Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = UDP-glucose 4-epimerase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 7723 KiB  
Article
Targeting the Leloir Pathway with Galactose-Based Antimetabolites in Glioblastoma
by Martyn A. Sharpe, Omkar B. Ijare, Sudhir Raghavan, Alexandra M. Baskin, Brianna N. Baskin and David S. Baskin
Cancers 2024, 16(20), 3510; https://doi.org/10.3390/cancers16203510 - 17 Oct 2024
Cited by 1 | Viewed by 1716
Abstract
Background: Glioblastoma (GBM) uses Glut3 and/or Glut14 and the Leloir pathway to catabolize D-Galactose (Gal). UDP-4-deoxy-4-fluorogalactose (UDP-4DFG) is a potent inhibitor of the two key enzymes, UDP-galactose-4-epimerase (GALE) and UDP-Glucose 6-dehydrogenase (UGDH), involved in Gal metabolism and in glycan synthesis. The Gal antimetabolite [...] Read more.
Background: Glioblastoma (GBM) uses Glut3 and/or Glut14 and the Leloir pathway to catabolize D-Galactose (Gal). UDP-4-deoxy-4-fluorogalactose (UDP-4DFG) is a potent inhibitor of the two key enzymes, UDP-galactose-4-epimerase (GALE) and UDP-Glucose 6-dehydrogenase (UGDH), involved in Gal metabolism and in glycan synthesis. The Gal antimetabolite 4-deoxy-4-fluorogalactose (4DFG) is a good substrate for Glut3/Glut14 and acts as a potent glioma chemotherapeutic. Methods: Primary GBM cell cultures were used to examine toxicity and alterations in glycan composition via lectin binding in fixed cells and by Western blots. Toxicity/efficacy in vivo data was performed in mouse flank and intracranial models. The effect of 4DFG on D-glucose (Glc) metabolism in GBM cells was assessed by using 13C NMR-based tracer studies. Results: 4DFG is moderately potent against GBM cells (IC50: 125–300 µM). GBM glycosylation is disrupted by 4DFG. Survival analysis in an intracranial mouse model showed that treatment with 4DFG (6 × 25 mg/kg of 4DFG, intravenously) improved outcomes by three-fold (p < 0.01). Metabolic flux analysis revealed that both glycolytic and mitochondrial metabolic fluxes of [U-13C]Glc were significantly decreased in the presence of 4DFG in GBM cells. Conclusion: A functional Gal-scavenging pathway in GBM allows Gal-based antimetabolites to act as chemotherapeutics. 4DFG is metabolized by GBM in vitro and in vivo, is lethal to GBM tumors, and is well tolerated in mice. Full article
(This article belongs to the Section Cancer Pathophysiology)
Show Figures

Graphical abstract

14 pages, 1834 KiB  
Article
Characterization of the Neurospora crassa Galactosaminogalactan Biosynthetic Pathway
by Apurva Chatrath, Protyusha Dey, Kevin Greeley, Gabriela Maciel, Lei Huang, Christian Heiss, Ian Black, Parastoo Azadi and Stephen J. Free
Microorganisms 2024, 12(8), 1509; https://doi.org/10.3390/microorganisms12081509 - 23 Jul 2024
Cited by 1 | Viewed by 1406
Abstract
The Neurospora crassa genome has a gene cluster for the synthesis of galactosaminogalactan (GAG). The gene cluster includes the following: (1) UDP-glucose-4-epimerase to convert UDP-glucose and UDP-N-acetylglucosamine to UDP-galactose and UDP-N-acetylgalactosamine (NCU05133), (2) GAG synthase for the synthesis of [...] Read more.
The Neurospora crassa genome has a gene cluster for the synthesis of galactosaminogalactan (GAG). The gene cluster includes the following: (1) UDP-glucose-4-epimerase to convert UDP-glucose and UDP-N-acetylglucosamine to UDP-galactose and UDP-N-acetylgalactosamine (NCU05133), (2) GAG synthase for the synthesis of an acetylated GAG (NCU05132), (3) GAG deacetylase (/NCW-1/NCU05137), (4) GH135-1, a GAG hydrolase with specificity for N-acetylgalactosamine-containing GAG (NCU05135), and (5) GH114-1, a galactosaminidase with specificity for galactosamine-containing GAG (NCU05136). The deacetylase was previously shown to be a major cell wall glycoprotein and given the name of NCW-1 (non-GPI anchored cell wall protein-1). Characterization of the polysaccharides found in the growth medium from the wild type and the GAG synthase mutant demonstrates that there is a major reduction in the levels of polysaccharides containing galactosamine and N-acetylgalactosamine in the mutant growth medium, providing evidence that the synthase is responsible for the production of a GAG. The analysis also indicates that there are other galactose-containing polysaccharides produced by the fungus. Phenotypic characterization of wild-type and mutant isolates showed that deacetylated GAG from the wild type can function as an adhesin to a glass surface and provides the fungal mat with tensile strength, demonstrating that the deacetylated GAG functions as an intercellular adhesive. The acetylated GAG produced by the deacetylase mutant was found to function as an adhesive for chitin, alumina, celite (diatomaceous earth), activated charcoal, and wheat leaf particulates. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

