High-Efficiency Mono-Cyclopentadienyl Titanium and Rare-Earth Metal Catalysts for the Production of Syndiotactic Polystyrene
Abstract
:1. Introduction
2. Properties and Application of Syndiotactic Polystyrene (SPS)
2.1. SPS Condensed Matter Structure and Properties
2.2. Applications of SPS Materials
3. Mono-Cp’ Metallocene Catalysts
3.1. Mono-Cp’ Metallocene Catalyst Characteristics
3.2. Mono-Cp’ Titanocene Catalysts
3.3. Mono-Cp’-RE Metal Catalysts
4. Summary
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saunders, K.J. Organic Polymer Chemistry, 2nd ed.; Chapman & Hall: New York, NY, USA, 1988; ISBN 0-412-27570-8. [Google Scholar]
- Owen, M.M.; Achukwu, E.O.; Romli, A.Z.; Akil, H.M. Recent advances on improving the mechanical and thermal properties of kenaf fibers/engineering thermoplastic composites using novel coating techniques: A review. Compos. Interface 2023, 30, 849–875. [Google Scholar] [CrossRef]
- Yang, J.S.; Fang, Y.W.; Zhu, M. An Acrylonitrile-Butadiene-Styrene Copolymer Composition and Its Preparation Method. CN201710737281.2, 10 May 2017. [Google Scholar]
- Zheng, A.N.; Jin, L.; Yang, J.Q.; Li, W.Q.; Wang, Z.Y.; Yang, F.Z.; Zhan, D.P.; Tian, Z.Q. Advances in Pretreatments for Electroless Copper Plating on Polymer Materials. Acta Chim. Sin. 2022, 80, 659–667. [Google Scholar] [CrossRef]
- Yang, J.S.; He, J. A Modified Acrylate-Styrene-Acrylonitrile Copolymer for Solar Water Heater Housing and a Preparation Method Thereof. CN201811433550.7, 6 June 2018. [Google Scholar]
- Men, H.; Yin, C.B.; Shi, Y.; Liu, X.T.; Fang, H.R.; Han, X.J.; Liu, J.J. Quantification of Acrylonitrile Butadiene Styrene Odor Intensity Based on a Novel Odor Assessment System With a Sensor Array. Ieee Access 2020, 8, 33237–33249. [Google Scholar] [CrossRef]
- Gu, J.; Venkataswamy, K. Damping Thermoplastic Elastomer Blends Exhibiting Clarity. US201816606071, 28 February 2018. [Google Scholar]
- Liu, R.F. Composite Materials Used in Electronic Equipment and Their Production Methods. CN202011108731.X, 5 January 2020. [Google Scholar]
- Kong, L.K. The Invention Relates to a Copolymerized SBS Elastomer Modified Asphalt Waterproof Coil. CN202222288029.7, 3 January 2022. [Google Scholar]
- Robinson, E.H. Styrene Maleic Anhydride Polymer in Cosmetics and Personal Care Products. CN201810858144.9, 4 January 2018. [Google Scholar]
- Yi, J.; Nakatani, N.; Tomostu, N.; Nomura, K.; Hada, M. Theoretical Studies of Reaction Mechanisms for Half-Titanocene-Catalyzed Styrene Polymerization, Ethylene Polymerization, and Styrene-Ethylene Copolymerization: Roles of the Neutral Ti(III) and the Cationic Ti(IV) Species. Organometallics 2021, 40, 643–653. [Google Scholar] [CrossRef]
- Jozaghkar, M.R.; Ziaee, F.; Jalilian, S. Synthesis, kinetic study and characterization of living anionic polymerized polystyrene in cyclohexane. Iran. Polym. J. 2022, 31, 399–412. [Google Scholar] [CrossRef]
- Ilhanli, O.B.; Erdogan, T.; Tunca, U.; Hizal, G. Acrylonitrile-containing polymers via combination of metal-catalyzed living radical and nitroxide-mediated free-radical polymerization routes. J. Polym. Sci. Pol. Chem. 2006, 44, 3374–3381. [Google Scholar] [CrossRef]
