Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = Tyrosine kinase A receptor (TRKA)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1418 KiB  
Communication
Cellular Receptor Tyrosine Kinase Signaling Plays Important Roles in SARS-CoV-2 Infection
by Shania Sanchez, Brigitte H. Flannery, Hannah Murphy, Qinfeng Huang, Hinh Ly and Yuying Liang
Pathogens 2025, 14(4), 333; https://doi.org/10.3390/pathogens14040333 - 31 Mar 2025
Cited by 1 | Viewed by 1871
Abstract
Current antiviral treatments often target specific viral components, which can lead to the rapid emergence of drug-resistant mutants. Targeting host signaling pathways, including their associated cellular factors, that are important for virus replication is a novel approach toward the development of next-generation antivirals [...] Read more.
Current antiviral treatments often target specific viral components, which can lead to the rapid emergence of drug-resistant mutants. Targeting host signaling pathways, including their associated cellular factors, that are important for virus replication is a novel approach toward the development of next-generation antivirals to overcome drug resistance. Various cellular receptor tyrosine kinases (RTKs) have previously been shown to play important roles in mediating viral replication including coronaviruses. In this study, we examined the roles of RTKs in SARS-CoV-2 replication in two cell lines, A549-ACE2 (human lung epithelial cells) and Vero-E6 (African Green Monkey kidney cell), via chemical inhibitors. We showed that the HER2 inhibitor Lapatinib significantly reduced viral replication in both cell lines, the TrkA inhibitor GW441756 was effective only in A549-ACE2 cells, while the EGFR inhibitor Gefitinib had little effect in either cell line. Lapatinib and GW441756 exhibited a high therapeutic index (CC50/EC50 > 10) in A549-ACE2 cells. Time-of-addition experiments indicated that Lapatinib may inhibit the early entry step, whereas GW441756 can affect post-entry steps of the viral life cycle. These findings suggest the important roles of HER2 and TrkA signaling in SARS-CoV-2 infection in human lung epithelial cells and support further investigation of RTK inhibitors as potential COVID-19 treatments. Full article
(This article belongs to the Section Viral Pathogens)
Show Figures

Figure 1

23 pages, 6915 KiB  
Review
Pyrazolo[1,5-a]pyrimidine as a Prominent Framework for Tropomyosin Receptor Kinase (Trk) Inhibitors—Synthetic Strategies and SAR Insights
by Amol T. Mahajan, Shivani, Ashok Kumar Datusalia, Carmine Coluccini, Paolo Coghi and Sandeep Chaudhary
Molecules 2024, 29(15), 3560; https://doi.org/10.3390/molecules29153560 - 29 Jul 2024
Cited by 2 | Viewed by 3775
Abstract
Tropomyosin receptor kinases (Trks) are transmembrane receptor tyrosine kinases named TrkA, TrkB, and TrkC and encoded by the NTRK1, NTRK2, and NTRK3 genes, respectively. These kinases have attracted significant attention and represent a promising therapeutic target for solid tumor treatment due to their [...] Read more.
Tropomyosin receptor kinases (Trks) are transmembrane receptor tyrosine kinases named TrkA, TrkB, and TrkC and encoded by the NTRK1, NTRK2, and NTRK3 genes, respectively. These kinases have attracted significant attention and represent a promising therapeutic target for solid tumor treatment due to their vital role in cellular signaling pathways. First-generation TRK inhibitors, i.e., Larotrectinib sulfate and Entrectinib, received clinical approval in 2018 and 2019, respectively. However, the use of these inhibitors was significantly limited because of the development of resistance due to mutations. Fortunately, the second-generation Trk inhibitor Repotrectinib (TPX-0005) was approved by the FDA in November 2023, while Selitrectinib (Loxo-195) has provided an effective solution to this issue. Another macrocycle-based analog, along with many other TRK inhibitors, is currently in clinical trials. Two of the three marketed drugs for NTRK fusion cancers feature a pyrazolo[1,5-a] pyrimidine nucleus, prompting medicinal chemists to develop numerous novel pyrazolopyrimidine-based molecules to enhance clinical applications. This article focuses on a comprehensive review of chronological synthetic developments and the structure–activity relationships (SAR) of pyrazolo[1,5-a]pyrimidine derivatives as Trk inhibitors. This article will also provide comprehensive knowledge and future directions to the researchers working in the field of medicinal chemistry by facilitating the structural modification of pyrazolo [1,5-a]pyrimidine derivatives to synthesize more effective novel chemotherapeutics as TRK inhibitors. Full article
Show Figures