21 pages, 3638 KiB  
Article
Analysis of Genes Associated with Feeding Preference and Detoxification in Various Developmental Stages of Aglais urticae
by Ouyan Xi, Wentao Guo and Hongying Hu
Insects 2024, 15(1), 30; https://doi.org/10.3390/insects15010030 - 3 Jan 2024
Cited by 4 | Viewed by 2257
Abstract
Herbivorous insects and host plants have developed a close and complex relationship over a long period of co-evolution. Some plants provide nutrients for insects, but plants’ secondary metabolites also influence their growth and development. Urtica cannabina roots and leaves are poisonous, yet Aglais [...] Read more.
Herbivorous insects and host plants have developed a close and complex relationship over a long period of co-evolution. Some plants provide nutrients for insects, but plants’ secondary metabolites also influence their growth and development. Urtica cannabina roots and leaves are poisonous, yet Aglais urticae larvae feed on them, so we aimed to clarify the mechanism enabling this interaction. At present, studies on the detoxification mechanism of the A. urticae are rare. In our study, first, we used the A. urticae larval odor selection behavior bioassay and choice feeding preference assay to analyze the feeding preferences of A. urticae on its host plant, U. cannabina. Next, we used transcriptome sequencing to obtain the unigenes annotated and classified by various databases, such as KEGG and GO. In this study, we found that U. cannabina could attract A. urticae larvae to feed via scent, and the feeding preference assay confirmed that larvae preferred U. cannabina leaves over three other plants: Cirsium japonicum, Cannabis sativa, and Arctium lappa. The activity of detoxifying enzymes GST and CarE changed in larvae that had consumed U. cannabina. Furthermore, through transcriptomic sequencing analysis, 77,624 unigenes were assembled from raw reads. The numbers of differentially expressed genes were calculated using pairwise comparisons of all life stages; the expression of detoxification enzyme genes was substantially higher in larvae than in the pupal and adult stages. Finally, we identified and summarized 34 genes associated with detoxification enzymes, such as UDP-glucose 4-epimerase gene, 5 Glutathione S-transferase genes, 4 Carboxylesterase genes, 4 Cytochrome P450 genes, 10 ATP-binding cassette genes, 4 Superoxide dismutase, and Peroxidase. Moreover, we identified 28 genes associated with the development of A. urticae. The qRT-PCR results were nearly consistent with the transcriptomic data, showing an increased expression level of four genes in larvae. Taken together, this study examines the correlation between A. urticae and host plants U. cannabina, uncovering a pronounced preference for A. urticae larvae toward host plants. Consistent with RNA-seq, we investigated the mechanism of A. urticae’s interaction with host plants and identified detoxification-related genes. The present study provides theoretical support for studying insect adaptation mechanisms and biological control. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

