Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = Titanocenes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1727 KiB  
Review
Recent Advancements in the Synthesis of Functional Polyolefins by Non-Bridged Half-Titanocenes
by Yanjun Chen and Haiqian Dong
Molecules 2025, 30(1), 39; https://doi.org/10.3390/molecules30010039 - 26 Dec 2024
Viewed by 1008
Abstract
Polyolefins are used widely due to their benefits such as being lightweight, chemical inertness, low cost, tunable properties, and easy processability. However, their nonpolar nature significantly limits their high-end applications. The non-bridged half-titanocenes exhibit remarkable catalytic activities with good comonomer incorporations in the [...] Read more.
Polyolefins are used widely due to their benefits such as being lightweight, chemical inertness, low cost, tunable properties, and easy processability. However, their nonpolar nature significantly limits their high-end applications. The non-bridged half-titanocenes exhibit remarkable catalytic activities with good comonomer incorporations in the olefin polymerization. The synthesis of functional polyolefins has attracted more and more attention recently. The non-bridged half-titanocenes have been used in the preparation of functional polyolefins, in particular the functional olefin copolymers. Herein, the recent advancements in the synthesis of functional polyolefins by non-bridged half-titanocenes were reviewed. The functional polyolefins have been synthesized by direct copolymerization of olefin with functional comonomers using half-titanocenes as precatalysts. In addition, polyolefins containing reactive groups could be synthesized by the olefin (co)polymerization using half-titanocenes as precatalysts. The functional polyolefins were synthesized successfully by the post-functionalization of polyolefin containing reactive groups. Full article
(This article belongs to the Special Issue Organometallic Compounds: Design, Synthesis and Application)
Show Figures

Figure 1

27 pages, 14209 KiB  
Article
Statistical and Block Copolymers of n-Dodecyl and Allyl Isocyanate via Titanium-Mediated Coordination Polymerization: A Route to Polyisocyanates with Improved Thermal Stability
by Maria Iatrou, Aikaterini Katara, Panagiotis A. Klonos, Apostolos Kyritsis and Marinos Pitsikalis
Polymers 2024, 16(24), 3537; https://doi.org/10.3390/polym16243537 - 19 Dec 2024
Viewed by 933
Abstract
Well-defined amorphous/semi-crystalline statistical copolymers of n-dodecyl isocyanate, DDIC, and allyl isocyanate, ALIC, were synthesized via coordination polymerization using the chiral half-titanocene complex CpTiCl2(O-(S)-2-Bu) as an initiator. In the frame of the terminal model, the monomer reactivity ratios of the statistical copolymers [...] Read more.
Well-defined amorphous/semi-crystalline statistical copolymers of n-dodecyl isocyanate, DDIC, and allyl isocyanate, ALIC, were synthesized via coordination polymerization using the chiral half-titanocene complex CpTiCl2(O-(S)-2-Bu) as an initiator. In the frame of the terminal model, the monomer reactivity ratios of the statistical copolymers were calculated using both well-known linear graphical methods and the computer program COPOINT. The molecular and structural characteristics of the copolymers were also calculated. The thermal properties of these samples were studied by differential scanning calorimetry, DSC, measurements. The kinetics of the thermal decomposition of the statistical copolymers was studied by thermogravimetric analysis, TGA, and differential thermogravimetry, DTG, and the activation energy of this process was calculated by employing several theoretical models. Moreover, block copolymers with the structure P[DDIC-b-(DDIC-co-ALIC)] were synthesized by sequential addition of monomers and coordination polymerization methodologies. The samples were characterized by nuclear magnetic resonance, NMR, spectroscopy; size exclusion chromatography, SEC; and DSC. The thermal stability of the blocks was also studied by TGA and DTG and compared to the corresponding statistical copolymers, showing that the macromolecular architecture greatly affects the properties of the copolymers. A thiol-ene click post-polymerization reaction was performed to introduce aromatic groups along the polyisocyanate chain in order to improve the thermal stability of the parent polymers. Evidently, these statistical and block copolymers can be employed as precursors for the synthesis of novel polyisocyanate-based materials. Full article
(This article belongs to the Special Issue Emerging Trends in Polymer Engineering: Polymer Connect-2024)
Show Figures