Figure 1

35 pages, 14402 KiB  
Article
Molecular Characterization and Inhibition of a Novel Stress-Induced Mitochondrial Protecting Role for Misfolded TrkAIII in Human SH-SY5Y Neuroblastoma Cells
by Lucia Cappabianca, Marianna Ruggieri, Michela Sebastiano, Maddalena Sbaffone, Ilaria Martelli, Pierdomenico Ruggeri, Monica Di Padova, Antonietta Rosella Farina and Andrew Reay Mackay
Int. J. Mol. Sci. 2024, 25(10), 5475; https://doi.org/10.3390/ijms25105475 - 17 May 2024
Cited by 2 | Viewed by 2269
Abstract
Pediatric neuroblastomas (NBs) are heterogeneous, aggressive, therapy-resistant embryonal tumors that originate from cells of neural crest origin committed to the sympathoadrenal progenitor cell lineage. Stress- and drug-resistance mechanisms drive post-therapeutic relapse and metastatic progression, the characterization and inhibition of which are major goals [...] Read more.
Pediatric neuroblastomas (NBs) are heterogeneous, aggressive, therapy-resistant embryonal tumors that originate from cells of neural crest origin committed to the sympathoadrenal progenitor cell lineage. Stress- and drug-resistance mechanisms drive post-therapeutic relapse and metastatic progression, the characterization and inhibition of which are major goals in improving therapeutic responses. Stress- and drug-resistance mechanisms in NBs include alternative TrkAIII splicing of the neurotrophin receptor tropomyosin-related kinase A (NTRK1/TrkA), which correlates with post-therapeutic relapse and advanced-stage metastatic disease. The TrkAIII receptor variant exerts oncogenic activity in NB models by mechanisms that include stress-induced mitochondrial importation and activation. In this study, we characterize novel targetable and non-targetable participants in this pro-survival mechanism in TrkAIII-expressing SH-SY5Y NB cells, using dithiothreitol (DTT) as an activator and a variety of inhibitors by regular and immunoprecipitation Western blotting of purified mitochondria and IncuCyte cytotoxicity assays. We report that stress-induced TrkAIII misfolding initiates this mechanism, resulting in Grp78, Ca2+-calmodulin, adenosine ribosylating factor (Arf) and Hsp90-regulated mitochondrial importation. TrkAIII imported into inner mitochondrial membranes is cleaved by Omi/high temperature requirement protein A2 (HtrA2) then activated by a mechanism dependent upon calmodulin kinase II (CaMKII), alpha serine/threonine kinase (Akt), mitochondrial Ca2+ uniporter and reactive oxygen species (ROS), involving inhibitory mitochondrial protein tyrosine phosphatase (PTPase) oxidation, resulting in phosphoinositide 3 kinase (PI3K) activation of mitochondrial Akt, which enhances stress resistance. This novel pro-survival function for misfolded TrkAIII mitigates the cytotoxicity of mitochondrial Ca2+ homeostasis disrupted during integrated stress responses, and is prevented by clinically approved Trk and Akt inhibitors and also by inhibitors of 78kDa glucose regulated protein (Grp78), heat shock protein 90 (Hsp90), Ca2+-calmodulin and PI3K. This identifies Grp78, Ca2+-calmodulin, Hsp90, PI3K and Akt as novel targetable participants in this mechanism, in addition to TrkAIII, the inhibition of which has the potential to enhance the stress-induced elimination of TrkAIII-expressing NB cells, with the potential to improve therapeutic outcomes in NBs that exhibit TrkAIII expression and activation. Full article
(This article belongs to the Special Issue Research Progress in Molecular and Cellular Therapy of Cancer)
Show Figures

Figure 1

20 pages, 7288 KiB  
Article
Neurotrophins and Trk Neurotrophin Receptors in the Retina of Adult Killifish (Nothobranchius guentheri)
by Caterina Porcino, Kamel Mhalhel, Marilena Briglia, Marzio Cometa, Maria Cristina Guerrera, Patrizia Germana Germanà, Giuseppe Montalbano, Maria Levanti, Rosaria Laurà, Francesco Abbate, Antonino Germanà and Marialuisa Aragona
Int. J. Mol. Sci. 2024, 25(5), 2732; https://doi.org/10.3390/ijms25052732 - 27 Feb 2024
Cited by 2 | Viewed by 1967
Abstract
Specific subpopulations of neurons in nerve and sensory systems must be developed and maintained, and this is accomplished in significant part by neurotrophins (NTs) and the signaling receptors on which they act, called tyrosine protein kinase receptors (Trks). The neurotrophins–tyrosine protein kinase receptors [...] Read more.
Specific subpopulations of neurons in nerve and sensory systems must be developed and maintained, and this is accomplished in significant part by neurotrophins (NTs) and the signaling receptors on which they act, called tyrosine protein kinase receptors (Trks). The neurotrophins–tyrosine protein kinase receptors (NTs/Trks) system is involved in sensory organ regulation, including the visual system. An NTs/Trks system alteration is associated with neurodegeneration related to aging and diseases, including retinal pathologies. An emergent model in the field of translational medicine, for instance, in aging study, is the annual killifish belonging to the Nothobranchius genus, thanks to its short lifespan. Members of this genus, such as Nothobranchius guentheri, and humans share a similar retinal stratigraphy. Nevertheless, according to the authors’ knowledge, the occurrence and distribution of the NTs/Trks system in the retina of N. guentheri has never been investigated before. Therefore, the present study aimed to localize neurotrophin BDNF, NGF, and NT-3 and TrkA, TrkB, and TrkC receptors in the N. guentheri retina using the immunofluorescence method. The present investigation demonstrates, for the first time, the occurrence of the NTs/Trks system in N. guentheri retina and, consequently, the potential key role of these proteins in the biology and survival of the retinal cells. Full article
(This article belongs to the Collection Feature Papers in Molecular Neurobiology)
Show Figures

