You are currently viewing a new version of our website. To view the old version click .
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Article
  • Open Access

10 December 2025

Inter-Basin Teleconnection of the Atlantic Multidecadal Oscillation and Interdecadal Pacific Oscillation in Modulating the Decadal Variation in Winter SST in the South China Sea

,
,
,
,
,
,
and
1
Yazhou Bay Innovation Institute, College of Marine Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China
2
Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China
3
Hainan Institute of Zhejiang University, Zhejiang University, Sanya 572022, China
*
Authors to whom correspondence should be addressed.
This article belongs to the Section Physical Oceanography

Abstract

The South China Sea (SCS) sea surface temperature (SST) plays a crucial modulating effect on the climate of East Asia. While the interannual variability of South China Sea SST has been extensively examined, the decadal-scale linkages and underlying physical mechanisms between South China Sea SST and the three major ocean basins (the Atlantic, Pacific, and Indian Oceans) remain inadequately comprehended. To fill the gap, the study investigates the decadal variability of winter SST in the SCS during 1940–2023, utilizing long-term observational datasets and methods such as empirical orthogonal function decomposition, regression analysis, and teleconnections analysis. The first dominant mode of this decadal variability is characterized by basin-warming across the SCS, which is mainly driven by the Atlantic Multidecadal Oscillation (AMO, r = 0.62, p < 0.05). Specifically, the AMO imposes its remote influence on the SCS through three distinct pathways: the tropical Pacific pathway, the North Pacific pathway, and the tropical Indian Ocean pathway. These pathways collectively trigger an anomalous cyclone in the western North Pacific and SCS, and further induce basin-wide SST warming via a positive feedback that includes SST, sea level pressure, cloud cover, and longwave radiation. The second leading mode of SCS winter SST decadal variability displays a north–south dipole pattern, which is positively correlated with the Interdecadal Pacific Oscillation (IPO, r1 = 0.85, p1 < 0.05). Notably, this South China Sea SST dipole–IPO relationship weakened significantly after 1985 (r2 = 0.23, p2 < 0.05), related to the strengthening of the anomalous anticyclone over the SCS and the weakening of the anomalous cyclone over the tropical Indian Ocean. Furthermore, both the AMO and IPO influence the SST in the northern SCS by regulating wind field anomalies in the bifurcation region of the North Equatorial Current. This wind-driven modulation subsequently affects the intensity of Kuroshio intrusion into the SCS. These findings provide a novel mechanistic pathway for interpreting decadal-scale climate variability over East Asia, with implications for improving long-term climate prediction in the region.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.