14 pages, 3246 KiB  
Article
Comparative Transcriptome Profiling Reveals Two WRKY Transcription Factors Positively Regulating Polysaccharide Biosynthesis in Polygonatum cyrtonema
by Wu Jiang, Jiadong Chen, Xiaojing Duan, Yaping Li and Zhengming Tao
Int. J. Mol. Sci. 2023, 24(16), 12943; https://doi.org/10.3390/ijms241612943 - 18 Aug 2023
Cited by 2 | Viewed by 1877
Abstract
Polygonatum cyrtonema (P. cyrtonema) is a valuable rhizome-propagating traditional Chinese medical herb. Polysaccharides (PCPs) are the major bioactive constituents in P. cyrtonema. However, the molecular basis of PCP biosynthesis in P. cyrtonema remains unknown. In this study, we measured the [...] Read more.
Polygonatum cyrtonema (P. cyrtonema) is a valuable rhizome-propagating traditional Chinese medical herb. Polysaccharides (PCPs) are the major bioactive constituents in P. cyrtonema. However, the molecular basis of PCP biosynthesis in P. cyrtonema remains unknown. In this study, we measured the PCP contents of 11 wild P. cyrtonema germplasms. The results showed that PCP content was the highest in Lishui Qingyuan (LSQY, 11.84%) and the lowest in Hangzhou Lin’an (HZLA, 7.18%). We next analyzed the transcriptome profiles of LSQY and HZLA. Through a qRT-PCR analysis of five differential expression genes from the PCP biosynthesis pathway, phosphomannomutase, UDP-glucose 4-epimerase (galE), and GDP-mannose 4,6-dehydratase were determined as the key enzymes. A protein of a key gene, galE1, was localized in the chloroplast. The PCP content in the transiently overexpressed galE1 tobacco leaves was higher than in the wild type. Moreover, luciferase and Y1H assays indicated that PcWRKY31 and PcWRKY34 could activate galE1 by binding to its promoter. Our research uncovers the novel regulatory mechanism of PCP biosynthesis in P. cyrtonema and is critical to molecular-assisted breeding. Full article
(This article belongs to the Special Issue Advances in Molecular Plant Sciences)
Show Figures

Figure 1

15 pages, 3778 KiB  
Article
The L-Rhamnose Biosynthetic Pathway in Trichomonas vaginalis: Identification and Characterization of UDP-D-Glucose 4,6-dehydratase
by Matteo Gaglianone, Maria Elena Laugieri, Adriana Lucely Rojas, Maria Rosaria Coppola, Francesco Piacente, Pier Luigi Fiori and Michela Giulia Tonetti
Int. J. Mol. Sci. 2022, 23(23), 14587; https://doi.org/10.3390/ijms232314587 - 23 Nov 2022
Cited by 3 | Viewed by 2380
Abstract
Trichomonas vaginalis is the causative agent of one of the most widespread sexually transmitted diseases in the world. The adhesion of the parasite to the vaginal epithelial cells is mediated by specific proteins and by a complex glycan structure, the lipoglycan (TvLG), which [...] Read more.
Trichomonas vaginalis is the causative agent of one of the most widespread sexually transmitted diseases in the world. The adhesion of the parasite to the vaginal epithelial cells is mediated by specific proteins and by a complex glycan structure, the lipoglycan (TvLG), which covers the pathogen surface. L-rhamnose is an important component of TvLG, comprising up to 40% of the monosaccharides. Thus, the inhibition of its production could lead to a severe alteration in the TvLG structure, making the L-rhamnose biosynthetic pathway an attractive pharmacologic target. We report the identification and characterization of the first committed and limiting step of the L-rhamnose biosynthetic pathway, UDP-D-glucose 4,6-dehydratase (UGD, EC 4.2.1.76). The enzyme shows a strong preference for UDP-D-glucose compared to dTDP-D-glucose; we propose that the mechanism underlying the higher affinity for the UDP-bound substrate is mediated by the differential recognition of ribose versus the deoxyribose of the nucleotide moiety. The identification of the enzymes responsible for the following steps of the L-rhamnose pathway (epimerization and reduction) was more elusive. However, sequence analyses suggest that in T. vaginalis L-rhamnose synthesis proceeds through a mechanism different from the typical eukaryotic pathways, displaying intermediate features between the eukaryotic and prokaryotic pathways and involving separate enzymes for the epimerase and reductase activities, as observed in bacteria. Altogether, these results form the basis for a better understanding of the formation of the complex glycan structures on TvLG and the possible use of L-rhamnose biosynthetic enzymes for the development of selective inhibitors. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