Figure 1

15 pages, 4410 KiB  
Article
A Vicious NGF-p75NTR Positive Feedback Loop Exacerbates the Toxic Effects of Oxidative Damage in the Human Retinal Epithelial Cell Line ARPE-19
by Giuseppe Tringali, Michela Pizzoferrato, Lucia Lisi, Silvia Marinelli, Lucia Buccarello, Benedetto Falsini, Antonino Cattaneo and Pierluigi Navarra
Int. J. Mol. Sci. 2023, 24(22), 16237; https://doi.org/10.3390/ijms242216237 - 12 Nov 2023
Cited by 2 | Viewed by 1533
Abstract
In spite of its variety of biological activities, the clinical exploitation of human NGF (hNGF) is currently limited to ocular pathologies. It is therefore interesting to test the effects of hNGF in preclinical models that may predict their efficacy and safety in the [...] Read more.
In spite of its variety of biological activities, the clinical exploitation of human NGF (hNGF) is currently limited to ocular pathologies. It is therefore interesting to test the effects of hNGF in preclinical models that may predict their efficacy and safety in the clinical setting of ocular disorders and compare the effects of hNGF with those of its analogs. We used a human retinal pigment cell line, ARPE-19 cells, to investigate the effects of hNGF and its analogs, mouse NGF (mNGF) and painless NGF (pNGF), on cell viability under basal conditions and after exposure to oxidative stimuli, i.e., hydrogen peroxide (H2O2) and ultraviolet (UV)-A rays. The effects of hNGF and pNGF were also tested on the gene expression and protein synthesis of the two NGF receptor subtypes, p75 neurotrophic receptors (p75NTR) and tyrosine kinase A (TrkA) receptors. We drew the following conclusions: (i) the exposure of ARPE-19 cells to H2O2 or UV-A causes a dose-dependent decrease in the number of viable cells; (ii) under baseline conditions, hNGF, but not pNGF, causes a concentration-dependent decrease in cell viability in the range of doses 1–100 ng/mL; (iii) hNGF, but not pNGF, significantly potentiates the toxic effects of H2O2 or of UV-A on ARPE-19 cells in the range of doses 1–100 ng/mL, while mNGF at the same doses presents an intermediate behavior; (iv) 100 ng/mL of hNGF triggers an increase in p75NTR expression in H2O2-treated ARPE-19 cells, while pNGF at the same dose does not; (v) pNGF, but not hNGF (both given at 100 ng/mL), increases the total cell fluorescence intensity for TrkA receptors in H2O2-treated ARPE-19 cells. The present findings suggest a vicious positive feedback loop through which NGF-mediated upregulation of p75NTR contributes to worsening the toxic effects of oxidative damage in the human retinal epithelial cell line ARPE-19. Looking at the possible clinical relevance of these findings, one can postulate that pNGF might show a better benefit/risk ratio than hNGF in the treatment of ocular disorders. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Figure 1