Figure 1

11 pages, 2025 KiB  
Article
Ethylene/Styrene Copolymerization by (Me3SiC5H4)TiCl2(O-2,6-iPr2-4-RC6H2) (R = H, SiEt3)-MAO Catalysts: Effect of SiMe3 Group on Cp for Efficient Styrene Incorporation
by Tiantian Huang, Taiga Fujioka, Daisuke Shimoyama and Kotohiro Nomura
Molecules 2024, 29(18), 4473; https://doi.org/10.3390/molecules29184473 - 20 Sep 2024
Cited by 2 | Viewed by 1220
Abstract
The synthesis and structural analysis of (Me3SiC5H4)TiCl2(OAr) [OAr = O-2,6-iPr2-4-RC6H2; R = H, SiEt3] revealed that it exhibits higher catalytic activities than (tBuC [...] Read more.
The synthesis and structural analysis of (Me3SiC5H4)TiCl2(OAr) [OAr = O-2,6-iPr2-4-RC6H2; R = H, SiEt3] revealed that it exhibits higher catalytic activities than (tBuC5H4)TiCl2(OAr), Cp*TiCl2(OAr), with efficient comonomer incorporation in ethylene/styrene copolymerization in the presence of a methylaluminoxane (MAO) cocatalyst. The catalytic activity in the copolymerization increased upon increasing the charged styrene concentration along with the increase in the styrene content in the copolymers, whereas the activities of other catalysts showed the opposite trend. (Me3SiC5H4)TiCl2(O-2,6-iPr2C6H3) displayed the most suitable catalyst performance in terms of its activity and styrene incorporation, affording amorphous copolymers with styrene contents higher than 50 mol% (up to 63.6 mol%) and with random styrene incorporation confirmed by 13C-NMR spectra. Full article
(This article belongs to the Special Issue Organometallic Compounds: Design, Synthesis and Application)
Show Figures

Figure 1

11 pages, 1745 KiB  
Article
A Biomimetic Approach to Premyrsinane-Type Diterpenoids: Exploring Microbial Transformation to Enhance Their Chemical Diversity
by Felipe Escobar-Montaño, Antonio J. Macías-Sánchez, José M. Botubol-Ares, Rosa Durán-Patrón and Rosario Hernández-Galán
Plants 2024, 13(6), 842; https://doi.org/10.3390/plants13060842 - 14 Mar 2024
Cited by 2 | Viewed by 1519
Abstract
Premyrsinane-type diterpenoids have been considered to originate from the cyclization of a suitable 5,6- or 6,17-epoxylathyrane precursor. Their biological activities have not been sufficiently explored to date, so the development of synthetic or microbial approaches for the preparation of new derivatives would be [...] Read more.
Premyrsinane-type diterpenoids have been considered to originate from the cyclization of a suitable 5,6- or 6,17-epoxylathyrane precursor. Their biological activities have not been sufficiently explored to date, so the development of synthetic or microbial approaches for the preparation of new derivatives would be desirable. Epoxyboetirane A (4) is an 6,17-epoxylathyrane isolated from Euphorbia boetica in a large enough amount to be used in semi-synthesis. Transannular cyclization of 4 mediated by Cp2TiIIICl afforded premyrsinane 5 in good yield as an only diasteroisomer. To enhance the structural diversity of premyrsinanes so their potential use in neurodegenerative disorders could be explored, compound 5 was biotransformed by Mucor circinelloides NRRL3631 to give rise to hydroxylated derivatives at non-activated carbons (67), all of which were reported here for the first time. The structures and absolute configurations of all compounds were determined through extensive NMR and HRESIMS spectroscopic studies. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

