Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (218)

Search Parameters:
Keywords = Tropical Indian Ocean

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 10794 KB  
Article
An Adaptive Nudging Scheme with Spatially Varying Gain for Improving the Ability of Ocean Temperature Assimilation in SPEEDY-NEMO
by Yushan Wang, Fei Zheng, Changxiang Yan and Muhammad Adnan Abid
J. Mar. Sci. Eng. 2026, 14(1), 1; https://doi.org/10.3390/jmse14010001 - 19 Dec 2025
Viewed by 93
Abstract
Nudging remains a cost-effective data assimilation technique in coupled climate models, yet conventional schemes with fixed spatial strengths struggle to represent heterogeneous ocean processes. This study introduces an adaptive nudging framework in which a spatially varying gain matrix dynamically balances model and observational [...] Read more.
Nudging remains a cost-effective data assimilation technique in coupled climate models, yet conventional schemes with fixed spatial strengths struggle to represent heterogeneous ocean processes. This study introduces an adaptive nudging framework in which a spatially varying gain matrix dynamically balances model and observational errors, providing a more physically consistent determination of nudging coefficients. Implemented in the SPEEDY-NEMO coupled model, the method is systematically evaluated against a traditional latitude-dependent scheme. Results show substantial improvements in subsurface temperature assimilation across key regions, including the Niño3.4, tropical Indian Ocean, North Pacific, North Atlantic, and northeastern Pacific. The most pronounced gains occur above and within the thermocline, where strong stratification renders fixed nudging strengths inadequate, yielding a 20–30% reduction in RMSE and a 30–50% increase in correlation. In mid- to high-latitude regions, improvements extend to greater depths, consistent with deeper thermocline structures. The adaptive framework corrects both systematic bias and variance, enhancing not only the mean state but also variability representation. Additional benefits are found in salinity, currents, and sea surface height, demonstrating that spatially adaptive nudging provides a more effective and practical alternative for improving ocean state estimation in coupled models. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

18 pages, 3503 KB  
Article
Madden–Julian Oscillation Modulation of Antarctic Sea Ice
by Bradford S. Barrett, Donald M. Lafleur and Gina R. Henderson
Glacies 2025, 2(4), 16; https://doi.org/10.3390/glacies2040016 - 13 Dec 2025
Viewed by 201
Abstract
Convection associated with the leading mode of subseasonal variability of the tropical atmosphere, the Madden–Julian Oscillation (MJO), can excite Rossby wave trains that extend well into the extratropics and allow the MJO to modulate many components of the Earth system. To improve our [...] Read more.
Convection associated with the leading mode of subseasonal variability of the tropical atmosphere, the Madden–Julian Oscillation (MJO), can excite Rossby wave trains that extend well into the extratropics and allow the MJO to modulate many components of the Earth system. To improve our understanding of teleconnections between the MJO and Antarctic sea ice, composite anomalies of daily change in sea ice concentration (ΔSIC) from 1989 to 2019 were binned by phase 0–20 days after an active MJO and compared to anomalies of surface air temperature, the meridional component of surface wind, and sea-level pressure. In May, ΔSIC anomalies were strongest in the Indian Ocean (IO) sector, 16 days after phase 8. There, a wavenumber-three pattern in sea-level pressure anomalies associated with the MJO resulted in anomalously poleward winds and warmer temperatures over the central and eastern IO that were collocated with anomalously negative ΔSIC. Furthermore, anomalously equatorward winds and colder temperatures in the western IO were collocated with anomalously positive ΔSIC. In July, ΔSIC anomalies were strongest in the Weddell Sea (WS) sector nine days after an active MJO in phase 2. There, a wavenumber-three pattern in sea-level pressure anomalies resulted in anomalously poleward winds and warmer temperatures over the western and central WS that were collocated with negative ΔSIC anomalies; anomalously equatorward winds and colder temperatures over the eastern WS were collocated with positive ΔSIC anomalies. In September, the largest ΔSIC anomalies were observed in the IO and WS sectors six days after an active MJO in phase 8. No meaningful modulation of sea ice anomalies was found after an active MJO in November or January. These results extend our understanding of teleconnections between the MJO and Antarctic sea ice on the subseasonal time scale. Full article
Show Figures