13 pages, 1310 KiB  
Article
Benzenesulfonamide Analogs: Synthesis, Anti-GBM Activity and Pharmacoprofiling
by Akshaya Murugesan, Saravanan Konda Mani, Ramesh Thiyagarajan, Suresh Palanivel, Atash V. Gurbanov, Fedor I. Zubkov and Meenakshisundaram Kandhavelu
Int. J. Mol. Sci. 2023, 24(15), 12276; https://doi.org/10.3390/ijms241512276 - 31 Jul 2023
Cited by 4 | Viewed by 2135
Abstract
The tropomyosin receptor kinase A (TrkA) family of receptor tyrosine kinases (RTKs) emerge as a potential target for glioblastoma (GBM) treatment. Benzenesulfonamide analogs were identified as kinase inhibitors possessing promising anticancer properties. In the present work, four known and two novel benzenesulfonamide derivatives [...] Read more.
The tropomyosin receptor kinase A (TrkA) family of receptor tyrosine kinases (RTKs) emerge as a potential target for glioblastoma (GBM) treatment. Benzenesulfonamide analogs were identified as kinase inhibitors possessing promising anticancer properties. In the present work, four known and two novel benzenesulfonamide derivatives were synthesized, and their inhibitory activities in TrkA overexpressing cells, U87 and MEF cells were investigated. The cytotoxic effect of benzenesulfonamide derivatives and cisplatin was determined using trypan blue exclusion assays. The mode of interaction of benzenesulfonamides with TrkA was predicted by docking and structural analysis. ADMET profiling was also performed for all compounds to calculate the drug likeness property. Appropriate QSAR models were developed for studying structure–activity relationships. Compound 4-[2-(4,4-dimethyl-2,6-dioxocyclohexylidene)hydrazinyl]-N-(5-methyl-1,3,4-thiadiazol-2-yl)benzenesulfon-amide (AL106) and 4-[2-(1,3-dioxo-1,3-dihydro-2H-inden-2-ylidene)hydrazinyl]-N-(5-methyl-1,3,4-thiadiazol-2-yl)benzenesulfonamide (AL107) showed acceptable binding energies with the active sites for human nerve growth factor receptor, TrkA. Here, AL106 was identified as a potential anti-GBM compound, with an IC50 value of 58.6 µM with a less toxic effect in non-cancerous cells than the known chemotherapeutic agent, cisplatin. In silico analysis indicated that AL106 formed prominent stabilizing hydrophobic interactions with Tyr359, Ser371, Ile374 and charged interactions with Gln369 of TrkA. Furthermore, in silico analysis of all benzenesulfonamide derivatives revealed that AL106 has good pharmacokinetics properties, drug likeness and toxicity profiles, suggesting the compound may be suitable for clinical trial. Thus, benzenesulfonamide analog, AL106 could potentially induce GBM cell death through its interaction with TrkA and might be an attractive strategy for developing a drug targeted therapy to treat glioblastoma. Full article
(This article belongs to the Special Issue New Agents and Novel Drugs Use for the Oncological Diseases Treatment)
Show Figures

Graphical abstract

32 pages, 3206 KiB  
Article
Automatic Text-Mining Approach to Identify Molecular Target Candidates Associated with Metabolic Processes for Myotonic Dystrophy Type 1
by Dhvani H. Kuntawala, Filipa Martins, Rui Vitorino and Sandra Rebelo
Int. J. Environ. Res. Public Health 2023, 20(3), 2283; https://doi.org/10.3390/ijerph20032283 - 27 Jan 2023
Cited by 2 | Viewed by 3077
Abstract
Myotonic dystrophy type 1 (DM1) is an autosomal dominant hereditary disease caused by abnormal expansion of unstable CTG repeats in the 3′ untranslated region of the myotonic dystrophy protein kinase (DMPK) gene. This disease mainly affects skeletal muscle, resulting in myotonia, [...] Read more.
Myotonic dystrophy type 1 (DM1) is an autosomal dominant hereditary disease caused by abnormal expansion of unstable CTG repeats in the 3′ untranslated region of the myotonic dystrophy protein kinase (DMPK) gene. This disease mainly affects skeletal muscle, resulting in myotonia, progressive distal muscle weakness, and atrophy, but also affects other tissues and systems, such as the heart and central nervous system. Despite some studies reporting therapeutic strategies for DM1, many issues remain unsolved, such as the contribution of metabolic and mitochondrial dysfunctions to DM1 pathogenesis. Therefore, it is crucial to identify molecular target candidates associated with metabolic processes for DM1. In this study, resorting to a bibliometric analysis, articles combining DM1, and metabolic/metabolism terms were identified and further analyzed using an unbiased strategy of automatic text mining with VOSviewer software. A list of candidate molecular targets for DM1 associated with metabolic/metabolism was generated and compared with genes previously associated with DM1 in the DisGeNET database. Furthermore, g:Profiler was used to perform a functional enrichment analysis using the Gene Ontology (GO) and REAC databases. Enriched signaling pathways were identified using integrated bioinformatics enrichment analyses. The results revealed that only 15 of the genes identified in the bibliometric analysis were previously associated with DM1 in the DisGeNET database. Of note, we identified 71 genes not previously associated with DM1, which are of particular interest and should be further explored. The functional enrichment analysis of these genes revealed that regulation of cellular metabolic and metabolic processes were the most associated biological processes. Additionally, a number of signaling pathways were found to be enriched, e.g., signaling by receptor tyrosine kinases, signaling by NRTK1 (TRKA), TRKA activation by NGF, PI3K-AKT activation, prolonged ERK activation events, and axon guidance. Overall, several valuable target candidates related to metabolic processes for DM1 were identified, such as NGF, NTRK1, RhoA, ROCK1, ROCK2, DAG, ACTA, ID1, ID2 MYOD, and MYOG. Therefore, our study strengthens the hypothesis that metabolic dysfunctions contribute to DM1 pathogenesis, and the exploitation of metabolic dysfunction targets is crucial for the development of future therapeutic interventions for DM1. Full article
Show Figures

