Palladium-Catalyzed Cross-Coupling Reaction of Bis(cyclopentadienyl)diaryltitaniums with Terminal Alkynes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Bis(cyclopentadienyl)diaryltitanium
2.2. Molecular Structures of 2c
2.3. Cross-Coupling Reactions of Diaryltitanocenes with Terminal Alkynes
3. Conclusions
4. Materials and Methods
4.1. General Information
4.2. Synthesis of Bis(cyclopentadienyl)diaryltitanium
4.3. Single-Crystal X-ray Diffraction Experiment of 2c
Crystal Data for 2c
4.4. General Procedure for the Synthesis of 1,2-Disubtituted Alkyne
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kulinkovich, O. Organotitanium and organozirconium reagents. In Comprehensive Organic Synthesis, 2nd ed.; Knochel, P., Molander, G.A., Eds.; Elsevier, B.V.: Amsterdam, The Netherlands, 2014; pp. 124–158. [Google Scholar]
- Wolan, A.; Six, Y. Synthetic transformations mediated by the combination of titanium(IV) alkoxides and grignard reagents: Selectivity issues and recent applications. Part 1: Reactions of carbonyl derivatives and nitriles. Tetrahedron 2010, 66, 15–61. [Google Scholar] [CrossRef]
- Hughes, D.L. Applications of organotitanium reagents. Top. Organomet. Chem. 2004, 6, 37–61. [Google Scholar]
- Hayashi, T.; Yamasaki, K. Rhodium-catalyzed asymmetric 1,4-addition and its related asymmetric reactions. Chem. Rev. 2003, 103, 2829–2844. [Google Scholar] [CrossRef] [PubMed]
- Han, J.W.; Tokunaga, N.; Hayashi, T. Palladium- or nickel-catalyzed cross-coupling of organotitanium reagents with aryl triflates and halides. Synlett 2002, 2002, 871–874. [Google Scholar] [CrossRef]
- Manolikakes, G.; Dastbaravardeh, N.; Knochel, P. Nickel-catalyzed cross-coupling reactions of aryltitanium(IV) alkoxides with aryl halides. Synlett 2007, 2007, 2077–2080. [Google Scholar] [CrossRef]
- Lee, H.W.; Lam, F.L.; So, C.M.; Lau, C.P.; Chan, A.S.C.; Kwong, F.Y. Palladium-catalyzed cross-coupling of aryl halides using organotitanium nucleophiles. Angew. Chem. Int. Ed. 2009, 48, 7436–7439. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-R.; Zhou, S.; Biradar, D.B.; Gau, H.-M. Extremely efficient cross-coupling of benzylic halides with aryltitanium tris(isopropoxide) catalyzed by low loadings of a simple palladium(II) acetate/tris(p-tolyl)phosphine system. Adv. Synth. Catal. 2010, 352, 1718–1727. [Google Scholar] [CrossRef]
- Li, Q.-H.; Liao, J.-W.; Huang, Y.-L.; Chiang, R.-T.; Gau, H.-M. Nickel-catalyzed substitution reactions of propargyl halides with organotitanium reagents. Org. Biomol. Chem. 2014, 12, 7634–7642. [Google Scholar] [CrossRef]
- Varenikov, A.; Gandelman, M. Organotitanium nucleophiles in asymmetric cross-coupling reaction: Stereoconvergent synthesis of chiral α-CF3 thioethers. J. Am. Chem. Soc. 2019, 141, 10994–10999. [Google Scholar] [CrossRef]
- Sonogashira, K.; Tohda, Y.; Hagihara, N. A convenient synthesis of acetylenes: Catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett. 1975, 16, 4467–4470. [Google Scholar] [CrossRef]
- Wang, D.; Gao, S. Sonogashira coupling in natural product synthesis. Org. Chem. Front. 2014, 1, 556–566. [Google Scholar] [CrossRef]
- Chinchilla, R.; Nájera, C. The Sonogashira reaction: a booming methodology in synthetic organic chemistry. Chem. Rev. 2007, 107, 874–922. [Google Scholar] [CrossRef] [PubMed]
- Biajoli, A.F.P.; Schwalm, C.S.; Limberger, J.; Claudino, T.S.; Monteiro, A.L. Recent progress in the use of Pd-catalyzed C-C cross-coupling reactions in the synthesis of pharmaceutical compounds. J. Braz. Chem. Soc. 2014, 25, 2186–2214. [Google Scholar] [CrossRef]