Figure 1

24 pages, 9711 KB  
Article
Inter-Basin Teleconnection of the Atlantic Multidecadal Oscillation and Interdecadal Pacific Oscillation in Modulating the Decadal Variation in Winter SST in the South China Sea
by Shiqiang Yao, Mingpan Qiu, Yanyan Wang, Zhaoyun Wang, Guosheng Zhang, Wenjing Dong, Yimin Zhang and Ruili Sun
J. Mar. Sci. Eng. 2025, 13(12), 2355; https://doi.org/10.3390/jmse13122355 - 10 Dec 2025
Viewed by 240
Abstract
The South China Sea (SCS) sea surface temperature (SST) plays a crucial modulating effect on the climate of East Asia. While the interannual variability of South China Sea SST has been extensively examined, the decadal-scale linkages and underlying physical mechanisms between South China [...] Read more.
The South China Sea (SCS) sea surface temperature (SST) plays a crucial modulating effect on the climate of East Asia. While the interannual variability of South China Sea SST has been extensively examined, the decadal-scale linkages and underlying physical mechanisms between South China Sea SST and the three major ocean basins (the Atlantic, Pacific, and Indian Oceans) remain inadequately comprehended. To fill the gap, the study investigates the decadal variability of winter SST in the SCS during 1940–2023, utilizing long-term observational datasets and methods such as empirical orthogonal function decomposition, regression analysis, and teleconnections analysis. The first dominant mode of this decadal variability is characterized by basin-warming across the SCS, which is mainly driven by the Atlantic Multidecadal Oscillation (AMO, r = 0.62, p < 0.05). Specifically, the AMO imposes its remote influence on the SCS through three distinct pathways: the tropical Pacific pathway, the North Pacific pathway, and the tropical Indian Ocean pathway. These pathways collectively trigger an anomalous cyclone in the western North Pacific and SCS, and further induce basin-wide SST warming via a positive feedback that includes SST, sea level pressure, cloud cover, and longwave radiation. The second leading mode of SCS winter SST decadal variability displays a north–south dipole pattern, which is positively correlated with the Interdecadal Pacific Oscillation (IPO, r1 = 0.85, p1 < 0.05). Notably, this South China Sea SST dipole–IPO relationship weakened significantly after 1985 (r2 = 0.23, p2 < 0.05), related to the strengthening of the anomalous anticyclone over the SCS and the weakening of the anomalous cyclone over the tropical Indian Ocean. Furthermore, both the AMO and IPO influence the SST in the northern SCS by regulating wind field anomalies in the bifurcation region of the North Equatorial Current. This wind-driven modulation subsequently affects the intensity of Kuroshio intrusion into the SCS. These findings provide a novel mechanistic pathway for interpreting decadal-scale climate variability over East Asia, with implications for improving long-term climate prediction in the region. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

18 pages, 6264 KB  
Article
Predicting Chlorophyll-a in the Mauritanian–Senegalese Coastal Upwelling from Tropical Sea Surface Temperature
by Elena Calvo-Miguélez, Belén Rodríguez-Fonseca, Víctor Galván-Fraile and Iñigo Gómara
Oceans 2025, 6(4), 81; https://doi.org/10.3390/oceans6040081 - 1 Dec 2025
Viewed by 221
Abstract
The Mauritanian–Senegalese Coastal Upwelling exhibits strong interannual variability, which has been found to be driven by El Niño-Southern Oscillation (ENSO). In addition, ENSO has been shown to be triggered by the Indian Ocean and Atlantic Sea Surface Temperature (SST) variability. Nevertheless, how all [...] Read more.
The Mauritanian–Senegalese Coastal Upwelling exhibits strong interannual variability, which has been found to be driven by El Niño-Southern Oscillation (ENSO). In addition, ENSO has been shown to be triggered by the Indian Ocean and Atlantic Sea Surface Temperature (SST) variability. Nevertheless, how all these basins impact on the upwelling predictability has not been analyzed so far. Using a satellite product of surface chlorophyll-a as a proxy of marine productivity, this work makes an assessment of the predictability of the Mauritanian–Senegalese Coastal Upwelling marine ecosystem. Different statistical approaches are used to evaluate the relative contribution of the tropical basins, including the Pacific, Indian, equatorial and Tropical North Atlantic SSTs. The results indicate that although most of the upwelling variability stands for ENSO, the Atlantic contributions play an important role in shaping the seasonal prediction skill. These results may have strong implications for fisheries and marine ecosystem management in the region. Full article
Show Figures