Figure 1

14 pages, 303 KiB  
Review
Adenocarcinomas of the Lung and Neurotrophin System: A Review
by Alberto Ricci, Claudia Salvucci, Silvia Castelli, Antonella Carraturo, Claudia de Vitis and Michela D’Ascanio
Biomedicines 2022, 10(10), 2531; https://doi.org/10.3390/biomedicines10102531 - 10 Oct 2022
Cited by 9 | Viewed by 2711
Abstract
Neurotrophins (NTs) represent a group of growth factors with pleiotropic activities at the central nervous system level. The prototype of these molecules is represented by the nerve growth factor (NGF), but other factors with similar functions have been identified, including the brain derived-growth [...] Read more.
Neurotrophins (NTs) represent a group of growth factors with pleiotropic activities at the central nervous system level. The prototype of these molecules is represented by the nerve growth factor (NGF), but other factors with similar functions have been identified, including the brain derived-growth factor (BDNF), the neurotrophin 3 (NT-3), and NT-4/5. These growth factors act by binding specific low (p75) and high-affinity tyrosine kinase (TrkA, TrkB, and TrkC) receptors. More recently, these growth factors have shown effects outside the nervous system in different organs, particularly in the lungs. These molecules are involved in the natural development of the lungs, and their homeostasis. However, they are also important in different pathological conditions, including lung cancer. The involvement of neurotrophins in lung cancer has been detailed most for non-small cell lung cancer (NSCLC), in particular adenocarcinoma. This review aimed to extensively analyze the current knowledge of NTs and lung cancer and clarify novel molecular mechanisms for diagnostic and therapeutic purposes. Several clinical trials on humans are ongoing using NT receptor antagonists in different cancer cell types for further therapeutic applications. The pharmacological intervention against NT signaling may be essential to directly counteract cancer cell biology, and also indirectly modulate it in an inhibitory way by affecting neurogenesis and/or angiogenesis with potential impacts on tumor growth and progression. Full article
23 pages, 9682 KiB  
Article
Doxorubicin-Induced TrkAIII Activation: A Selection Mechanism for Resistant Dormant Neuroblastoma Cells
by Lucia Cappabianca, Michela Sebastiano, Marianna Ruggieri, Maddalena Sbaffone, Veronica Zelli, Antonietta Rosella Farina and Andrew Reay Mackay
Int. J. Mol. Sci. 2022, 23(18), 10895; https://doi.org/10.3390/ijms231810895 - 17 Sep 2022
Cited by 4 | Viewed by 2669
Abstract
Patients with advanced neuroblastoma (NB) receive multimodal clinical therapy, including the potent anthracycline chemotherapy drug doxorubicin (Dox). The acquisition of Dox resistance, however, is a major barrier to a sustained response and leads to a poor prognosis in advanced disease states, reinforcing the [...] Read more.
Patients with advanced neuroblastoma (NB) receive multimodal clinical therapy, including the potent anthracycline chemotherapy drug doxorubicin (Dox). The acquisition of Dox resistance, however, is a major barrier to a sustained response and leads to a poor prognosis in advanced disease states, reinforcing the need to identify and inhibit Dox resistance mechanisms. In this context, we report on the identification and inhibition of a novel Dox resistance mechanism. This mechanism is characterized by the Dox-induced activation of the oncogenic TrkAIII alternative splice variant, resulting in increased Dox resistance, and is blocked by lestaurtinib, entrectinib, and crizotinib tyrosine kinase and LY294002 IP3-K inhibitors. Using time lapse live cell imaging, conventional and co-immunoprecipitation Western blots, RT-PCR, and inhibitor studies, we report that the Dox-induced TrkAIII activation correlates with proliferation inhibition and is CDK1- and Ca2+-uniporter-independent. It is mediated by ryanodine receptors; involves Ca2+-dependent interactions between TrkAIII, calmodulin and Hsp90; requires oxygen and oxidation; occurs within assembled ERGICs; and does not occur with fully spliced TrkA. The inhibitory effects of lestaurtinib, entrectinib, crizotinib, and LY294002 on the Dox-induced TrkAIII and Akt phosphorylation and resistance confirm roles for TrkAIII and IP3-K consistent with Dox-induced, TrkAIII-mediated pro-survival IP3K/Akt signaling. This mechanism has the potential to select resistant dormant TrkAIII-expressing NB cells, supporting the use of Trk inhibitors during Dox therapy in TrkAIII-expressing NBs. Full article
(This article belongs to the Special Issue Neuroblastoma Molecular Biology and Therapeutics 2.0)
Show Figures