20 pages, 4726 KiB  
Review
Rhamnose-Containing Compounds: Biosynthesis and Applications
by Siqiang Li, Fujia Chen, Yun Li, Lizhen Wang, Hongyan Li, Guofeng Gu and Enzhong Li
Molecules 2022, 27(16), 5315; https://doi.org/10.3390/molecules27165315 - 20 Aug 2022
Cited by 29 | Viewed by 6001
Abstract
Rhamnose-associated molecules are attracting attention because they are present in bacteria but not mammals, making them potentially useful as antibacterial agents. Additionally, they are also valuable for tumor immunotherapy. Thus, studies on the functions and biosynthetic pathways of rhamnose-containing compounds are in progress. [...] Read more.
Rhamnose-associated molecules are attracting attention because they are present in bacteria but not mammals, making them potentially useful as antibacterial agents. Additionally, they are also valuable for tumor immunotherapy. Thus, studies on the functions and biosynthetic pathways of rhamnose-containing compounds are in progress. In this paper, studies on the biosynthetic pathways of three rhamnose donors, i.e., deoxythymidinediphosphate-L-rhamnose (dTDP-Rha), uridine diphosphate-rhamnose (UDP-Rha), and guanosine diphosphate rhamnose (GDP-Rha), are firstly reviewed, together with the functions and crystal structures of those associated enzymes. Among them, dTDP-Rha is the most common rhamnose donor, and four enzymes, including glucose-1-phosphate thymidylyltransferase RmlA, dTDP-Glc-4,6-dehydratase RmlB, dTDP-4-keto-6-deoxy-Glc-3,5-epimerase RmlC, and dTDP-4-keto-Rha reductase RmlD, are involved in its biosynthesis. Secondly, several known rhamnosyltransferases from Geobacillus stearothermophilus, Saccharopolyspora spinosa, Mycobacterium tuberculosis, Pseudomonas aeruginosa, and Streptococcus pneumoniae are discussed. In these studies, however, the functions of rhamnosyltransferases were verified by employing gene knockout and radiolabeled substrates, which were almost impossible to obtain and characterize the products of enzymatic reactions. Finally, the application of rhamnose-containing compounds in disease treatments is briefly described. Full article
(This article belongs to the Special Issue Carbohydrate-Based Drugs Discovery)
Show Figures

Figure 1

12 pages, 2742 KiB  
Article
Metabolic Engineering of Escherichia coli for Hyperoside Biosynthesis
by Guosi Li, Fucheng Zhu, Peipei Wei, Hailong Xue, Naidong Chen, Baowei Lu, Hui Deng, Cunwu Chen and Xinjian Yin
Microorganisms 2022, 10(3), 628; https://doi.org/10.3390/microorganisms10030628 - 16 Mar 2022
Cited by 12 | Viewed by 3628
Abstract
Hyperoside (quercetin 3-O-galactoside) exhibits many biological functions, along with higher bioactivities than quercetin. In this study, three UDP-dependent glycosyltransferases (UGTs) were screened for efficient hyperoside synthesis from quercetin. The highest hyperoside production of 58.5 mg·L−1 was obtained in a recombinant [...] Read more.
Hyperoside (quercetin 3-O-galactoside) exhibits many biological functions, along with higher bioactivities than quercetin. In this study, three UDP-dependent glycosyltransferases (UGTs) were screened for efficient hyperoside synthesis from quercetin. The highest hyperoside production of 58.5 mg·L−1 was obtained in a recombinant Escherichia coli co-expressing UGT from Petunia hybrida (PhUGT) and UDP-glucose epimerase (GalE, a key enzyme catalyzing the conversion of UDP-glucose to UDP-galactose) from E. coli. When additional enzymes (phosphoglucomutase (Pgm) and UDP-glucose pyrophosphorylase (GalU)) were introduced into the recombinant E. coli, the increased flux toward UDP-glucose synthesis led to enhanced UDP-galactose-derived hyperoside synthesis. The efficiency of the recombinant strain was further improved by increasing the copy number of the PhUGT, which is a limiting step in the bioconversion. Through the optimization of the fermentation conditions, the production of hyperoside increased from 245.6 to 411.2 mg·L−1. The production was also conducted using a substrate-fed batch fermentation, and the maximal hyperoside production was 831.6 mg·L−1, with a molar conversion ratio of 90.2% and a specific productivity of 27.7 mg·L−1·h−1 after 30 h of fermentation. The efficient hyperoside synthesis pathway described here can be used widely for the glycosylation of other flavonoids and bioactive substances. Full article
(This article belongs to the Special Issue Functional Microbial Diversity for Biotechnology)
Show Figures