Figure 1

17 pages, 5774 KB  
Article
Different Modes of Wave Response over the Past Four Decades: Coastal vs. Open-Ocean Regions
by Ya-Lin Liang, Zhe-Wen Zheng and Jia-Yi Lin
Atmosphere 2025, 16(12), 1345; https://doi.org/10.3390/atmos16121345 - 27 Nov 2025
Viewed by 318
Abstract
Tropical cyclone-induced waves (TCWs) are projected to intensify under global warming, with recent evidence suggesting that their growth outpaces the increase in surface winds. Yet, how TCWs differ between coastal and open-ocean environments remains poorly understood. Here, we investigate TCW characteristics during two [...] Read more.
Tropical cyclone-induced waves (TCWs) are projected to intensify under global warming, with recent evidence suggesting that their growth outpaces the increase in surface winds. Yet, how TCWs differ between coastal and open-ocean environments remains poorly understood. Here, we investigate TCW characteristics during two climatic periods (1979–2000 and 2001–2023) using a coupled analysis of buoy observations and ERA5 reanalysis. Our results reveal a striking contrast: while open-ocean TCWs exhibited a pronounced intensification of up to 19% (~74 cm) over the past four decades, coastal TCWs show only a muted increase of 26 cm (~8%). This discrepancy is primarily linked to weaker wind forcing and a contraction of effective fetch in coastal regions. On a broader scale, global wave heights (GWs) demonstrate strong temporal and regional variability. The 1979–2000 period featured widespread increases exceeding 10 cm per decade, whereas 2001–2023 displayed pronounced regional disparities, with declines in the Pacific and Indian Oceans but increases in the North Atlantic, Southern Ocean, and Arctic. Notably, the Arctic exhibits a significant rise in extreme wave heights, consistent with reduced ice cover and enhanced wind-driven fetch, highlighting critical feedback to global warming. These findings underscore the importance of distinguishing coastal from open-ocean wave responses when assessing future hazards. By revealing the divergent trajectories of TCWs and GWs under climate change, our study provides a refined framework for understanding storm-induced risks and for improving projections of wave-driven coastal impacts. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

13 pages, 5483 KB  
Article
Implications of East Pacific La Niña Events for Southern African Climate
by Mark R. Jury
Atmosphere 2025, 16(10), 1204; https://doi.org/10.3390/atmos16101204 - 17 Oct 2025
Cited by 1 | Viewed by 555
Abstract
Longitudinal shifts in the zonal dipole associated with the El Niño–Southern Oscillation (ENSO) in the tropical Pacific have implications for the summer climate of Southern Africa. These features are studied via Empirical Orthogonal Function analysis applied to monthly standardized sea temperatures from 1 [...] Read more.
Longitudinal shifts in the zonal dipole associated with the El Niño–Southern Oscillation (ENSO) in the tropical Pacific have implications for the summer climate of Southern Africa. These features are studied via Empirical Orthogonal Function analysis applied to monthly standardized sea temperatures from 1 to 100 m in depth and spanning 1980–2024. The dipole exhibits two modes: central and east Pacific. The central mode has 4–7 yr oscillations, while the east mode has a periodicity of 3 yr and 8–14 yr, with a trend toward La Niña. Correlations are mapped with environmental fields around Southern Africa. During east-mode La Niña, there are low-level westerlies over the Kalahari Plateau that coincide with a warm-west Indian Ocean and neutral summer (Dec–Mar) weather conditions over Southern Africa. The weak climatic response across the Atlantic–Indian basins during east Pacific La Niña is linked to an isolated Walker cell that feeds tropical moisture into a trough over the dateline (180° W). It is the central mode that has greater influence over Southern Africa, by triggering global Walker cells that link with the Indian Ocean Dipole. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