11 pages, 2384 KiB  
Article
Amorphous Elastomeric Ultra-High Molar Mass Polypropylene in High Yield by Half-Titanocene Catalysts
by Simona Losio, Fabio Bertini, Adriano Vignali, Taiga Fujioka, Kotohiro Nomura and Incoronata Tritto
Polymers 2024, 16(4), 512; https://doi.org/10.3390/polym16040512 - 14 Feb 2024
Cited by 9 | Viewed by 1602
Abstract
Propylene polymerizations with different ketimide-modified half-titanocene catalysts, Cp’TiCl2(N=CtBu2) [Cp’ = C5H5 (1), C5Me5 (2), Me3SiC5H4 (3)], with MAO as a [...] Read more.
Propylene polymerizations with different ketimide-modified half-titanocene catalysts, Cp’TiCl2(N=CtBu2) [Cp’ = C5H5 (1), C5Me5 (2), Me3SiC5H4 (3)], with MAO as a cocatalyst, were investigated. The obtained polymers were studied in detail by determining their microstructure, molar masses, thermal, and mechanical properties. The Cp*-ketimide, (C5Me5)TiCl2(N=CtBu2) (2), exhibited higher catalytic activities than Cp’TiCl2(N=CtBu2) (1,3), yielding higher molar mass polymers, Mw up to 1400 Kg/mol. All the synthesized polypropylenes (PP) are atactic and highly regioregular, with predominant rrrr pentads, especially PP prepared with catalyst 1. Differential scanning calorimetry (DSC) established that the polymers are fully amorphous aPP, and no melting endotherm events are detected. Glass transition temperatures were detected between −2 and 2 °C. These polypropylenes have been established to be high-performance thermoplastic elastomers endowed with remarkably high ductility, and a tensile strain at break higher than 2000%. Full article
(This article belongs to the Special Issue Catalytic Olefin Polymerization and Polyolefin Materials)
Show Figures

Graphical abstract

12 pages, 3061 KiB  
Article
Holographic Grating Enhancement Induced by a Dual-Photo-Initiator System in PMMA Substrate Polymers
by Peiyao Wang, Xiudong Sun and Peng Liu
Polymers 2024, 16(1), 126; https://doi.org/10.3390/polym16010126 - 30 Dec 2023
Cited by 3 | Viewed by 1699
Abstract
Polymer systems induced by the reaction between monomers and photo-initiators play a crucial role in the formation of volume-phase gratings. In this paper, we fabricated a dual-photo-initiator photopolymer by doping EY (Eosin Yellow) molecules into a TI (Titanocene, Irgacure 784@BASF) dispersed PMMA (poly-[methyl [...] Read more.
Polymer systems induced by the reaction between monomers and photo-initiators play a crucial role in the formation of volume-phase gratings. In this paper, we fabricated a dual-photo-initiator photopolymer by doping EY (Eosin Yellow) molecules into a TI (Titanocene, Irgacure 784@BASF) dispersed PMMA (poly-[methyl methacrylate]) substrate system, with the aim of promoting the diffusion and polymerization processes in volume holographic storage. The two-wave interference system is adopted to record a permanent grating structure in our materials. The temporal diffraction variations of photopolymerization (during the interference exposure) and dark diffusion (after the interference exposure) processes have been investigated and analyzed. Aiming to analyze the influence of EY doping ratios on holographic performances, some key parameters were examined in the experiment. We first measured the temporal evolution of diffraction efficiency, then an exponential fitting was adopted to obtain the response time. Finally, the angular selectivity was evaluated by the Bragg condition after holographic recording. Also, the temporal evolution of each component is described by the nonlocal polymerization-driven diffusion model with a dual-photo-initiator composition, theoretically. Furthermore, we experimentally achieved the holographic grating enhancement in both the dark diffusion and photopolymerization processes by doping appropriate EY concentrations, respectively. This work provides a foundation for the acceptability of TI&EY/PMMA polymers in further holographic storage research. Full article
Show Figures

Figure 1

10 pages, 4841 KiB  
Article
Palladium-Catalyzed Cross-Coupling Reaction of Bis(cyclopentadienyl)diaryltitaniums with Terminal Alkynes
by Yuki Murata, Yuya Nishi, Mio Matsumura and Shuji Yasuike
Reactions 2023, 4(4), 657-666; https://doi.org/10.3390/reactions4040037 - 19 Oct 2023
Viewed by 3055
Abstract
Organotitanium compounds find application in diverse reactions, including carbon–carbon bond formation and oxidation. While titanium (IV) compounds have been used in various applications, the potential of bis(cyclopentadienyl)diaryltitanium in cross-coupling reactions remains unexplored. This study focuses on Sonogashira-type cross-coupling reactions involving terminal alkynes and [...] Read more.
Organotitanium compounds find application in diverse reactions, including carbon–carbon bond formation and oxidation. While titanium (IV) compounds have been used in various applications, the potential of bis(cyclopentadienyl)diaryltitanium in cross-coupling reactions remains unexplored. This study focuses on Sonogashira-type cross-coupling reactions involving terminal alkynes and organotitanium compounds. Diaryltitanocenes were synthesized using titanocene dichloride with lithium intermediates derived from aryl iodide. Under open-flask conditions, reactions of diphenyltitanocenes with ethynylbenzene in the presence of 20 mol% Pd(OAc)2 in DMF produced coupling products in a remarkable 99% yield. Various diaryltitanocenes and alkynes under standard conditions yielded corresponding cross-coupling products with moderate to good yields. Notably, the Sonogashira-type alkynylation proceeds under mild conditions, including open-flask conditions, and without the need for a base. Furthermore, this cross-coupling is atom-economical and involves the active participation of both aryl groups of the diaryltitanocene. Remarkably, this study presents the first example of a Sonogashira-type cross-coupling using titanium compounds as pseudo-halides. Full article
(This article belongs to the Special Issue Feature Papers in Reactions in 2023)
Show Figures