Figure 1

24 pages, 8799 KiB  
Article
KasQ an Epimerase Primes the Biosynthesis of Aminoglycoside Antibiotic Kasugamycin and KasF/H Acetyltransferases Inactivate Its Activity
by Rajesh Rattinam, R. Sidick Basha, Yung-Lin Wang, Zhe-Chong Wang, Ning-Shian Hsu, Kuan-Hung Lin, Saeid Malek Zadeh, Kamal Adhikari, Jin-Ping Lin and Tsung-Lin Li
Biomedicines 2022, 10(2), 212; https://doi.org/10.3390/biomedicines10020212 - 19 Jan 2022
Cited by 3 | Viewed by 3751
Abstract
Kasugamycin (KSM), an aminoglycoside antibiotic, is composed of three chemical moieties: D-chiro-inositol, kasugamine and glycine imine. Despite being discovered more than 50 years ago, the biosynthetic pathway of KSM remains an unresolved puzzle. Here we report a structural and functional analysis [...] Read more.
Kasugamycin (KSM), an aminoglycoside antibiotic, is composed of three chemical moieties: D-chiro-inositol, kasugamine and glycine imine. Despite being discovered more than 50 years ago, the biosynthetic pathway of KSM remains an unresolved puzzle. Here we report a structural and functional analysis for an epimerase, KasQ, that primes KSM biosynthesis rather than the previously proposed KasF/H, which instead acts as an acetyltransferase, inactivating KSM. Our biochemical and biophysical analysis determined that KasQ converts UDP-GlcNAc to UDP-ManNAc as the initial step in the biosynthetic pathway. The isotope-feeding study further confirmed that 13C, 15N-glucosamine/UDP-GlcNH2 rather than glucose/UDP-Glc serves as the direct precursor for the formation of KSM. Both KasF and KasH were proposed, respectively, converting UDP-GlcNH2 and KSM to UDP-GlcNAc and 2-N’-acetyl KSM. Experimentally, KasF is unable to do so; both KasF and KasH are instead KSM-modifying enzymes, while the latter is more specific and reactive than the former in terms of the extent of resistance. The information gained here lays the foundation for mapping out the complete KSM biosynthetic pathway. Full article
(This article belongs to the Special Issue Recent Advances in the Discovery of Novel Drugs on Natural Molecules)
Show Figures

