ± 0.25 b | 40.98 ± 0.44 a | 28.69 ± 1.45 c | 29.16 ± 1.44 bc | 29.73 ± 1.47 b | 30.75 ± 1.66 a |
p-Coumaric acid | 123.81 ± 25.13 a | 124.75 ± 25.34 a | 22.22 ± 0.28 c | 23.21 ± 0.29 bc | 28.78 ± 0.39 b | 422.91 ± 5.96 a | 121.84 ± 35.45 b | 120.93 ± 34.90 b | 118.66 ± 33.86 b | 135.70 ± 39.73 a |
Ferulic acid | 795.60 ± 12.67 a | 795.82 ± 12.73 a | 729.94 ± 9.02 c | 736.18 ± 7.45 c | 795.44 ± 6.07 b | 921.27 ± 10.82 a | 798.19 ± 24.16 b | 776.42 ± 12.81 c | 789.51 ± 13.59 bc | 818.72 ± 18.58 a |
Sinapic acid | 84.56 ± 2.26 a | 85.51 ± 2.20 a | 99.82 ± 0.54 a | 89.02 ± 0.43 b | 91.10 ± 0.91 b | 60.20 ± 0.91 c | 86.19 ± 2.85 a | 84.41 ± 3.56 ab | 85.83 ± 2.93 ab | 83.70 ± 3.34 b |
Salicylic acid | 2.02 ± 0.07 a | 2.02 ± 0.07 a | 1.76 ± 0.03 b | 1.66 ± 0.00 c | 1.77 ± 0.02 b | 2.90 ± 0.04 a | 1.99 ± 0.10 b | 1.99 ± 0.10 b | 2.01 ± 0.10 b | 2.09 ± 0.13 a |
Total | 1111.05 ± 37.47 a | 1114.14 ± 37.67 a | 936.81 ± 9.51 c | 949.17 ± 8.10 c | 1018.02 ± 7.44 b | 1546.36 ± 15.91 a | 1112.39 ± 59.51 b | 1086.96 ± 47.16 c | 1101.00 ± 47.50 bc | 1150.02 ± 58.50 a |
Antiradical activity | 0.248 ± 0.008 a | 0.249 ± 0.008 a | 0.209 ± 0.002 c | 0.212 ± 0.002 c | 0.227 ± 0.002 b | 0.346 ± 0.004 a | 0.250 ± 0.013 b | 0.243 ± 0.011 c | 0.244 ± 0.011 c | 0.257 ± 0.013 a |
Phenolic Acid | Source of Variability | V (%) # | ||||||
---|---|---|---|---|---|---|---|---|
Year (Y) | Cultivar (C) | Silicon Treatments (S) | Y × C | Y × S | C × S | Y × C × S | ||
Protocatechuic acid | ns | *** | *** | ** | ns | *** | ns | 4.47 |
p-OH-Benzoic acid | ns | *** | * | ns | ns | *** | ns | 6.24 |
Vanillic acid | ns | *** | *** | ns | ns | * | ns | 4.52 |
Caffeic acid | ns | *** | *** | ns | ns | *** | ns | 4.23 |
Syringic acid | ns | *** | *** | ns | ns | ns | ns | 4.19 |
p-Coumaric acid | ns | *** | *** | ns | ns | *** | ns | 6.02 |
Ferulic acid | ns | *** | *** | *** | ns | *** | *** | 3.03 |
Sinapic acid | ns | *** | * | ns | ns | *** | ns | 3.47 |
Salicylic acid | ns | *** | *** | *** | *** | *** | *** | 2.67 |
Total | ns | *** | *** | *** | ns | *** | ns | 2.92 |
Antiradical activity | ns | *** | *** | *** | ns | *** | ns | 3.22 |
Alkyl- Resorcinol | Year | Cultivar | Silicon Treatments | |||||||
---|---|---|---|---|---|---|---|---|---|---|
2019 | 2020 | Harenda | Serenada | Rusałka | Wirtas | A | B | C | D | |
C17:0 | 22.66 ± 0.43 a | 17.21 ± 0.75 b | 21.78 ± 0.70 b | 18.62 ± 0.80 c | 24.18 ± 0.65 a | 15.16 ± 0.90 d | 20.55 ± 1.03 a | 19.37 ± 0.97 a | 20.34 ± 1.13 a | 19.49 ± 1.01 a |
C19:1 | 37.45 ±1.11 a | 15.92 ± 0.59 b | 29.03 ± 2.37 b | 24.42 ± 1.99 c | 33.07 ± 3.04 a | 20.22 ± 1.94 d | 26.46 ± 2.35 ab | 25.58 ± 2.43 b | 27.81 ± 2.90 a | 26.89 ± 2.58 ab |
C19:0 | 160.30 ± 4.93 a | 121.41 ± 4.99 b | 159.76 ± 5.03 b | 128.30 ± 5.65 c | 177.35 ± 5.75 a | 98.01 ± 4.04 d | 145.21 ± 8.31 ab | 135.09 ± 7.02 b | 145.58 ± 9.09 a | 137.54 ± 7.88 ab |