- Lin, F.; Liu, Z.H.; Wang, M.Y.; Liu, B.; Li, S.H.; Cui, D.M. Chain Transfer to Toluene in Styrene Coordination Polymerization. Angew. Chem. Int. Ed. 2020, 59, 4324–4328. [Google Scholar] [CrossRef]
- Natta, G.; Pino, P.; Corradini, P.; Danusso, F.; Mantica, E.; Mazzanti, G.; Moraglio, G. 1-Crystalline High Polymers of α-Olefins. J. Amer. Chem. Soc. 1967, 77, 1–4. [Google Scholar] [CrossRef]
- Natta, V.G.; Corradini, P.; Bassi, I.W. Vorläufige Mitteilung: Über die Kristallstruktur des isotaktischen Poly-α-butens. Macromol. Chem. Phys. 1956, 21, 240–244. [Google Scholar] [CrossRef]
- Sinn, H.; Kaminsky, W.; Vollmer, H.J.; Woldt, R. “Living Polymers” on Polymerization with Extremely Productive Ziegler Catalysts. Angew. Chem. Int. Ed. 1980, 19, 390–392. [Google Scholar] [CrossRef]
- Jordan, R.F.; Bajgur, C.S.; Willett, R.; Scott, B. ChemInform Abstract: Ethylene Polymerization by a Cationic Dicyclopentadienylzirconium(IV) Alkyl Complex. Chemlnform 1987, 18, 135. [Google Scholar] [CrossRef]
- Laur, E.; Kirillov, E.; Carpentier, J.F. Engineering of Syndiotactic and Isotactic Polystyrene-Based Copolymers via Stereoselective Catalytic Polymerization. Molecules 2017, 22, 594–625. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.S.; Kirillov, E.; Roisnel, T.; Razavi, A.; Vuillemin, B.; Carpentier, J.F. Highly isospecific styrene polymerization catalyzed by single-component bridged bis(indenyl) allyl yttrium and neodymium complexes. Angew. Chem. Int. Ed. 2007, 46, 7240–7243. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, Y.; Watanabe, K.; Ueyama, N.; Nakamura, A.; Harada, A.; Okuda, J. Titanium complexes having chelating diaryloxo ligands bridged by tellurium and their catalytic behavior in the polymerization of ethylene. Organometallics 2000, 19, 2498–2503. [Google Scholar] [CrossRef]
- Mani, R.; Burns, C.M. Homo-and copolymerization of ethylene and styrene using TiCl3 (AA)/methylaluminoxane. Macromolecules 1991, 24, 5476–5477. [Google Scholar] [CrossRef]
- Bryliakov, K.P.; Talsi, E.P. Frontiers of mechanistic studies of coordination polymerization and oligomerization of alpha-olefins. Coord. Chem. Rev. 2013, 256, 2994–3007. [Google Scholar] [CrossRef]
- Annunziata, L.; Monasse, B.; Rizzo, P.; Guerra, G.; Duc, M.; Carpentier, J.F. On the crystallization behavior of syndiotactic-b-atactic polystyrene stereodiblock copolymers, atactic/syndiotactic polystyrene blends, and aPS/sPS blends modified with sPS-b-aPS. Mater. Chem. Phys. 2013, 141, 891–902. [Google Scholar] [CrossRef]
- Cazzaniga, L.; Cohen, R.E. Anionic synthesis of isotactic polystyrene. Macromolecules 2002, 22, 4125–4128. [Google Scholar] [CrossRef]
- Ishihara, N.; Seimiya, T.; Kuramoto, M. Crystalline syndiotactic polystyrene. Macromolecules 2002, 19, 2464–2465. [Google Scholar] [CrossRef]
- Greis, O.; Xu, Y.; Asano, T.; Petermann, J. Morphology and structure of syndiotactic polystyrene. Polymer 1989, 30, 590–594. [Google Scholar] [CrossRef]