Figure 1

22 pages, 5675 KiB  
Article
Synthesis and Characterization of Statistical and Block Copolymers of n-Hexyl Isocyanate and 3-(Triethoxysilyl) Propyl Isocyanate via Coordination Polymerization
by Maria Panteli, Dimitra Mantzara, Aikaterini Katara, Ioannis Choinopoulos and Marinos Pitsikalis
Polymers 2023, 15(20), 4113; https://doi.org/10.3390/polym15204113 - 17 Oct 2023
Cited by 2 | Viewed by 1728
Abstract
Well-defined statistical copolymers of n-hexyl isocyanate, HIC, and 3-(triethoxysilyl)propyl isocyanate, TESPI, were synthesized via coordination polymerization mechanism, employing a chiral half-titanocene complex as initiator. The monomer reactivity ratios of the statistical copolymers were calculated using linear graphical methods and the computer program COPOINT [...] Read more.
Well-defined statistical copolymers of n-hexyl isocyanate, HIC, and 3-(triethoxysilyl)propyl isocyanate, TESPI, were synthesized via coordination polymerization mechanism, employing a chiral half-titanocene complex as initiator. The monomer reactivity ratios of the statistical copolymers were calculated using linear graphical methods and the computer program COPOINT in the frame of the terminal model. The molecular and structural characteristics of the copolymers were also calculated. The kinetics of the thermal decomposition of the statistical copolymers was studied by Thermogravimetric Analysis, TGA, and Differential Thermogravimetry, DTG, and the activation energy of this process was calculated employing several theoretical models. In addition, block copolymers constituted from PHIC and PTESPI blocks were synthesized by sequential coordination polymerization. All samples were characterized by nuclear magnetic resonance, NMR, spectroscopy and size exclusion chromatography, SEC. The thermal stability of the blocks was also studied by TGA and DTG and compared to the corresponding statistical copolymers. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

15 pages, 1402 KiB  
Review
High-Efficiency Mono-Cyclopentadienyl Titanium and Rare-Earth Metal Catalysts for the Production of Syndiotactic Polystyrene
by Bo Wen, Hongfan Hu, Di Kang, Chenggong Sang, Guoliang Mao and Shixuan Xin
Molecules 2023, 28(19), 6792; https://doi.org/10.3390/molecules28196792 - 25 Sep 2023
Cited by 2 | Viewed by 2141
Abstract
Syndiotactic polystyrene (SPS) refers to a type of thermoplastic material with phenyl substituents that are alternately chirally attached on both sides of an aliphatic macromolecular main chain. Owing to its excellent physical and mechanical properties, as well as its chemical stability, high transparency, [...] Read more.
Syndiotactic polystyrene (SPS) refers to a type of thermoplastic material with phenyl substituents that are alternately chirally attached on both sides of an aliphatic macromolecular main chain. Owing to its excellent physical and mechanical properties, as well as its chemical stability, high transparency, and electrical insulation characteristics, SPS is used in a wide variety of technical fields. SPS is commonly produced via the stereoselective transition metal-catalyzed coordination polymerization method mediated by stereospecific catalysts, which consists of anionic mono-cyclopentadienyl derivative η5-coordinated single active metal centers (referred to as “mono-Cp’-M”), with active center metals involving Group 4 transition metals (with an emphasis on titanium) and rare-earth (RE) metals of the periodic table. In this context, the use of mono-cyclopentadienyl titanocene (mono-Cp’Ti) catalysts and mono-cyclopentadienyl rare-earth metal (mono-Cp’RE) metallocene catalysts for the syndiospecific polymerization of styrene is discussed. The effects of the mono-cyclopentadienyl ligand structure, cationic active metal types, and cocatalysts on the activity and syndiospecificity of mono-Cp’ metallocene catalysts are briefly surveyed. Full article
(This article belongs to the Section Applied Chemistry)
Show Figures