Graphical abstract

17 pages, 3891 KiB  
Article
Disruption of OsPHD1, Encoding a UDP-Glucose Epimerase, Causes JA Accumulation and Enhanced Bacterial Blight Resistance in Rice
by Yu Gao, Xiaojiao Xiang, Yingxin Zhang, Yongrun Cao, Beifang Wang, Yue Zhang, Chen Wang, Min Jiang, Wenjing Duan, Daibo Chen, Xiaodeng Zhan, Shihua Cheng, Qunen Liu and Liyong Cao
Int. J. Mol. Sci. 2022, 23(2), 751; https://doi.org/10.3390/ijms23020751 - 11 Jan 2022
Cited by 9 | Viewed by 2588
Abstract
Lesion mimic mutants (LMMs) have been widely used in experiments in recent years for studying plant physiological mechanisms underlying programmed cell death (PCD) and defense responses. Here, we identified a lesion mimic mutant, lm212-1, which cloned the causal gene by a map-based [...] Read more.
Lesion mimic mutants (LMMs) have been widely used in experiments in recent years for studying plant physiological mechanisms underlying programmed cell death (PCD) and defense responses. Here, we identified a lesion mimic mutant, lm212-1, which cloned the causal gene by a map-based cloning strategy, and verified this by complementation. The causal gene, OsPHD1, encodes a UDP-glucose epimerase (UGE), and the OsPHD1 was located in the chloroplast. OsPHD1 was constitutively expressed in all organs, with higher expression in leaves and other green tissues. lm212-1 exhibited decreased chlorophyll content, and the chloroplast structure was destroyed. Histochemistry results indicated that H2O2 is highly accumulated and cell death is occurred around the lesions in lm212-1. Compared to the wild type, expression levels of defense-related genes were up-regulated, and resistance to bacterial pathogens Xanthomonas oryzae pv. oryzae (Xoo) was enhanced, indicating that the defense response was activated in lm212-1, ROS production was induced by flg22, and chitin treatment also showed the same result. Jasmonic acid (JA) and methyl jasmonate (MeJA) increased, and the JA signaling pathways appeared to be disordered in lm212-1. Additionally, the overexpression lines showed the same phenotype as the wild type. Overall, our findings demonstrate that OsPHD1 is involved in the regulation of PCD and defense response in rice. Full article
(This article belongs to the Special Issue Molecular Genetics of Rice Disease Resistance)
Show Figures

Figure 1

18 pages, 4104 KiB  
Article
Proteomic Analysis Explores Interactions between Lactiplantibacillus plantarum and Saccharomyces cerevisiae during Sourdough Fermentation
by Guohua Zhang, Qianhui Qi, Faizan Ahmed Sadiq, Wei Wang, Xiaxia He and Wei Wang
Microorganisms 2021, 9(11), 2353; https://doi.org/10.3390/microorganisms9112353 - 14 Nov 2021
Cited by 11 | Viewed by 3573
Abstract
Sourdough is a fermentation culture which is formed following metabolic activities of a multiple bacterial and fungal species on raw dough. However, little is known about the mechanism of interaction among different species involved in fermentation. In this study, Lactiplantibacillus plantarum Sx3 and [...] Read more.
Sourdough is a fermentation culture which is formed following metabolic activities of a multiple bacterial and fungal species on raw dough. However, little is known about the mechanism of interaction among different species involved in fermentation. In this study, Lactiplantibacillus plantarum Sx3 and Saccharomyces cerevisiae Sq7 were selected. Protein changes in sourdough, fermented with single culture (either Sx3 or Sq7) and mixed culture (both Sx3 and Sq7), were evaluated by proteomics. The results show that carbohydrate metabolism in mixed-culture-based sourdough is the most important metabolic pathway. A greater abundance of L-lactate dehydrogenase and UDP-glucose 4-epimerase that contribute to the quality of sourdough were observed in mixed-culture-based sourdough than those produced by a single culture. Calreticulin, enolase, seryl-tRNA synthetase, ribosomal protein L23, ribosomal protein L16, and ribosomal protein L5 that are needed for the stability of proteins were increased in mixed-culture-based sourdough. The abundance of some compounds which play an important role in enhancing the nutritional characteristics and flavour of sourdough (citrate synthase, aldehyde dehydrogenase, pyruvate decarboxylase, pyruvate dehydrogenase E1 and acetyl-CoA) was decreased. In summary, this approach provided new insights into the interaction between L. plantarum and S. cerevisiae in sourdough, which may serve as a base for further research into the detailed mechanism. Full article
(This article belongs to the Special Issue Microorganisms and Fermented Foods)
Show Figures