Figure 1

15 pages, 8433 KiB  
Article
Expression of NGF/proNGF and Their Receptors TrkA, p75NTR and Sortilin in Melanoma
by Mark Marsland, Amiee Dowdell, Chen Chen Jiang, James S. Wilmott, Richard A. Scolyer, Xu Dong Zhang, Hubert Hondermarck and Sam Faulkner
Int. J. Mol. Sci. 2022, 23(8), 4260; https://doi.org/10.3390/ijms23084260 - 12 Apr 2022
Cited by 15 | Viewed by 3882
Abstract
There is increasing evidence that nerve growth factor (NGF) and its receptors, the neurotrophic receptor tyrosine kinase 1 (NTRK1/TrkA), the common neurotrophin receptor (NGFR/p75NTR) and the membrane receptor sortilin, participate in cancer growth. In melanoma, there have been some reports suggesting [...] Read more.
There is increasing evidence that nerve growth factor (NGF) and its receptors, the neurotrophic receptor tyrosine kinase 1 (NTRK1/TrkA), the common neurotrophin receptor (NGFR/p75NTR) and the membrane receptor sortilin, participate in cancer growth. In melanoma, there have been some reports suggesting that NGF, TrkA and p75NTR are dysregulated, but the expression of the NGF precursor (proNGF) and its membrane receptor sortilin is unknown. In this study, we investigated the expression of NGF, proNGF, TrkA, p75NTR and sortilin by immunohistochemistry in a series of human tissue samples (n = 100), including non-cancerous nevi (n = 20), primary melanomas (n = 40), lymph node metastases (n = 20) and distant metastases (n = 20). Immunostaining was digitally quantified and revealed NGF and proNGF were expressed in all nevi and primary melanomas, and that the level of expression decreased from primary tumors to melanoma metastases (p = 0.0179 and p < 0.0001, respectively). Interestingly, TrkA protein expression was high in nevi and thin primary tumors but was strongly downregulated in thick primary tumors (p < 0.0001) and metastases (p < 0.0001). While p75NTR and sortilin were both expressed in most nevi and melanomas, there was no significant difference in expression between them. Together, these results pointed to a downregulation of NGF/ProNGF and TrkA in melanoma, and thus did not provide evidence to support the use of anti-proNGF/NGF or anti-TrkA therapies in advanced and metastatic forms of melanoma. Full article
(This article belongs to the Special Issue Skin Cancer and Melanoma)
Show Figures

Figure 1

21 pages, 26060 KiB  
Article
Analgesic and Anti-Inflammatory Effects of the Synthetic Neurosteroid Analogue BNN27 during CFA-Induced Hyperalgesia
by Smaragda Poulaki, Olga Rassouli, George Liapakis, Achille Gravanis and Maria Venihaki
Biomedicines 2021, 9(9), 1185; https://doi.org/10.3390/biomedicines9091185 - 9 Sep 2021
Cited by 10 | Viewed by 3333
Abstract
Dehydroepiandrosterone (DHEA), an adrenal and neurosteroid hormone with strong neuroprotective and immunomodulatory properties, and ligand for all high-affinity neurotrophin tyrosine kinase receptors (Trk), also exerts important effects on hyperalgesia. Its synthetic, 17-spiro-epoxy analogue, BNN27, cannot be converted to estrogen or androgen as DHEA; [...] Read more.
Dehydroepiandrosterone (DHEA), an adrenal and neurosteroid hormone with strong neuroprotective and immunomodulatory properties, and ligand for all high-affinity neurotrophin tyrosine kinase receptors (Trk), also exerts important effects on hyperalgesia. Its synthetic, 17-spiro-epoxy analogue, BNN27, cannot be converted to estrogen or androgen as DHEA; it is a specific agonist of TrkA, the receptor of pain regulator Nerve Growth Factor (NGF), and it conserves the immunomodulatory properties of DHEA. Our study aimed to evaluate the anti-nociceptive and anti-inflammatory properties of BNN27 during Complete Freund’s Adjuvant (CFA)-induced inflammatory hyperalgesia in mice. Hyperalgesia was evaluated using the Hargreaves test. Inflammatory markers such as cytokines, NGF and opioids were measured, additionally to corticosterone and the protein kinase B (AKT) signaling pathway. We showed for the first time that treatment with BNN27 reversed hyperalgesia produced by CFA. The effect of BNN27 involved the inhibition of NGF in the dorsal root ganglia (DRG) and the increased synthesis of opioid peptides and their receptors in the inflamed paw. We also found alterations in the cytokine levels as well as in the phosphorylation of AKT2. Our findings strongly support that BNN27 represents a lead molecule for the development of analgesic and anti-inflammatory compounds with potential therapeutic applications in inflammatory hyperalgesia. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