12 pages, 5317 KB  
Article
Interaction of Tropical Easterly Jets over North Africa
by Mark R. Jury
Climate 2025, 13(10), 214; https://doi.org/10.3390/cli13100214 - 17 Oct 2025
Viewed by 588
Abstract
The objective of this study is to determine how easterly jets and associated convections interact over tropical North Africa during the Jul–Sep season, using reanalysis and satellite datasets for 1990–2024. Four indices are formed to describe mid- and upper-level zonal winds, and moist [...] Read more.
The objective of this study is to determine how easterly jets and associated convections interact over tropical North Africa during the Jul–Sep season, using reanalysis and satellite datasets for 1990–2024. Four indices are formed to describe mid- and upper-level zonal winds, and moist convection over the Sahel and India. Time-space regression identifies the large-scale features modulating the easterly jets. Cumulative departures are analyzed and ranked to form composites in east wind/convective phases and weak wind/subsident phases. The upper-level tropical easterly jet accelerates over the Arabian Sea during and after Pacific La Nina and the cool-west Indian Ocean dipole, and shows four year cycling aligned with thermocline oscillations. The mid-level Africa easterly jet strengthens during Atlantic Nino conditions that enhance the Sahel’s convection in the Jul–Sep season. Both jets accelerate when convection spreads west of India, whereas brief spells of decoupling suppress North African crop yields. The case of 15–20 August 2018 is analyzed, when a surge of Indian monsoon convection and tropical easterly jet penetrated the Sahel, leading to widespread uplift and rainfall. Full article
Show Figures

Figure 1

28 pages, 7243 KB  
Article
Teleconnections Between the Pacific and Indian Ocean SSTs and the Tropical Cyclone Activity over the Arabian Sea
by Ali B. Almahri, Hosny M. Hasanean and Abdulhaleem H. Labban
Climate 2025, 13(9), 193; https://doi.org/10.3390/cli13090193 - 17 Sep 2025
Viewed by 1337
Abstract
Tropical cyclones (TCs) over the Arabian Sea pose significant threats to coastal populations and result in substantial economic losses, yet their variability in response to major climate modes remains insufficiently understood. This study examines the relationship between the El Niño–Southern Oscillation (ENSO), the [...] Read more.
Tropical cyclones (TCs) over the Arabian Sea pose significant threats to coastal populations and result in substantial economic losses, yet their variability in response to major climate modes remains insufficiently understood. This study examines the relationship between the El Niño–Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD), and the Indo-Pacific Warm Pool (IPWP) with TC activity over the Arabian Sea from 1982 to 2021. Utilizing the India Meteorological Department (IMD)’s best-track data, reanalysis datasets, and composite analysis, we find that ENSO and IOD phases affect TC activity differently across seasons. The pre-monsoon season shows a limited association between TC activity and both ENSO and IOD, with minimal variation in frequency, intensity, and energy metrics. However, during the post-monsoon season, El Niño enhances TC intensity, resulting in a higher frequency of intense storms, leading to increased accumulated cyclone energy (ACE) and power dissipation index (PDI) in a statistically significant way. In contrast, La Niña favors the development of weaker TC systems and an increased frequency of depressions. While negative IOD (nIOD) phases tend to suppress TC formation, positive IOD (pIOD) phases are associated with increased TC activity, characterized by longer durations and higher ACE and PDI (statistically significant). Genesis sites shift with ENSO: El Niño favors genesis in the eastern Arabian Sea, causing westward or northeastward tracks, while La Niña shifts genesis toward the central-western basin, promoting northwestward movement. Composite analysis indicates that higher sea surface temperatures (SSTs), reduced vertical wind shear (VWS), increased mid-tropospheric humidity, and lower sea level pressure (SLP) during El Niño and pIOD phases create favorable conditions for TC intensification. In contrast, La Niña and nIOD phases are marked by drier mid-level atmospheres and less favorable SST patterns. The Indo-Pacific Warm Pool (IPWP), particularly its westernmost edge in the southeastern Arabian Sea, provides a favorable thermodynamic environment for genesis and exhibits a moderate positive correlation with TC activity. Nevertheless, its influence on interannual variability over the basin is less significant than that of dominant large-scale climate patterns like ENSO and IOD. These findings highlight the critical role of SST-related teleconnections (ENSO, IOD, and IPWP) in regulating Arabian Sea TC activity, offering valuable insights for seasonal forecasting and risk mitigation in vulnerable areas. Full article
Show Figures