- Zhang, X.X.; Liu, Q.; Yin, J.; Hong, R.; Huang, F.W.; Yang, H.R.; Zhong, G.J.; Liu, D.; Xu, J.Z.; Li, Z.M. Promoted Formation of alpha Crystals in the Polymorph Selection of Syndiotatic Polystyrene under the Coupling of Pressure, Flow, and Temperature. Macromolecules 2022, 55, 5094–5103. [Google Scholar] [CrossRef]
- Gowd, E.B.; Tashiro, K.; Ramesh, C. Structural phase transitions of syndiotactic polystyrene. Prog. Polym. Sci. 2009, 34, 280–315. [Google Scholar] [CrossRef]
- Zhao, Y.; Matsuba, G.; Nishida, K.; Kanaya, T.; Ito, H. Shear-induced crystallization and viscoelastic behavior of isotactic and syndiotactic polystyrene. In Proceedings of the 242nd National Meeting of the American-Chemical-Society (ACS), Denver, CO, USA, 28 August–1 September 2011. [Google Scholar]
- Guerra, G.; Vitagliano, V.M.; Rosa, C.; Petraccone, V.; Corradini, P. Polymorphism in melt crystallized syndiotactic polystyrene samples. Macromolecules 1990, 23, 1539–1544. [Google Scholar] [CrossRef]
- Toshiyuki, U.; Toshiyuki, S.; Tokiji, K.; Akashi, F.; Kei, M. Synthesis of polystyenes with different stereoregularities by anionic polymerization. J. Polym. Sci. Polym. Chem. Ed. 1976, 14, 3035–3044. [Google Scholar] [CrossRef]
- Rodrigues, A.S.; Kirillov, E.; Carpentier, J.F. Group 3 and 4 Single-site Catalysts for Stereospecific Polymerization of Styrene. Coordin. Chem. Rev. 2008, 252, 2115–2136. [Google Scholar] [CrossRef]
- Lee, W.; Lee, H.; Cha, J.; Chang, T.Y.; Hanley, K.; Lodge, T.P. Molecular Weight Distribution of Polystyrene Made by Anionic Polymerization. Macromolecules 2000, 33, 5114–5115. [Google Scholar] [CrossRef]
- Samal, P.; Samal, J.K.; Gubbins, E.; Vroemen, P.; Blitterswijk, C.; Truckenmüller, R.; Giselbrecht, S. Polystyrene Pocket Lithography-Sculpting Plastic with Light. Adv. Mater. 2022, 34, 687. [Google Scholar] [CrossRef]
- Uematsu, H.; Sudo, K.; Eguchi, T.; Yamaguchi, A.; Hirata, T.; Koori, Y.; Yasuda, H.; Senga, M.; Yamane, M.; Ozaki, Y.; et al. Improvement of interfacial shear strength between syndiotactic polystyrene and carbon fiber by Self-localization of acid modified poly (2,6-dimethyl-1,4-phenylene ether) on the surface of carbon fiber. Compos. Part A-Appl. Sci. Manuf. 2022, 153, 106706. [Google Scholar] [CrossRef]
- Schellenberg, J.; Leder, H.J. Syndiotactic polystyrene: Process and applications. Adv. Polym. Tech. 2019, 37, 570–577. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiang, Y.; Zhang, K.; Cai, Z.Y.; Li, S.H.; Cui, D.M. DMAO-activated Rare-earth Metal Catalysts for Styrene and Its Derivative Polymerization. Chin. J. Polym. Sci. 2021, 39, 1185–1190. [Google Scholar] [CrossRef]
- Razavi, A. Syndiotactic Polypropylene: Discovery, Development, and Industrialization via Bridged Metallocene Catalysts. Adv. Polym. Sci. 2013, 258, 43–116. [Google Scholar] [CrossRef]
- Heck, C.A.; Stedile, F.C.; Santos, J.H. Metallocene encapsulated within a hybrid silica-polystyrene support. Iran. Polym. J. 2021, 30, 495–503. [Google Scholar] [CrossRef]