15 pages, 4300 KiB  
Article
BmK NSPK, a Potent Potassium Channel Inhibitor from Scorpion Buthus martensii Karsch, Promotes Neurite Outgrowth via NGF/TrkA Signaling Pathway
by Fang Zhao, Xiaohan Zou, Shaoheng Li, Jing He, Chuchu Xi, Qinglian Tang, Yujing Wang and Zhengyu Cao
Toxins 2021, 13(1), 33; https://doi.org/10.3390/toxins13010033 - 5 Jan 2021
Cited by 9 | Viewed by 3555
Abstract
Scorpion toxins represent a variety of tools to explore molecular mechanisms and cellular signaling pathways of many biological functions. These toxins are also promising lead compounds for developing treatments for many neurological diseases. In the current study, we purified a new scorpion toxin [...] Read more.
Scorpion toxins represent a variety of tools to explore molecular mechanisms and cellular signaling pathways of many biological functions. These toxins are also promising lead compounds for developing treatments for many neurological diseases. In the current study, we purified a new scorpion toxin designated as BmK NSPK (Buthus martensii Karsch neurite-stimulating peptide targeting Kv channels) from the BmK venom. The primary structure was determined using Edman degradation. BmK NSPK directly inhibited outward K+ current without affecting sodium channel activities, depolarized membrane, and increased spontaneous calcium oscillation in spinal cord neurons (SCNs) at low nanomolar concentrations. BmK NSPK produced a nonmonotonic increase on the neurite extension that peaked at ~10 nM. Mechanistic studies demonstrated that BmK NSPK increased the release of nerve growth factor (NGF). The tyrosine kinases A (TrkA) receptor inhibitor, GW 441756, eliminated the BmK NSPK-induced neurite outgrowth. BmK NSPK also increased phosphorylation levels of protein kinase B (Akt) that is the downstream regulator of TrkA receptors. These data demonstrate that BmK NSPK is a new voltage-gated potassium (Kv) channel inhibitor that augments neurite extension via NGF/TrkA signaling pathway. Kv channels may represent molecular targets to modulate SCN development and regeneration and to develop the treatments for spinal cord injury. Full article
(This article belongs to the Special Issue Animal Venoms and Their Components: Molecular Mechanisms of Action)
Show Figures

Graphical abstract

13 pages, 2608 KiB  
Article
The Receptor Tyrosine Kinase TrkA Is Increased and Targetable in HER2-Positive Breast Cancer
by Nathan Griffin, Mark Marsland, Severine Roselli, Christopher Oldmeadow, John Attia, Marjorie M. Walker, Hubert Hondermarck and Sam Faulkner
Biomolecules 2020, 10(9), 1329; https://doi.org/10.3390/biom10091329 - 17 Sep 2020
Cited by 18 | Viewed by 4115
Abstract
The tyrosine kinase receptor A (NTRK1/TrkA) is increasingly regarded as a therapeutic target in oncology. In breast cancer, TrkA contributes to metastasis but the clinicopathological significance remains unclear. In this study, TrkA expression was assessed via immunohistochemistry of 158 invasive ductal carcinomas (IDC), [...] Read more.
The tyrosine kinase receptor A (NTRK1/TrkA) is increasingly regarded as a therapeutic target in oncology. In breast cancer, TrkA contributes to metastasis but the clinicopathological significance remains unclear. In this study, TrkA expression was assessed via immunohistochemistry of 158 invasive ductal carcinomas (IDC), 158 invasive lobular carcinomas (ILC) and 50 ductal carcinomas in situ (DCIS). TrkA was expressed in cancer epithelial and myoepithelial cells, with higher levels of TrkA positively associated with IDC (39% of cases) (p < 0.0001). Interestingly, TrkA was significantly increased in tumours expressing the human epidermal growth factor receptor-2 (HER2), with expression in 49% of HER2-positive compared to 25% of HER2-negative tumours (p = 0.0027). A panel of breast cancer cells were used to confirm TrkA protein expression, demonstrating higher levels of TrkA (total and phosphorylated) in HER2-positive cell lines. Functional investigations using four different HER2-positive breast cancer cell lines indicated that the Trk tyrosine kinase inhibitor GNF-5837 reduced cell viability, through decreased phospho-TrkA (Tyr490) and downstream AKT (Ser473) activation, but did not display synergy with Herceptin. Overall, these data highlight a relationship between the tyrosine kinase receptors TrkA and HER2 and suggest the potential of TrkA as a novel or adjunct target for HER2-positive breast tumours. Full article
(This article belongs to the Special Issue Protein Phosphorylation in Cancer: Unraveling the Signaling Pathways)
Show Figures