Figure 1

11 pages, 3626 KiB  
Article
Study of the Differentially Expressed Genes in the Pomacea canaliculata Transcriptome after Treatment with Pedunsaponin A
by Chunping Yang, Tianxing Lv, Yangyang Zhang, Bin Wang, Xiaomin Zhao, Min Zhang, Guoshu Gong, Xiaoli Chang, Guizhou Yue, Xiaoyan Qiu, Liya Luo and Huabao Chen
Metabolites 2019, 9(11), 268; https://doi.org/10.3390/metabo9110268 - 6 Nov 2019
Cited by 3 | Viewed by 2896
Abstract
Transcriptomes, genomes, and proteomes have played important roles in the search for drug targets. To determine the molluscicidal mechanism of pedunsaponin A against Pomacea canaliculata, RNA-seq technology was adopted to analyze the differentially expressed genes (DEGs) in the P. canaliculata transcriptome after [...] Read more.
Transcriptomes, genomes, and proteomes have played important roles in the search for drug targets. To determine the molluscicidal mechanism of pedunsaponin A against Pomacea canaliculata, RNA-seq technology was adopted to analyze the differentially expressed genes (DEGs) in the P. canaliculata transcriptome after treatment with pedunsaponin A. As a result, 533 DEGs were identified, among which 255 genes were significantly upregulated and 278 genes were significantly downregulated. According to the analysis of Gene Ontology (GO) functions, we found that the DEGs were significantly enriched in the viral life cycle, UDP-glucose 4-epimerase activity, guanylate cyclase activity, the cyclic guanosine monophosphate (cGMP) biosynthetic process, and the cGMP metabolic process. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway results showed that the DEGs were mainly involved in the hedgehog signaling pathway, phagosome, cytosolic DNA-sensing pathway, retinoic acid-inducible gene I like (RIG-I-like) receptor signaling pathway, bacterial secretion system, and nuclear factor-kappa B (NF-kappa B) signaling pathway. The above results indicated that pedunsaponin A causes a metabolic disorder, anomalous opening of membrane ion channels, and an imbalance in osmotic pressure between the interior and exterior of cells, eventually resulting in the death of cells involved in immune defense and influencing the immune response of P. canaliculata. Full article
Show Figures

Graphical abstract

14 pages, 2161 KiB  
Article
Capsular Polysaccharide Is a Receptor of a Clostridium perfringens Bacteriophage CPS1
by Eunsu Ha, Jihwan Chun, Minsik Kim and Sangryeol Ryu
Viruses 2019, 11(11), 1002; https://doi.org/10.3390/v11111002 - 31 Oct 2019
Cited by 20 | Viewed by 4487
Abstract
Clostridium perfringens is a Gram-positive, anaerobic, and spore forming bacterium that is widely distributed in the environment and one of the most common causes of foodborne illnesses. Bacteriophages are regarded as one of the most promising alternatives to antibiotics in controlling antibiotic-resistant pathogenic [...] Read more.
Clostridium perfringens is a Gram-positive, anaerobic, and spore forming bacterium that is widely distributed in the environment and one of the most common causes of foodborne illnesses. Bacteriophages are regarded as one of the most promising alternatives to antibiotics in controlling antibiotic-resistant pathogenic bacteria. Here we isolated a virulent C. perfringens phage, CPS1, and analysis of its whole genome and morphology revealed a small genome (19 kbps) and a short noncontractile tail, suggesting that CPS1 can be classified as a member of Picovirinae, a subfamily of Podoviridae. To determine the host receptor of CPS1, the EZ-Tn5 random transposon mutant library of C. perfringens ATCC 13124 was constructed and screened for resistance to CPS1 infection. Analysis of the CPS1-resistant mutants revealed that the CPF_0486 was disrupted by Tn5. The CPF_0486 was annotated as galE, a gene encoding UDP-glucose 4-epimerase (GalE). However, biochemical analyses demonstrated that the encoded protein possessed dual activities of GalE and UDP-N-acetylglucosamine 4-epimerase (Gne). We found that the CPF_0486::Tn5 mutant produced a reduced amount of capsular polysaccharides (CPS) compared with the wild type. We also discovered that glucosamine and galactosamine could competitively inhibit host adsorption of CPS1. These results suggest that CPS acts as a receptor for this phage. Full article
(This article belongs to the Section Bacterial Viruses)
Show Figures