- Hejazi-Dehaghani, Z.A.; Arabi, H.; Thalheim, D.; Vidakovic, D.; Haghighi, M.N.; Veith, L.; Klapper, M. Organic Versus Inorganic Supports for Metallocenes: The Influence of Rigidity on the Homogeneity of the Polyolefin Microstructure and Properties. Macromolecules 2021, 54, 2667–2680. [Google Scholar] [CrossRef]
- Baugh, L.S.; Schulz, D.N. Discovery of Syndiotactic Polystyrene: Its Synthesis and Impact. Macromolecules 2020, 53, 3627–3631. [Google Scholar] [CrossRef]
- Zapata, P.A.; Zamora, P.; Canales, D.A.; Quijada, R.; Benavente, R.; Rabagliati, F.M. Preparation of nanocomposites based on styrene/(p-methylstyrene) and SiO2 nanoparticles, through a metallocene-MAO initiating system. Polym. Bull. 2019, 76, 1041–1058. [Google Scholar] [CrossRef]
- Nishiura, M.; Guo, F.; Hou, Z.M. Half-Sandwich Rare-Earth-Catalyzed Olefin Polymerization, Carbometalation, and Hydroarylation. Acc. Chem. Res. 2015, 48, 2209–2220. [Google Scholar] [CrossRef]
- Leone, O.; Pasquale, L.; Lorella, I.; Martino, D.S. Zirconocene-Based Catalysts for the Ethylene−Styrene Copolymerization: Reactivity Ratios and Reaction Mechanism. Macromolecules 1997, 30, 5616–5619. [Google Scholar] [CrossRef]
- Ishihara, N.; Kuramoto, M.; Uoi, M. Stereospecific polymerization of styrene giving the syndiotactic polymer. Macromolecules 1988, 21, 3356–3360. [Google Scholar] [CrossRef]
- Kaminsky, W.; Lenk, S.; Scholz, V.; Roesky, H.W.; Herzog, A. Fluorinated Half-Sandwich Complexes as Catalysts in Syndiospecific Styrene Polymerization. Macromolecules 1997, 30, 7647–7650. [Google Scholar] [CrossRef]
- Kucht, A.; Kucht, H.; Barry, S.; Chien, J.; Rausch, M. New syndiospecific catalysts for styrene polymerization. Organometallics 1993, 12, 3075–3078. [Google Scholar] [CrossRef]
- Liu, J.F.; Ma, H.Y.; Huang, J.L.; Qian, Y.L. Syndiotactic polymerization of styrene with CpTiCl2(OR)/MAO system. Eur. Polym. J. 2000, 36, 2055–2058. [Google Scholar] [CrossRef]
- Qian, X.M.; Huang, J.L.; Qian, Y.L.; Wang, C. Syndiotactic polymerization of styrene catalyzed by alkenyl-substituted cyclopentadienyltitanium trichlorides. Appl. Organomet. Chem. 2003, 17, 277–281. [Google Scholar] [CrossRef]
- Byun, D.J.; Fudo, A.; Tanaka, A.; Fujiki, M.; Nomura, K. Effect of Cyclopentadienyl and Anionic Ancillary Ligand in Syndiospecific Styrene Polymerization Catalyzed by Nonbridged Half-Titanocenes Containing Aryloxo, Amide, and Anilide Ligands: Cocatalyst Systems. Macromolecules 2004, 37, 5520–5530. [Google Scholar] [CrossRef]
- Baird, M.C. Carbocationic Alkene Polymerizations Initiated by Organotransition Metal Complexes: An Alternative, Unusual Role for Soluble Ziegler−Natta Catalysts. Chem. Rev. 2000, 100, 1471–1478. [Google Scholar] [CrossRef]
- Thomas, E.R.; Robeta, O.D.; James, C.C.; Marvin, D.R.; Thomas, E. Ready. (.eta.5-Indenyl)trichlorotitanium. An improved syndiotactic polymerization catalyst for styrene. Macromolecules 1993, 26, 5822–5823. [Google Scholar] [CrossRef]
- Hoff, M.; Kaminsky, W. Syndiospecific Homopolymerisation of Higher 1-Alkenes with Two Different Bridged[(RPh)2C(Cp)(2,7-tert-BuFlu)]ZrCl2 Catalysts. Macromol. Chem. Phys. 2004, 205, 1167–1173. [Google Scholar] [CrossRef]