Figure 1

24 pages, 10838 KB  
Article
Assessing the Performance of the WRF Model in Simulating Squall Line Processes over the South African Highveld
by Innocent L. Mbokodo, Roelof P. Burger, Ann Fridlind, Thando Ndarana, Robert Maisha, Hector Chikoore and Mary-Jane M. Bopape
Atmosphere 2025, 16(9), 1055; https://doi.org/10.3390/atmos16091055 - 6 Sep 2025
Viewed by 1154
Abstract
Squall lines are some of the most common types of mesoscale cloud systems in tropical and subtropical regions. Thunderstorms associated with these systems are among the major causes of weather-related disasters and socio-economic losses in many regions across the world. This study investigates [...] Read more.
Squall lines are some of the most common types of mesoscale cloud systems in tropical and subtropical regions. Thunderstorms associated with these systems are among the major causes of weather-related disasters and socio-economic losses in many regions across the world. This study investigates the capability of the Weather Research and Forecasting (WRF) model in simulating squall line features over the South African Highveld region. Two squall line cases were selected based on the availability of South African Weather Service (SAWS) weather radar data: 21 October 2017 (early austral summer) and 31 January–1 February 2018 (late austral summer). The European Centre for Medium-Range Weather Forecasts ERA5 datasets were used as observational proxies to analyze squall line features and compare them with WRF simulations. Mid-tropospheric perturbations were observed along westerly waves in both cases. These perturbations were coupled with surface troughs over central interior together with the high-pressure systems to the south and southeast of the country creating strong pressure gradients over the plateau, which also transports relative humidity onshore and extending to the Highveld region. The 2018 case also had a zonal structured ridging High, which was responsible for driving moisture from the southwest Indian Ocean towards the eastern parts of South Africa. Both ERA5 and WRF captured onshore near surface (800 hPa) winds and high-moisture contents over the eastern parts of the Highveld. A well-defined dryline was observed and well simulated for the 2017 event, while both ERA5 and WRF did not show any dryline for the 2018 case that was triggered by orography. While WRF successfully reproduced the synoptic-scale processes of these extreme weather events, the simulated rainfall over the area of interest exhibited a broader spatial distribution, with large-scale precipitation overestimated and convective rainfall underestimated. Our study shows that models are able to capture these systems but with some shortcomings, highlighting the need for further improvement in forecasts. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