C21:1 | 31.24 ± 0.44 b | 49.83 ± 1.54 a | 38.95 ± 1.97 b | 36.67 ± 1.77 b | 45.84 ± 3.11 a | 40.69 ± 2.61 ab | 41.55 ± 2.93 a | 38.27 ± 2.32 a | 40.08 ± 1.82 a | 42.24 ± 2.79 a |
C21:0 | 250.73 ± 7.92 a | 125.64 ± 7.33 b | 224.99 ± 12.37 b | 157.15 ± 14.15 c | 239.77 ± 17.04 a | 130.83 ± 12.37 d | 197.60 ± 16.57 a | 179.94 ± 15.37 b | 192.74 ± 19.30 ab | 182.46 ± 16.25 b |
C23:0 | 51.30 ± 1.29 a | 17.41 ± 1.26 b | 40.50 ± 3.49 b | 29.21 ± 3.67 c | 41.89 ± 4.17 a | 25.83 ± 3.43 d | 36.74 ± 3.86 a | 32.99 ± 3.69 b | 34.51 ± 4.44 ab | 33.19 ± 3.81 b |
C25:0 | 12.81 ± 0.23 a | 3.75 ± 0.28 b | 9.72 ± 0.86 a | 6.72 ± 0.94 c | 8.22 ± 0.91 b | 8.45 ± 1.20 b | 8.86 ± 1.05 a | 8.03 ± 0.97 b | 8.22 ± 1.02 b | 8.01 ± 0.98 b |
Total | 566.49 ± 15.79 a | 351.18 ± 15.17 b | 524.73 ± 23.09 b | 401.09 ± 25.94 c | 570.31 ± 28.51 a | 339.20 ± 21.46 d | 476.96 ± 30.65 a | 439.27 ± 28.80 b | 469.29 ± 36.00 a | 449.81 ± 29.52 ab |
Antiradical activity | 0.200 ± 0.006 a | 0.126 ± 0.005 b | 0.186 ± 0.008 b | 0.141 ± 0.009 c | 0.201 ± 0.010 a | 0.124 ± 0.007 d | 0.168 ± 0.011 a | 0.155 ± 0.010 b | 0.166 ± 0.013 a | 0.162 ± 0.009 ab |
Alkyl- Resorcinol | Source of Variability | V (%) # | ||||||
---|---|---|---|---|---|---|---|---|
Year (Y) | Cultivar (C) | Silicon Treatments (S) | Y × C | Y Y | C × S | Y × C × S | ||
C17:0 | *** | *** | ns | *** | * | * | ns | 10.33 |
C19:1 | *** | *** | * | *** | * | * | * | 10.23 |
C19:0 | *** | *** | * | ns | * | * | ns | 9.50 |
C21:1 | *** | *** | ns | * | ns | ns | ns | 6.92 |
C21:0 | *** | *** | ** | *** | *** | *** | *** | 8.95 |
C23:0 | *** | *** | ** | ** | ** | *** | *** | 10.62 |
C25:0 | *** | *** | *** | *** | ns | *** | *** | 8.83 |
Total | *** | *** | ** | * | ** | *** | ** | 8.28 |
Antiradical activity | *** | *** | ** | ** | ** | *** | *** | 7.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowalska, I.; Kowalczyk, M.; Mołdoch, J.; Pawelec, S.; Radzikowski, P.; Feledyn-Szewczyk, B. The Effects of a Cultivar and Silicon Treatments on Grain Parameters and Bioactive Compound Content in Organic Spring Wheat. Foods 2025, 14, 2406. https://doi.org/10.3390/foods14142406
Kowalska I, Kowalczyk M, Mołdoch J, Pawelec S, Radzikowski P, Feledyn-Szewczyk B. The Effects of a Cultivar and Silicon Treatments on Grain Parameters and Bioactive Compound Content in Organic Spring Wheat. Foods. 2025; 14(14):2406. https://doi.org/10.3390/foods14142406
Chicago/Turabian StyleKowalska, Iwona, Mariusz Kowalczyk, Jarosław Mołdoch, Sylwia Pawelec, Paweł Radzikowski, and Beata Feledyn-Szewczyk. 2025. "The Effects of a Cultivar and Silicon Treatments on Grain Parameters and Bioactive Compound Content in Organic Spring Wheat" Foods 14, no. 14: 2406. https://doi.org/10.3390/foods14142406
APA StyleKowalska, I., Kowalczyk, M., Mołdoch, J., Pawelec, S., Radzikowski, P., & Feledyn-Szewczyk, B. (2025). The Effects of a Cultivar and Silicon Treatments on Grain Parameters and Bioactive Compound Content in Organic Spring Wheat. Foods, 14(14), 2406. https://doi.org/10.3390/foods14142406