- Xu, G.X.; Ruckenstein, E. Syndiospecific polymerization of styrene using fluorinated indenyltitanium complexes. J. Polym. Sci. Pol. Chem. 1999, 37, 2481–2488. [Google Scholar] [CrossRef]
- Ma, H.Y.; Chen, B.; Huang, J.L.; Qian, Y.L. Steric and electronic effects of the R in IndTiCl2(OR) catalysts on the syndiospecific polymerization of styrene. J. Mol. Catal. A-Chem. 2001, 170, 67–73. [Google Scholar] [CrossRef]
- Schneider, N.; Prosenc, M.H.; Brintzinger, H.H. Cyclopenta[i]phenanthrene titanium trichloride derivatives: Syntheses, crystal structure and properties as catalysts for styrene polymerization. J. Organomet. Chem. 1997, 545, 291–295. [Google Scholar] [CrossRef]
- Gromada, J.; Carpentier, J.F.; Mortreux, A. Group 3 metal catalysts for ethylene and α-olefin polymerization. Coord. Chem. Rev. 2004, 248, 397–410. [Google Scholar] [CrossRef]
- Hou, Z.M.; Wakatsuki, Y. Recent developments in organolanthanide polymerization catalysts. Coord. Chem. Rev. 2002, 231, 1–22. [Google Scholar] [CrossRef]
- Nishiura, M.; Hou, Z.M. Novel polymerization catalysts and hydride clusters from rare-earth metal dialkyls. Nat. Chem. 2010, 2, 257–268. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.J.; Baldamus, J.; Hou, Z.M. Scandium Half-Metallocene-Catalyzed SyndiospecificStyrene Polymerization and Styrene−Ethylene Copolymerization: Unprecedented Incorporation of Syndiotactic Styrene−Styrene Sequences in Styrene−Ethylene Copolymers. J. Am. Chem. Soc. 2004, 126, 13910–13911. [Google Scholar] [CrossRef]
- Hitzbleck, J.; Beckerle, K.; Okuda, J. Half-sandwich dibenzyl complexes of scandium: Synthesis, structure, and styrene polymerization activity. J. Organomet. Chem. 2007, 692, 4702–4707. [Google Scholar] [CrossRef]
- Hitzbleck, J.; Okuda, J. Synthesis, Characterization, and Polymerization Activity of the Scandium Half-Sandwich Complex [Sc(η5-C5Me4{SiMe2(C6F5)})(CH2SiMe3)2(THF)]. Z. Anorg. Allg. Chem. 2006, 632, 1947–1949. [Google Scholar] [CrossRef]
- Hitzbleck, J.; Okuda, J. Ring-opening of a furyl group appended to the cyclopentadienyl ligand in rare-earth metal half-sandwich complexes. Organometallics 2007, 26, 3227–3235. [Google Scholar] [CrossRef]
- Luo, Y.; Feng, X.; Wang, Y.; Fan, S.; Chen, J.; Lei, Y.; Liang, H. Half-sandwich scandium bis(amide) complexes as efficient catalyst precursors for syndiospecific polymerization of styrene. Organometallics 2011, 30, 3270–3274. [Google Scholar] [CrossRef]
- Luo, Y.J.; Chi, S.H.; Chen, J. Half-sandwich rare-earth-metal derivatives bearing pyrrolidinyl-functionalized cyclopentadienyl ligand: Synthesis, characterization and catalysis in syndiospecific polymerization of styrene. New J. Chem. 2013, 37, 2675–2682. [Google Scholar] [CrossRef]
- Jaroschik, F.; Shima, T.; Li, X.F. Synthesis, Characterization, and Reactivity of Mono(phospholyl)lanthanoid(III) Bis(dimethylaminobenzyl) Complexes. Organometallics 2007, 26, 5654–5660. [Google Scholar] [CrossRef]
- Nishiura, M.; Mashikoa, T.; Hou, Z.M. Synthesis and styrenepolymerisation catalysis of η5- and η1-pyrrolyl-ligated cationic rare earth metal aminobenzyl complexes. Chem. Commun. 2008, 17, 2019–2021. [Google Scholar] [CrossRef]
