Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = Time projection chambers (TPC)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 17914 KiB  
Article
Measurement of Ion Mobilities for the Ion-TPC of NvDEx Experiment
by Tianyu Liang, Meiqiang Zhan, Hulin Wang, Xianglun Wei, Dongliang Zhang, Jun Liu, Chengui Lu, Qiang Hu, Yichen Yang, Chaosong Gao, Le Xiao, Xiangming Sun, Feng Liu, Chengxin Zhao, Hao Qiu and Kai Chen
Universe 2025, 11(5), 163; https://doi.org/10.3390/universe11050163 - 16 May 2025
Viewed by 263
Abstract
In the NνDEx collaboration, a high-pressure gas TPC is being developed to search for the neutrinoless double beta decay. The use of electronegative 82SeF6 gas mandates an ion-TPC. The reconstruction of the z coordinate is to be realized by [...] Read more.
In the NνDEx collaboration, a high-pressure gas TPC is being developed to search for the neutrinoless double beta decay. The use of electronegative 82SeF6 gas mandates an ion-TPC. The reconstruction of the z coordinate is to be realized by exploiting the feature of multiple species of charge carriers. As the initial stage of the development, we studied the properties of the SF6 gas, which is non-toxic and has a similar molecular structure to SeF6. In the paper, we present the measurement of drift velocities and mobilities of the majority and minority negative charge carriers found in SF6 at a pressure of 750 Torr, slightly higher than the local atmospheric pressure. The reduced fields range between 3.0 and 5.5 Td. This was performed using a laser beam to ionize the gas inside a small TPC, with a drift length of 3.7 cm. A customized charge-sensitive amplifier was developed to read out the anode signals induced by the slowly drifting ions. The closure test of the reconstruction of the z coordinate using the difference in the velocities of the two carriers was also demonstrated. Full article
Show Figures

Figure 1

8 pages, 8051 KiB  
Article
Performance of the ICARUS Trigger System at the Booster and NuMI Neutrino Beams
by Riccardo Triozzi
Particles 2025, 8(1), 22; https://doi.org/10.3390/particles8010022 - 3 Mar 2025
Viewed by 576
Abstract
The ICARUS-T600 liquid argon time projection chamber detector takes data at a shallow depth as the far detector of the Short Baseline Neutrino program at Fermilab, searching for sterile neutrinos with the Booster and Main Injector neutrino beams. The ICARUS trigger system exploits [...] Read more.
The ICARUS-T600 liquid argon time projection chamber detector takes data at a shallow depth as the far detector of the Short Baseline Neutrino program at Fermilab, searching for sterile neutrinos with the Booster and Main Injector neutrino beams. The ICARUS trigger system exploits the temporal coincidence of the beams with scintillation light signals detected by 360 photo-multiplier tubes in limited TPC regions. The trigger efficiency measurement leverages cosmic rays collected without any scintillation light requirement, with timing from an external cosmic ray tagger system. The efficiency measured with stopping muons roughly saturates at Eμ∼300 MeV, covering most of the expected energy range of charged-current neutrino interactions. For the latest ICARUS physics runs, special “adder” boards performing the analog sum of light signals were introduced as a complementary trigger to possibly recover low-energy neutrino interactions. Full article
Show Figures

Figure 1

23 pages, 9832 KiB  
Article
Ion Manipulation from Liquid Xe to Vacuum: Ba-Tagging for a nEXO Upgrade and Future 0νββ Experiments
by Dwaipayan Ray, Robert Collister, Hussain Rasiwala, Lucas Backes, Ali V. Balbuena, Thomas Brunner, Iroise Casandjian, Chris Chambers, Megan Cvitan, Tim Daniels, Jens Dilling, Ryan Elmansali, William Fairbank, Daniel Fudenberg, Razvan Gornea, Giorgio Gratta, Alec Iverson, Anna A. Kwiatkowski, Kyle G. Leach, Annika Lennarz, Zepeng Li, Melissa Medina-Peregrina, Kevin Murray, Kevin O’Sullivan, Regan Ross, Raad Shaikh, Xiao Shang, Joseph Soderstrom, Victor Varentsov and Liang Yangadd Show full author list remove Hide full author list
Atoms 2024, 12(12), 71; https://doi.org/10.3390/atoms12120071 - 19 Dec 2024
Cited by 3 | Viewed by 1082
Abstract
Neutrinoless double beta decay (0νββ) provides a way to probe physics beyond the Standard Model of particle physics. The upcoming nEXO experiment will search for 0νββ decay in 136Xe with a projected half-life sensitivity [...] Read more.
Neutrinoless double beta decay (0νββ) provides a way to probe physics beyond the Standard Model of particle physics. The upcoming nEXO experiment will search for 0νββ decay in 136Xe with a projected half-life sensitivity exceeding 1028 years at the 90% confidence level using a liquid xenon (LXe) Time Projection Chamber (TPC) filled with 5 tonnes of Xe enriched to ∼90% in the ββ-decaying isotope 136Xe. In parallel, a potential future upgrade to nEXO is being investigated with the aim to further suppress radioactive backgrounds and to confirm ββ-decay events. This technique, known as Ba-tagging, comprises extracting and identifying the ββ-decay daughter 136Ba ion. One tagging approach being pursued involves extracting a small volume of LXe in the vicinity of a potential ββ-decay using a capillary tube and facilitating a liquid-to-gas phase transition by heating the capillary exit. The Ba ion is then separated from the accompanying Xe gas using a radio-frequency (RF) carpet and RF funnel, conclusively identifying the ion as 136Ba via laser-fluorescence spectroscopy and mass spectrometry. Simultaneously, an accelerator-driven Ba ion source is being developed to validate and optimize this technique. The motivation for the project, the development of the different aspects, along with the current status and results, are discussed here. Full article
(This article belongs to the Special Issue Advances in Ion Trapping of Radioactive Ions)
Show Figures