Figure 1

10 pages, 3369 KiB  
Communication
Depolymerization of Polyesters by Transesterification with Ethanol Using (Cyclopentadienyl)titanium Trichlorides
by Yuriko Ohki, Yohei Ogiwara and Kotohiro Nomura
Catalysts 2023, 13(2), 421; https://doi.org/10.3390/catal13020421 - 16 Feb 2023
Cited by 13 | Viewed by 4425
Abstract
Exclusive chemical conversions of polyesters [poly(ethylene adipate) (PEA), poly(butylene adipate) (PBA), poly(ethylene terephthalate) (PET), poly(butylene terephthalate) (PBT)] to the corresponding monomers (diethyl adipate, diethyl terephthalate, ethylene glycol, 1,4-butane diol) by transesterification with ethanol using Cp’TiCl3 (Cp’ = Cp, Cp*) catalyst have been [...] Read more.
Exclusive chemical conversions of polyesters [poly(ethylene adipate) (PEA), poly(butylene adipate) (PBA), poly(ethylene terephthalate) (PET), poly(butylene terephthalate) (PBT)] to the corresponding monomers (diethyl adipate, diethyl terephthalate, ethylene glycol, 1,4-butane diol) by transesterification with ethanol using Cp’TiCl3 (Cp’ = Cp, Cp*) catalyst have been demonstrated. The present acid-base-free depolymerizations by Cp’TiCl3 exhibited completed conversions (>99%) of PET, PBT to afford diethyl terephthalate and ethylene glycol or 1,4-butane diol exclusively (selectivity >99%) without formation of any other by-products in the NMR spectra (150–170 °C, Ti 1.0, or 2.0 mol%). The resultant reaction mixture after the depolymerization of PBA with ethanol via the CpTiCl3 catalyst (1.0 mol%, 150 °C, 3 h), consisting of diethyl adipate and 1,4-butane diol, was heated at 150 °C in vacuo for 24 h to afford high molecular weight recycled PBA with unimodal molecular weight distribution (Mn = 11,800, Mw/Mn = 1.6), strongly demonstrating a possibility of one-pot (acid-base-free) closed-loop chemical recycling. Full article
(This article belongs to the Special Issue Exclusive Papers of the Editorial Board Members (EBMs) of Catalysts)
Show Figures

Figure 1

17 pages, 2694 KiB  
Article
New Titanocene (IV) Dicarboxylates with Potential Cytotoxicity: Synthesis, Structure, Stability and Electrochemistry
by Dmitry A. Guk, Karina R. Gibadullina, Roman O. Burlutskiy, Kirill G. Pavlov, Anna A. Moiseeva, Viktor A. Tafeenko, Konstantin A. Lyssenko, Erik R. Gandalipov, Alexander A. Shtil and Elena K. Beloglazkina
Int. J. Mol. Sci. 2023, 24(4), 3340; https://doi.org/10.3390/ijms24043340 - 7 Feb 2023
Cited by 4 | Viewed by 2644
Abstract
The search for new anticancer drugs based on biogenic metals, which have weaker side effects compared to platinum-based drugs, remains an urgent task in medicinal chemistry. Titanocene dichloride, a coordination compound of fully biocompatible titanium, has failed in pre-clinical trials but continues to [...] Read more.
The search for new anticancer drugs based on biogenic metals, which have weaker side effects compared to platinum-based drugs, remains an urgent task in medicinal chemistry. Titanocene dichloride, a coordination compound of fully biocompatible titanium, has failed in pre-clinical trials but continues to attract the attention of researchers as a structural framework for the development of new cytotoxic compounds. In this study, a series of titanocene (IV) carboxylate complexes, both new and those known from the literature, was synthesized, and their structures were confirmed by a complex of physicochemical methods and X-ray diffraction analysis (including one previously unknown structure based on perfluorinated benzoic acid). The comprehensive comparison of three approaches for the synthesis of titanocene derivatives known from the literature (the nucleophilic substitution of chloride anions of titanocene dichloride with sodium and silver salts of carboxylic acids as well as the reaction of dimethyltitanocene with carboxylic acids themselves) made it possible to optimize these methods to obtain higher yields of individual target compounds, generalize the advantages and disadvantages of these techniques, and determine the substrate frames of each method. The redox potentials of all obtained titanocene derivatives were determined by cyclic voltammetry. The relationship between the structure of ligands, the reduction potentials of titanocene (IV), and their relative stability in redox processes, as obtained in this work, can be used for the design and synthesis of new effective cytotoxic titanocene complexes. The study of the stability of the carboxylate-containing derivatives of titanocene obtained in the work in aqueous media showed that they were more resistant to hydrolysis than titanocene dichloride. Preliminary tests of the cytotoxicity of the synthesised titanocene dicarboxilates on MCF7 and MCF7-10A cell lines demonstrated an IC50 ≥ 100 μM for all the obtained compounds. Full article
(This article belongs to the Special Issue Metal-Based Drugs and Research on Mechanisms of Action)
Show Figures