Figure 1

11 pages, 1713 KiB  
Article
UDP-Glucose 4-Epimerase and β-1,4-Galactosyltransferase from the Oyster Magallana gigas as Valuable Biocatalysts for the Production of Galactosylated Products
by Hui-Bo Song, Meng He, Zhi-Peng Cai, Kun Huang, Sabine L. Flitsch, Li Liu and Josef Voglmeir
Int. J. Mol. Sci. 2018, 19(6), 1600; https://doi.org/10.3390/ijms19061600 - 29 May 2018
Cited by 12 | Viewed by 7870
Abstract
Uridine diphosphate galactose (UDP-galactose) is a valuable building block in the enzymatic synthesis of galactose-containing glycoconjugates. UDP-glucose 4-epimerase (UGE) is an enzyme which catalyzes the reversible conversion of abundantly available UDP-glucose to UDP-galactose. Herein, we described the cloning, expression, purification, and biochemical characterization [...] Read more.
Uridine diphosphate galactose (UDP-galactose) is a valuable building block in the enzymatic synthesis of galactose-containing glycoconjugates. UDP-glucose 4-epimerase (UGE) is an enzyme which catalyzes the reversible conversion of abundantly available UDP-glucose to UDP-galactose. Herein, we described the cloning, expression, purification, and biochemical characterization of an unstudied UGE from the oyster Magallana gigas (MgUGE). Activity tests of recombinantly expressed MgUGE, using HPLC (high-performance liquid chromatography), mass spectrometry, and photometric assays, showed an optimal temperature of 16 °C, and reasonable thermal stability up to 37 °C. No metal ions were required for enzymatic activity. The simple nickel-affinity-purification procedure makes MgUGE a valuable biocatalyst for the synthesis of UDP-galactose from UDP-glucose. The biosynthetic potential of MgUGE was further exemplified in a coupled enzymatic reaction with an oyster-derived β-1,4-galactosyltransferase (MgGalT7), allowing the galactosylation of the model substrate para-nitrophenol xylose (pNP-xylose) using UDP-glucose as the starting material. Full article
(This article belongs to the Special Issue Molecular Transformations of Natural Products)
Show Figures

Graphical abstract

17 pages, 5355 KiB  
Article
De Novo Assembly and Analysis of Polygonatum sibiricum Transcriptome and Identification of Genes Involved in Polysaccharide Biosynthesis
by Shiqiang Wang, Bin Wang, Wenping Hua, Junfeng Niu, Kaikai Dang, Yi Qiang and Zhezhi Wang
Int. J. Mol. Sci. 2017, 18(9), 1950; https://doi.org/10.3390/ijms18091950 - 12 Sep 2017
Cited by 57 | Viewed by 6100
Abstract
Polygonatum sibiricum polysaccharides (PSPs) are used to improve immunity, alleviate dryness, promote the secretion of fluids, and quench thirst. However, the PSP biosynthetic pathway is largely unknown. Understanding the genetic background will help delineate that pathway at the molecular level so that researchers [...] Read more.
Polygonatum sibiricum polysaccharides (PSPs) are used to improve immunity, alleviate dryness, promote the secretion of fluids, and quench thirst. However, the PSP biosynthetic pathway is largely unknown. Understanding the genetic background will help delineate that pathway at the molecular level so that researchers can develop better conservation strategies. After comparing the PSP contents among several different P. sibiricum germplasms, we selected two groups with the largest contrasts in contents and subjected them to HiSeq2500 transcriptome sequencing to identify the candidate genes involved in PSP biosynthesis. In all, 20 kinds of enzyme-encoding genes were related to PSP biosynthesis. The polysaccharide content was positively correlated with the expression patterns of β-fructofuranosidase (sacA), fructokinase (scrK), UDP-glucose 4-epimerase (GALE), Mannose-1-phosphate guanylyltransferase (GMPP), and UDP-glucose 6-dehydrogenase (UGDH), but negatively correlated with the expression of Hexokinase (HK). Through qRT-PCR validation and comprehensive analysis, we determined that sacA, HK, and GMPP are key genes for enzymes within the PSP metabolic pathway in P. sibiricum. Our results provide a public transcriptome dataset for this species and an outline of pathways for the production of polysaccharides in medicinal plants. They also present more information about the PSP biosynthesis pathway at the molecular level in P. sibiricum and lay the foundation for subsequent research of gene functions. Full article
(This article belongs to the Special Issue Molecular Recognition of Carbohydrates)
Show Figures

Graphical abstract

Back to TopTop