Figure 1

14 pages, 2965 KiB  
Article
Neuroprotection by Neurotropin through Crosstalk of Neurotrophic and Innate Immune Receptors in PC12 Cells
by Yu Fukuda, Kazuki Nakajima and Tatsuro Mutoh
Int. J. Mol. Sci. 2020, 21(18), 6456; https://doi.org/10.3390/ijms21186456 - 4 Sep 2020
Cited by 9 | Viewed by 3886
Abstract
Infected or damaged tissues release multiple “alert” molecules such as alarmins and damage-associated molecular patterns (DAMPs) that are recognized by innate immune receptors, and induce tissue inflammation, regeneration, and repair. Recently, an extract from inflamed rabbit skin inoculated with vaccinia virus (Neurotropin® [...] Read more.
Infected or damaged tissues release multiple “alert” molecules such as alarmins and damage-associated molecular patterns (DAMPs) that are recognized by innate immune receptors, and induce tissue inflammation, regeneration, and repair. Recently, an extract from inflamed rabbit skin inoculated with vaccinia virus (Neurotropin®, NTP) was found to induce infarct tolerance in mice receiving permanent ischemic attack to the middle cerebral artery. Likewise, we report herein that NTP prevented the neurite retraction in PC12 cells by nerve growth factor (NGF) deprivation. This effect was accompanied by interaction of Fyn with high-affinity NGF receptor TrkA. Sucrose density gradient subcellular fractionation of NTP-treated cells showed heretofore unidentified membrane fractions with a high-buoyant density containing Trk, B subunit of cholera toxin-bound ganglioside, flotillin-1 and Fyn. Additionally, these new membrane fractions also contained Toll-like receptor 4 (TLR4). Inhibition of TLR4 function by TAK-242 prevented the formation of these unidentified membrane fractions and suppressed neuroprotection by NTP. These observations indicate that NTP controls TrkA-mediated signaling through the formation of clusters of new membrane microdomains, thus providing a platform for crosstalk between neurotrophic and innate immune receptors. Neuroprotective mechanisms through the interaction with innate immune systems may provide novel mechanism for neuroprotection. Full article
(This article belongs to the Special Issue Gangliosides: Modes of Action and Cell Fates)
Show Figures

Figure 1

24 pages, 2727 KiB  
Review
NTRK Fusions in Central Nervous System Tumors: A Rare, but Worthy Target
by Alessandro Gambella, Rebecca Senetta, Giammarco Collemi, Stefano Gabriele Vallero, Matteo Monticelli, Fabio Cofano, Pietro Zeppa, Diego Garbossa, Alessia Pellerino, Roberta Rudà, Riccardo Soffietti, Franca Fagioli, Mauro Papotti, Paola Cassoni and Luca Bertero
Int. J. Mol. Sci. 2020, 21(3), 753; https://doi.org/10.3390/ijms21030753 - 23 Jan 2020
Cited by 76 | Viewed by 9819
Abstract
The neurotrophic tropomyosin receptor kinase (NTRK) genes (NTRK1, NTRK2, and NTRK3) code for three transmembrane high-affinity tyrosine-kinase receptors for nerve growth factors (TRK-A, TRK-B, and TRK-C) which are mainly involved in nervous system development. Loss of function [...] Read more.
The neurotrophic tropomyosin receptor kinase (NTRK) genes (NTRK1, NTRK2, and NTRK3) code for three transmembrane high-affinity tyrosine-kinase receptors for nerve growth factors (TRK-A, TRK-B, and TRK-C) which are mainly involved in nervous system development. Loss of function alterations in these genes can lead to nervous system development problems; conversely, activating alterations harbor oncogenic potential, promoting cell proliferation/survival and tumorigenesis. Chromosomal rearrangements are the most clinically relevant alterations of pathological NTRK activation, leading to constitutionally active chimeric receptors. NTRK fusions have been detected with extremely variable frequencies in many pediatric and adult cancer types, including central nervous system (CNS) tumors. These alterations can be detected by different laboratory assays (e.g., immunohistochemistry, FISH, sequencing), but each of these approaches has specific advantages and limitations which must be taken into account for an appropriate use in diagnostics or research. Moreover, therapeutic targeting of this molecular marker recently showed extreme efficacy. Considering the overall lack of effective treatments for brain neoplasms, it is expected that detection of NTRK fusions will soon become a mainstay in the diagnostic assessment of CNS tumors, and thus in-depth knowledge regarding this topic is warranted. Full article
(This article belongs to the Special Issue Molecular Biology of Brain Tumors)
Show Figures

Figure 1

Back to TopTop