- Zou, G.; Zhu, J.; Tang, J. Cross-coupling of arylboronic acids with terminal alkynes in air. Tetrahedron Lett. 2003, 44, 8709–8711. [Google Scholar] [CrossRef]
- Yang, F.; Wu, Y. Facile synthesis of substituted alkynes by cyclopalladated ferrocenylimine catalyzed cross-coupling of arylboronic acids/esters with terminal alkynes. Eur. J. Org. Chem. 2007, 2007, 3476–3479. [Google Scholar] [CrossRef]
- Zhou, M.-B.; Wei, W.-T.; Xie, Y.-X.; Lei, Y.; Li, J.-H. Palladium-catalyzed cross-coupling of electron-poor terminal alkynes with arylboronic acids under ligand-free and aerobic conditions. J. Org. Chem. 2010, 75, 5635–5642. [Google Scholar] [CrossRef] [PubMed]
- Nie, X.; Liu, S.; Zong, Y.; Sun, P.; Bao, J. Facile synthesis of substituted alkynes by nano-palladium catalyzed oxidative cross-coupling reaction of arylboronic acids with terminal alkynes. J. Organomet. Chem. 2011, 696, 1570–1573. [Google Scholar] [CrossRef]
- Lu, L.; Chellan, P.; Smith, G.S.; Zhang, X.; Yan, H.; Mao, J. Thiosemicarbazone salicylaldiminato palladium(II)-catalyzed alkynylation couplings between arylboronic acids and alkynes or alkynyl carboxylic acids. Tetrahedron 2014, 70, 5980–5985. [Google Scholar] [CrossRef]
- Zhu, M.; Zhou, Z.; Chen, R. A novel Pd/Ag-catalyzed Sonogashira coupling reaction of terminal alkynes with hypervalent iodonium salts. Synthesis 2008, 17, 2680–2682. [Google Scholar] [CrossRef]
- Ye, Z.; Liu, M.; Lin, B.; Wu, H.; Ding, J.; Cheng, J. Palladium-catalyzed cross-coupling reaction of aryl trimethoxysilanes with terminal alkynes. Tetrahedron Lett. 2009, 50, 530–532. [Google Scholar] [CrossRef]
- Matsumura, M.; Yamada, M.; Tsuji, T.; Murata, Y.; Kakusawa, N.; Yasuike, S. Palladium-catalyzed cross-coupling reactions of triarylbismuthanes with terminal alkynes under aerobic conditions. J. Organomet. Chem. 2015, 794, 70–75. [Google Scholar] [CrossRef]
- Hwang, L.K.; Na, Y.; Lee, J.; Do, Y.; Chang, S. Tetraarylphosphonium halides as arylating reagents in Pd-catalyzed Heck and cross-coupling reactions. Angew. Chem. Int. Ed. 2005, 44, 6166–6169. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Qin, W.; Kakusawa, N.; Yasuike, S.; Kurita, J. Copper- and base-free Sonogashira-type cross-coupling reaction of triarylantimony dicarboxylates with terminal alkynes under an aerobic condition. Tetrahedron Lett. 2009, 50, 6293–6297. [Google Scholar] [CrossRef]
- Yoshida, Y.; Nogi, K.; Yorimitsu, H. C–S Bond alkynylation of diaryl sulfoxides with terminal alkynes by means of a Palladium–NHC catalyst. Synlett 2017, 28, 2561–2564. [Google Scholar]
- Zhang, S.; Ailneni, C.; Baqer, O.A.-M.; Lolla, M.; Mannava, B.B.; Siraswal, P.; Yen, C.; Jin, J. Diorganyl tellurides as substrates in Sonogashira coupling reactions under mild conditions. Synth. Commun. 2020, 50, 217–225. [Google Scholar] [CrossRef]
- Summers, L.; Uloth, R.H.; Holmes, A. Diaryl bis-(cyclopentadienyl)-titanium compounds. J. Am. Chem. Soc. 1955, 77, 3604–3606. [Google Scholar] [CrossRef]
- Tung, H.-S.; Brubaker, C.H., Jr. Photochemical decomposition of (diphenyl)bis(η5-cyclopentadienyl) titanium, (diphenyl)bis(η5-pentamethylcyclopentadienyl) titanium and the zirconium analogs. Inorg. Chim. Acta 1981, 52, 197–204. [Google Scholar] [CrossRef]
- Kocman, V.; Rucklidge, J.C.; O’Brien, R.J.; Santo, W. Crystal and molecular structure of (C5H5)2Ti(C6H5)2. J. Chem. Soc. D 1971, 21, 1340. [Google Scholar] [CrossRef]
- Beachell, H.C.; Butter, S.A. Nuclear magnetic resonance spectra of titanocene sandwich compounds. Inorg. Chem. 1965, 4, 1133–1140. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H.J. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT-Integrated space-group and crystal-structure determination. Acta Cryst. 2015, A71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8. [Google Scholar]