23 pages, 5245 KB  
Article
Machine Learning Reconstruction of Wyrtki Jet Seasonal Variability in the Equatorial Indian Ocean
by Dandan Li, Shaojun Zheng, Chenyu Zheng, Lingling Xie and Li Yan
Algorithms 2025, 18(7), 431; https://doi.org/10.3390/a18070431 - 14 Jul 2025
Viewed by 678
Abstract
The Wyrtki Jet (WJ), a pivotal surface circulation system in the equatorial Indian Ocean, exerts significant regulatory control over regional climate dynamics through its intense eastward transport characteristics, which modulate water mass exchange, thermohaline balance, and cross-basin energy transfer. To address the scarcity [...] Read more.
The Wyrtki Jet (WJ), a pivotal surface circulation system in the equatorial Indian Ocean, exerts significant regulatory control over regional climate dynamics through its intense eastward transport characteristics, which modulate water mass exchange, thermohaline balance, and cross-basin energy transfer. To address the scarcity of in situ observational data, this study developed a satellite remote sensing-driven multi-parameter coupled model and reconstructed the WJ’s seasonal variations using the XGBoost machine learning algorithm. The results revealed that wind stress components, sea surface temperature, and wind stress curl serve as the primary drivers of its seasonal dynamics. The XGBoost model demonstrated superior performance in reconstructing WJ’s seasonal variations, achieving coefficients of determination (R2) exceeding 0.97 across all seasons and maintaining root mean square errors (RMSE) below 0.2 m/s across all seasons. The reconstructed currents exhibited strong consistency with the Ocean Surface Current Analysis Real-time (OSCAR) dataset, showing errors below 0.05 m/s in spring and autumn and under 0.1 m/s in summer and winter. The proposed multi-feature integrated modeling framework delivers a high spatiotemporal resolution analytical tool for tropical Indian Ocean circulation dynamics research, while simultaneously establishing critical data infrastructure to decode monsoon current coupling mechanisms, advancing early warning systems for extreme climatic events, and optimizing regional marine resource governance. Full article
Show Figures

Figure 1

12 pages, 2196 KB  
Article
Post-El Niño Influence on Summer Monsoon Rainfall in Sri Lanka
by Pathmarasa Kajakokulan and Vinay Kumar
Water 2025, 17(11), 1664; https://doi.org/10.3390/w17111664 - 30 May 2025
Viewed by 2465
Abstract
Sri Lanka typically experiences anomalously wet conditions during the summer following El Niño events, but this response varies due to El Niño complexity. This study investigates the impact of post-El Niño conditions on Sri Lanka’s Monsoon rainfall, contrasting summers after fast- and slow-decaying [...] Read more.
Sri Lanka typically experiences anomalously wet conditions during the summer following El Niño events, but this response varies due to El Niño complexity. This study investigates the impact of post-El Niño conditions on Sri Lanka’s Monsoon rainfall, contrasting summers after fast- and slow-decaying El Niño events. Results indicate that fast-decaying El Niño events lead to wet and cool summers while slow-decaying events result in dry and warm summers. These contrasting responses are linked to sea surface temperature (SST) changes in the central to eastern Pacific. During the fast-decaying El Niño, the transition to La Niña generates strong easterlies in the central and eastern Pacific, enhancing moisture convergence, upward motion, and cloud cover, resulting in wetter conditions over Sri Lanka. During the fast-decaying El Niño, enhanced precipitation over the Maritime Continent acts as a diabatic heating source, inducing Gill-type easterly wind anomalies over the tropical Pacific. These winds promote coupled feedbacks that accelerate the transition to La Niña, strengthening moisture convergence and upward motion over Sri Lanka. Conversely, slow-decaying El Niño events are associated with cooling in the western North Pacific and warming in the Indian Ocean, which promotes the development of the western North Pacific anticyclone, suppressing upward motion and reducing cloud cover, leading to conditions over Sri Lanka. Changes in the Walker circulation further contribute to these distinct rainfall patterns, highlighting its influence on regional climate dynamics. These findings enhance our understanding of the seasonal predictability of rainfall in Sri Lanka during post-El Niño Summers. Full article
Show Figures