Figure 1

4 pages, 521 KiB  
Proceeding Paper
Cp2TiCl2—Catalyzed Synthesis of Tertiary Alcohols by the Reaction of AlCl3 with Ketones and Aryl Olefins
by Liaisan K. Dilmukhametova, Mariya G. Shaibakova and Ilfir R. Ramazanov
Chem. Proc. 2022, 12(1), 65; https://doi.org/10.3390/ecsoc-26-13706 - 18 Nov 2022
Viewed by 1901
Abstract
We have previously obtained significant results in the cycloalumination of olefins with EtAlCl2 in the presence of magnesium and a Cp2ZrCl2 or Cp2TiCl2 catalyst. Here we report the development of an efficient one-pot catalytic method for [...] Read more.
We have previously obtained significant results in the cycloalumination of olefins with EtAlCl2 in the presence of magnesium and a Cp2ZrCl2 or Cp2TiCl2 catalyst. Here we report the development of an efficient one-pot catalytic method for the synthesis of tertiary alcohols from AlCl3, aryl olefins, and ketones under the action of Cp2TiCl2. The developed method for producing tertiary alcohols has a general character and allows the conversion of styrene and substituted styrenes (ortho-, para-methylstyrenes) into aryl-substituted tertiary alcohols with yields of up to 76% in the reaction with acetone or methyl ethyl ketone. We assume that the reaction proceeds through the formation of a titanacyclopropane intermediate. Full article
Show Figures

Scheme 1

9 pages, 2176 KiB  
Article
Exploring Short and Efficient Synthetic Routes Using Titanocene(III)-Catalyzed Reactions: Total Synthesis of Natural Meroterpenes with Trisubstituted Unsaturations
by Jennifer Rosales, Gustavo Cabrera and José Justicia
Molecules 2022, 27(8), 2400; https://doi.org/10.3390/molecules27082400 - 8 Apr 2022
Cited by 3 | Viewed by 2463
Abstract
The stereo- and regioselective total syntheses of OMe derivatives of the scarce bioactive meroterpenoids makassaric acid (1) and fascioquinol B (2) have been accomplished. The synthetic sequences are based on the following three efficient and selective catalytic reactions: Cu-catalyzed [...] Read more.
The stereo- and regioselective total syntheses of OMe derivatives of the scarce bioactive meroterpenoids makassaric acid (1) and fascioquinol B (2) have been accomplished. The synthetic sequences are based on the following three efficient and selective catalytic reactions: Cu-catalyzed addition of Grignard compounds to an epoxide; a regioselective Barbier-type reaction, catalyzed by Cp2TiCl; and regio- and stereoselective bioinspired cyclization, also catalyzed by Cp2TiCl. These three key processes allow us to obtain the main skeletons of 1 and 2 in a few steps. The valuable synthetic proposal shown in this work provides fast access to scarce, structurally complex meroterpenes with promising biological activities, which are a sustainable source for later studies and applications in medicine. Full article
(This article belongs to the Section Applied Chemistry)
Show Figures