- Wilson, K.L.; Kennedy, A.R.; Murray, J.; Greatrex, B.; Jamieson, C.; Watson, A.J.B. Scope and limitations of a DMF bio-alternative within Sonogashira cross-coupling and Cacchi-type annulation. Beilstein J. Org. Chem. 2016, 12, 2005–2011. [Google Scholar] [CrossRef]
- Ruengsangtongkul, S.; Chaisan, N.; Thongsornkleeb, C.; Tummatorn, J.; Ruchirawat, S. Rate Enhancement in CAN-promoted Pd(PPh3)2Cl2-catalyzed oxidative cyclization: Synthesis of 2-ketofuran-4-carboxylate esters. Org. Lett. 2019, 21, 2514−2517. [Google Scholar] [CrossRef]
- Li, X.; Yang, F.; Wu, Y. Palladacycle-catalyzed decarboxylative coupling of alkynyl carboxylic acids with aryl chlorides under air. J. Org. Chem. 2013, 78, 4543–4550. [Google Scholar] [CrossRef]
- Alberto, G.-H.; Fady, N.; Jiufeng, W.; Frédéric, I.; Marcel, B.; Catherine, C.S.J.; Steven, P.N. Synthesis of di-substituted alkynes via palladium-catalyzed decarboxylative coupling and C-H activation. ChemistrySelect 2019, 4, 5–9. [Google Scholar]
Bond Lengths (Å) | |
---|---|
Ti-Cp (1) (average) | 2.392 |
Ti-Cp (1′) (average) | 2.392 |
Ti-C (1) | 2.2107(15) |
Ti-C (1′) | 2.2107(15) |
Bond angles (°) | |
C (1)-Ti-C (1′) | 98.66(8) |
C (1)-Ti-Cp (1) (left) | 102.44 |
C (1′)-Ti-Cp (1) (left) | 108.18 |
Entry | Pd cat. | Additive | Solvent | 4a (%) b,c | 5 (%) b,d |
---|---|---|---|---|---|
1 | Pd(OAc)2 | AgF | DMF | 99 (98)e | --- |
2 | PdCl2 | AgF | DMF | 67 | --- |
3 | PdCl2(PPh3)2 | AgF | DMF | 93 | 1 |
4 | Pd(PPh3)4 | AgF | DMF | 77 | --- |
5 | Pd(dba)2 | AgF | DMF | 80 | 1 |
6 | --- | AgF | DMF | 3 | 1 |
7 | Pd(OAc)2 | AgOAc | DMF | 4 | --- |
8 | Pd(OAc)2 | AgNO3 | DMF | 19 | 1 |
9 | Pd(OAc)2 | Ag2O | DMF | --- | --- |
10 | Pd(OAc)2 | CsF | DMF | --- | --- |
11 | Pd(OAc)2 | --- | DMF | --- | 3 |
12 | Pd(OAc)2 | AgF | DMA | 86 | --- |
13 | Pd(OAc)2 | AgF | DMSO | 84 | --- |
14 | Pd(OAc)2 | AgF | NMP | 80 | --- |
15 | Pd(OAc)2 | AgF | CH3CN | 74 | --- |
16 | Pd(OAc)2 | AgF | CH3OH | 71 | --- |
17 | Pd(OAc)2 | AgF | THF | 17 | 3 |
18 | Pd(OAc)2 | AgF | CH2Cl2 | 2 | --- |
19 | Pd(OAc)2 | AgF | Toluene | --- | --- |
20f | Pd(OAc)2 | AgF | DMF | 87 | 2 |
21g | Pd(OAc)2 | AgF | DMF | 65 | 2 |
22h | Pd(OAc)2 | AgF | DMF | 20 | --- |
Diaryltitanocene (2) | X | Acetylene (3) | R | Isolated Yield (%) | |
---|---|---|---|---|---|
2c | Me | 3a | C6H5 | 4b: 76 | |
2d | Cl | 3a | C6H5 | 4c: 55 | |
2e | CF3 | 3a | C6H5 | 4d: 73 | |
2a | H | 3b | 4-MeOC6H4 | 4e: --- | |
2a | H | 3c | 4-MeC6H4 | 4b: 88 | |
2a | H | 3d | 4-ClC6H4 | 4c: 61 | |
2a | H | 3e | 4-BrC6H4 | 4f: 68 | |
2a | H | 3f | 4-CF3C6H4 | 4d: 63 | |
2a | H | 3g | 2-MeC6H4 | 4g: 94 | |
2a | H | 3h | 2,4,6-MeC6H2 | 4h: 65 | |
2a | H | 3i | Cyclohexenyl | 4i: 55 | |
2a | H | 3j | n-Butyl | 4j: 48 | |
2a | H | 3k | 2-Thienyl | 4k: 34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murata, Y.; Nishi, Y.; Matsumura, M.; Yasuike, S. Palladium-Catalyzed Cross-Coupling Reaction of Bis(cyclopentadienyl)diaryltitaniums with Terminal Alkynes. Reactions 2023, 4, 657-666. https://doi.org/10.3390/reactions4040037
Murata Y, Nishi Y, Matsumura M, Yasuike S. Palladium-Catalyzed Cross-Coupling Reaction of Bis(cyclopentadienyl)diaryltitaniums with Terminal Alkynes. Reactions. 2023; 4(4):657-666. https://doi.org/10.3390/reactions4040037
Chicago/Turabian StyleMurata, Yuki, Yuya Nishi, Mio Matsumura, and Shuji Yasuike. 2023. "Palladium-Catalyzed Cross-Coupling Reaction of Bis(cyclopentadienyl)diaryltitaniums with Terminal Alkynes" Reactions 4, no. 4: 657-666. https://doi.org/10.3390/reactions4040037