Figure 1

17 pages, 4204 KB  
Article
Decadal Modulation of Summertime Northwestern Pacific Subtropical High Linked to Indian Ocean Basin Warming
by Takashi Mochizuki and Yuta Ando
Climate 2025, 13(6), 106; https://doi.org/10.3390/cli13060106 - 24 May 2025
Cited by 2 | Viewed by 1339
Abstract
The Northwestern Pacific Subtropical High (NPSH), usually enhanced by the basin-scale warming of the Indian Ocean (IOBW), plays a major role in controlling the summertime East Asian climate. To assess factors contributing to the decadal modulation of the NPSH and IOBW relationship in [...] Read more.
The Northwestern Pacific Subtropical High (NPSH), usually enhanced by the basin-scale warming of the Indian Ocean (IOBW), plays a major role in controlling the summertime East Asian climate. To assess factors contributing to the decadal modulation of the NPSH and IOBW relationship in recent years, we conducted sensitivity experiments using an atmospheric general circulation model. We particularly focused on decadal-scale differences between the periods of 1982–2001 and 2002–2021, with the contribution of the climatological sea surface temperature (SST) as the background, in combination with the tropical Pacific SST anomaly in relation to the rapid or slow decay of the El Niño Southern Oscillation (ENSO). The results indicate that the IOBW-related SST anomalies in the Indian and tropical Pacific Oceans—which, overall, represent the well-known characteristics of the so-called Indo-western Pacific Ocean Capacitor effects—cooperatively enhanced the NPSH in the earlier period (1982–2001). On the other hand, the suppressed and westward-shifted SST anomalies in the tropical Pacific Ocean and the resultant changes in the diabatic heating of cumulus convection suppressed the NPSH enhancement in recent years (2002–2021). These results indicate that the modulation in the NPSH responses linked to the IOBW is primarily due to the so-called ENSO diversity rather than climatology. Full article
(This article belongs to the Section Climate Dynamics and Modelling)
Show Figures

Figure 1

20 pages, 8438 KB  
Article
Primary Interannual Variability Modes of Summer Moisture Transports in the Tibetan Plateau
by Junhan Lan, Hong-Li Ren, Jieru Ma and Bin Chen
Remote Sens. 2025, 17(9), 1508; https://doi.org/10.3390/rs17091508 - 24 Apr 2025
Cited by 1 | Viewed by 822
Abstract
Moisture transports play a key role in maintaining the hydrometeorological cycle and forming its climate variability over the Tibetan Plateau (TP), also known as the “Asian water tower”. This study focuses on understanding the interannual variability mode characteristics of moisture transport in the [...] Read more.
Moisture transports play a key role in maintaining the hydrometeorological cycle and forming its climate variability over the Tibetan Plateau (TP), also known as the “Asian water tower”. This study focuses on understanding the interannual variability mode characteristics of moisture transport in the TP in boreal summer, using satellite-based analysis and reanalysis data from 1983 to 2022 with a combined empirical orthogonal function (EOF) analysis. We identified the first two primary interannual modes of TP summer water vapor fluxes, which are primarily characterized by zonal and meridional dipole patterns, respectively. The zonal pattern of the TP water vapor flux dominates the TP and East Asian summer rainfall variability, while the meridional pattern of the TP water vapor flux tends to be a result of the South Asian summer rainfall and its circulation anomalies. The tropical Indo-Pacific sea surface temperature (SST) variations, such as El Niño and Indian Ocean SST modes, have significantly delayed relationships with the interannual variability modes of the summer water vapor fluxes over the TP, indicating a significant modulation effect of the low-latitude oceanic variability on the interannual variations in TP summer moisture transport. These results deepen our understanding of the relationship between TP moisture transport and summer monsoonal rainfall variability, as well as the influence of the tropical oceans. Full article
Show Figures