- Jian, Z.B.; Tang, S.J.; Cui, D.M. A lutetium allyl complex that bears a pyridyl-functionalized cyclopentadienyl ligand: Dual catalysis on highly syndiospecific and cis-1,4-selective (co)polymerizations of styrene and butadiene. Chem.-Eur. J. 2010, 16, 14007–14015. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.P.; Rong, W.F.; Jian, Z.B.; Cui, D.M. Ligands Dominate Highly Syndioselective Polymerization of Styrene by Using Constrained-geometry-configuration Rare-earth Metal Precursors. Macromolecules 2012, 45, 1248–1253. [Google Scholar] [CrossRef]
- Jian, Z.B.; Cui, D.M.; Hou, Z.M. Rare-Earth-Metal–Hydrocarbyl Complexes Bearing Linked Cyclopentadienyl or Fluorenyl Ligands: Synthesis, Catalyzed Styrene Polymerization, and Structure–Reactivity Relationship. Chem.-Eur. J. 2012, 18, 2674–2684. [Google Scholar] [CrossRef]
- Wang, X.B.; Lin, F.; Qu, J.P.; Hou, Z.M.; Luo, Y. DFT Studies on Styrene Polymerization Catalyzed by Cationic Rare-Earth-Metal Complexes: Origin of Ligand-DependentActivities. Organometallics 2016, 35, 3205–3214. [Google Scholar] [CrossRef]
- Lin, F.; Wang, X.B.; Pan, Y.P.; Wang, M.Y.; Liu, B.; Luo, Y.; Cui, D.M. Nature of the Entire Range of Rare Earth Metal-Based Cationic Catalysts for Highly Active and Syndioselective Styrene Polymerization. ACS Catal. 2016, 6, 176–185. [Google Scholar] [CrossRef]
- Zhang, Z.; Cai, Z.Y.; Pan, Y.P.; Dou, Y.L.; Li, S.H.; Cui, D.M. Substituent Effects of Pyridyl-methylene Cyclopentadienyl Rare-earth Metal Complexes on Styrene Polymerization. Chin. J. Polym. Sci. 2019, 37, 570–577. [Google Scholar] [CrossRef]
Complexes | TR (min) | TP (°C) | Al/Ti Ratio | Activity (kgPS/mol.M) | Tmelt (°C) | Mw (10−5 g/mol) | Syndiotactic Index (%) |
---|---|---|---|---|---|---|---|
CpTiCl3 | 10 | 50 | 300:1 | 198 | 258 | 0.5 | 75.3 |
CpTiF3 | 10 | 50 | 300:1 | 2800 | 265 | 1.2 | 86.2 |
IndTiCl3 | 10 | 50 | 300:1 | 400 | 268 | 1.0 | 94.3 |
IndTiF3 | 10 | 50 | 300:1 | 12,500 | 275 | 5.2 | 98.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, B.; Hu, H.; Kang, D.; Sang, C.; Mao, G.; Xin, S. High-Efficiency Mono-Cyclopentadienyl Titanium and Rare-Earth Metal Catalysts for the Production of Syndiotactic Polystyrene. Molecules 2023, 28, 6792. https://doi.org/10.3390/molecules28196792
Wen B, Hu H, Kang D, Sang C, Mao G, Xin S. High-Efficiency Mono-Cyclopentadienyl Titanium and Rare-Earth Metal Catalysts for the Production of Syndiotactic Polystyrene. Molecules. 2023; 28(19):6792. https://doi.org/10.3390/molecules28196792
Chicago/Turabian StyleWen, Bo, Hongfan Hu, Di Kang, Chenggong Sang, Guoliang Mao, and Shixuan Xin. 2023. "High-Efficiency Mono-Cyclopentadienyl Titanium and Rare-Earth Metal Catalysts for the Production of Syndiotactic Polystyrene" Molecules 28, no. 19: 6792. https://doi.org/10.3390/molecules28196792
APA StyleWen, B., Hu, H., Kang, D., Sang, C., Mao, G., & Xin, S. (2023). High-Efficiency Mono-Cyclopentadienyl Titanium and Rare-Earth Metal Catalysts for the Production of Syndiotactic Polystyrene. Molecules, 28(19), 6792. https://doi.org/10.3390/molecules28196792