Figure 1

15 pages, 6122 KiB  
Article
Synthesis of Half-Titanocene Complexes Containing π,π-Stacked Aryloxide Ligands, and Their Use as Catalysts for Ethylene (Co)polymerizations
by Jin Gu, Xiaohua Wang, Wenpeng Zhao, Rui Zhuang, Chunyu Zhang, Xuequan Zhang, Yinghui Cai, Wenbo Yuan, Bo Luan, Bo Dong and Heng Liu
Polymers 2022, 14(7), 1427; https://doi.org/10.3390/polym14071427 - 31 Mar 2022
Cited by 2 | Viewed by 2602
Abstract
A family of half-titanocene complexes bearing π,π-stacked aryloxide ligands and their catalytic performances towards ethylene homo-/co- polymerizations were disclosed herein. All the complexes were well characterized, and the intermolecular π,π-stacking interactions could be clearly identified from single crystal X-ray analysis, in which a [...] Read more.
A family of half-titanocene complexes bearing π,π-stacked aryloxide ligands and their catalytic performances towards ethylene homo-/co- polymerizations were disclosed herein. All the complexes were well characterized, and the intermolecular π,π-stacking interactions could be clearly identified from single crystal X-ray analysis, in which a stronger interaction could be reflected for aryloxides bearing bigger π-systems, e.g., pyrenoxide. Due to the formation of such interactions, these complexes were able to highly catalyze the ethylene homopolymerizations and copolymerization with 1-hexene comonomer, even without any additiveson the aryloxide group, which showed striking contrast to other half-titanocene analogues, implying the positive influence of π,π-stacking interaction in enhancing the catalytic performances of the corresponding catalysts. Moreover, it was found that addition of external pyrene molecules was capable of boosting the catalytic efficiency significantly, due to the formation of a stronger π,π-stacking interaction between the complexes and pyrene molecules. Full article
(This article belongs to the Special Issue Coordination Polymer II)
Show Figures

Graphical abstract

11 pages, 4142 KiB  
Article
Hypergolic Synthesis of Inorganic Materials by the Reaction of Metallocene Dichlorides with Fuming Nitric Acid at Ambient Conditions: The Case of Photocatalytic Titania
by Nikolaos Chalmpes, Georgios Asimakopoulos, Maria Baikousi, Athanasios B. Bourlinos, Michael A. Karakassides and Dimitrios Gournis
Sci 2021, 3(4), 46; https://doi.org/10.3390/sci3040046 - 3 Dec 2021
Cited by 2 | Viewed by 3100
Abstract
Hypergolic materials synthesis is a new preparative technique in materials science that allows a wide range of carbon or inorganic solids with useful properties to be obtained. Previously we have demonstrated that metallocenes are versatile reagents in the hypergolic synthesis of inorganic materials, [...] Read more.
Hypergolic materials synthesis is a new preparative technique in materials science that allows a wide range of carbon or inorganic solids with useful properties to be obtained. Previously we have demonstrated that metallocenes are versatile reagents in the hypergolic synthesis of inorganic materials, such as γ-Fe2O3, Cr2O3, Co, Ni and alloy CoNi. Here, we go one step further by using metallocene dichlorides as precursors for the hypergolic synthesis of additional inorganic phases, such as photocatalytic titania. Metallocene dichlorides are closely related to metallocenes, thus expanding the arsenal of organometallic compounds that can be used in hypergolic materials synthesis. In the present case, we show that hypergolic ignition of the titanocene dichloride–fuming nitric acid pair results in the fast and spontaneous formation of titania nanoparticles at ambient conditions in the form of anatase–rutile mixed phases. The obtained titania shows good photocatalytic activity towards Cr(VI) removal (100% within 9 h), with the latter being dramatically enhanced after calcination of the powder at 500 °C (100% within 3 h). Notably, this performance was found to be comparable to that of commercially available P25 TiO2 under identical conditions. The cases of zirconocene, hafnocene and molybdocene dichlorides are discussed in this work, which aims to show the wider applicability of metallocene dichlorides in the hypergolic synthesis of inorganic materials (ZrO2, HfO2, MoO2). Full article
(This article belongs to the Special Issue Feature Papers 2021 Editors Collection)
Show Figures

Figure 1

Back to TopTop