Figure 1

14 pages, 2569 KB  
Article
The Effect of the Marine Environment on the Distribution of Sthenoteuthis oualaniensis in the East Equatorial Indian Ocean
by Shigang Liu, Liyan Zhang, Peng Lian, Jianhua Kang, Puqing Song, Xing Miao, Longshan Lin, Rui Wang and Yuan Li
Fishes 2025, 10(4), 184; https://doi.org/10.3390/fishes10040184 - 17 Apr 2025
Viewed by 686
Abstract
Sthenoteuthis oualaniensis is one of the most commercially important marine cephalopod species distributed throughout tropical and subtropical waters of the Indo-Pacific Seas. The Indian Ocean is a main fishing ground for S. oualaniensis with a high population density. To explore the distribution of [...] Read more.
Sthenoteuthis oualaniensis is one of the most commercially important marine cephalopod species distributed throughout tropical and subtropical waters of the Indo-Pacific Seas. The Indian Ocean is a main fishing ground for S. oualaniensis with a high population density. To explore the distribution of S. oualaniensis in the east equatorial Indian Ocean, four surveys were carried out using light-lift-net fishing vessels. Meanwhile, marine environmental data were also collected, including the sea surface temperature, sea temperature at 100 m depth, mixed layer depth, sea surface chlorophyll-a concentration, sea surface height, and eddy kinetic energy. Generalized Additive Models were used to analyze the relationship between the catch per unit effort (CPUE) for S. oualaniensis and environmental factors. The results showed that the average CPUE of S. oualaniensis was 14.55 kg/h in the four surveys, which was considerably lower than in the South China Sea and Northwest Indian Ocean. In terms of seasonal distribution, the high-CPUE stations were closer to the continental shelf in spring, while they shifted towards the deeper and offshore water in autumn, demonstrating a seasonal migration trend. Pearson correlation analysis showed that CPUE reflected a significant negative correlation with both sea temperature at 100 m depth and eddy kinetic energy (p < 0.001). The Generalized Additive Models revealed that sea surface height was the most significant factor affecting CPUE with a variance explanation of 30.1%. Furthermore, the optimal CPUE prediction model was established by stepwise regression, which contains two factors, sea surface height and eddy kinetic energy, with a variance explanation of 34.9%. This study provides insights into the environmental factors influencing the distribution of S. oualaniensis, which is essential for the sustainable utilization and management of this species. Full article
(This article belongs to the Special Issue Assessment and Management of Fishery Resources)
Show Figures

Figure 1

24 pages, 10936 KB  
Article
Surface Current Observations in the Southeastern Tropical Indian Ocean Using Drifters
by Prescilla Siji and Charitha Pattiaratchi
J. Mar. Sci. Eng. 2025, 13(4), 717; https://doi.org/10.3390/jmse13040717 - 3 Apr 2025
Viewed by 2428
Abstract
The Southeastern Tropical Indian Ocean (SETIO) forms part of the global ocean conveyor belt and thermohaline circulation that has a significant influence in controlling the global climate. This region of the ocean has very few observations using surface drifters, and this study presents, [...] Read more.
The Southeastern Tropical Indian Ocean (SETIO) forms part of the global ocean conveyor belt and thermohaline circulation that has a significant influence in controlling the global climate. This region of the ocean has very few observations using surface drifters, and this study presents, for the first time, paths of satellite tracked drifters released in the Timor Sea (123.3° E, 13.8° S). The drifter data were used to identify the ocean dynamics, forcing mechanisms and connectivity in the SETIO region. The data set has high temporal (~5 min) and spatial (~120 m) resolution and were collected over an 8-month period between 17 September 2020 and 25 May 2021. At the end of 250 days, drifters covered a region separated by ~8000 km (83–137° E, 4–21° S) and transited through several forcing mechanisms including semidiurnal and diurnal tides, submesoscale and mesoscale eddies, channel and headland flows, and inertial currents generated by tropical storms. Initially, all the drifters moved as a single cluster, and at 120° E longitude they entered a region of high eddy kinetic energy defined here as the ‘SETIO Mixing Zone’ (SMZ), and their movement was highly variable. All the drifters remained within the SMZ for periods between 3 and 5 months. Exiting the SMZ, drifters followed the major ocean currents in the system (either South Java or South Equatorial Current). Two of the drifters moved north through Lombok and Sape Straits and travelled to the east as far as Aru Islands. The results of this study have many implications for connectivity and transport of buoyant materials (e.g., plastics), as numerical models do not have the ability to resolve many of the fine-scale physical processes that contribute to surface transport and mixing in the ocean. Full article
(This article belongs to the Special Issue Monitoring of Ocean Surface Currents and Circulation)
Show Figures

Figure 1

Back to TopTop