Figure 1

15 pages, 9246 KiB  
Article
Development of a Time Projection Chamber Readout with Hybrid Pixel Sensors for Beam Monitoring
by Yingdong Song, Haibo Yang, Yuezhao Zhang, Jianwei Liao, Yanhao Jia, Peng Ma, Yufeng Hou, Xiangming Sun, Hulin Wang, Haisheng Song and Chengxin Zhao
Sensors 2024, 24(8), 2387; https://doi.org/10.3390/s24082387 - 9 Apr 2024
Viewed by 1292
Abstract
To monitor the position and profile of therapeutic carbon beams in real-time, in this paper, we proposed a system called HiBeam-T. The HiBeam-T is a time projection chamber (TPC) with forty Topmetal-II- CMOS pixel sensors as its readout. Each Topmetal-II- has 72 × [...] Read more.
To monitor the position and profile of therapeutic carbon beams in real-time, in this paper, we proposed a system called HiBeam-T. The HiBeam-T is a time projection chamber (TPC) with forty Topmetal-II- CMOS pixel sensors as its readout. Each Topmetal-II- has 72 × 72 pixels with the size of 83 μm × 83 μm. The detector consists of the charge drift region and the charge collection area. The readout electronics comprise three Readout Control Modules and one Clock Synchronization Module. This Hibeam-T has a sensitive area of 20 × 20 cm and can acquire the center of the incident beams. The test with a continuous 80.55 MeV/u 12C6+ beam shows that the measurement resolution to the beam center could reach 6.45 μm for unsaturated beam projections. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

6 pages, 1266 KiB  
Proceeding Paper
Structure Functions and Tau Neutrino Cross Section at DUNE Far Detector
by Barbara Yaeggy
Phys. Sci. Forum 2023, 8(1), 64; https://doi.org/10.3390/psf2023008064 - 17 Oct 2023
Cited by 1 | Viewed by 1182
Abstract
DUNE’s Argon time-projecting chambers (TPC) detectors will allow us to conduct precise studies about phenomena that have, until now, seemed too challenging to measure, like tau neutrino (ντ) interactions. Cross section measurements are needed to understand how accurate our neutrino-nucleus [...] Read more.
DUNE’s Argon time-projecting chambers (TPC) detectors will allow us to conduct precise studies about phenomena that have, until now, seemed too challenging to measure, like tau neutrino (ντ) interactions. Cross section measurements are needed to understand how accurate our neutrino-nucleus interaction models are and how accurately we can use them to reconstruct neutrino energy. Quasi-elastic scattering (QE), Δ resonance production (RES), and deep inelastic scattering (DIS) processes are known to provide dominant contributions in the medium and high neutrino energy to the total cross-section of ντ(N) and ν¯τ(N). These cross-sections have large systematic uncertainties compared to the ones measured for νμ and νe and their antiparticles. Studies point out that the reason for these differences is due to the model dependence of the ντ(N) cross-sections in treating the nuclear medium effects described by the nucleon structure functions, F1N,,3N(x,Q2) for νμ and νe. These proceedings show the semi-theoretical and experimental approach to the estimation of the ντ(N) and ν¯τ(N) cross-sections in DUNE for the DIS region. We will check the contributions of the additional nucleon structure functions F4N(x,Q2) and F5N(x,Q2) and their dependence on Q2 and Bjorken-x scale. Full article
(This article belongs to the Proceedings of The 23rd International Workshop on Neutrinos from Accelerators)
Show Figures

Figure 1

6 pages, 17361 KiB  
Proceeding Paper
The Search for Short Baseline Neutrino Oscillation with the ICARUS Detector
by Biswaranjan Behera
Phys. Sci. Forum 2023, 8(1), 56; https://doi.org/10.3390/psf2023008056 - 15 Sep 2023
Viewed by 1074
Abstract
The 476-ton active mass ICARUS T-600 Liquid Argon Time Projection Chamber (LArTPC) is a pioneering development that has become the template for neutrino and rare event detectors, including the massive next-generation international Deep Underground Neutrino Experiment. It began operation in 2010 at the [...] Read more.
The 476-ton active mass ICARUS T-600 Liquid Argon Time Projection Chamber (LArTPC) is a pioneering development that has become the template for neutrino and rare event detectors, including the massive next-generation international Deep Underground Neutrino Experiment. It began operation in 2010 at the underground Gran Sasso National Laboratories and was transported to Fermilab in the US in 2017. To ameliorate the impact of shallow-depth operation at Fermilab, the detector has been enhanced with the addition of a new high granularity light detection system inside the LAr volume along with an external cosmic ray tagging system. Currently in the final stages of commissioning, ICARUS is the largest LArTPC ever to operate in a neutrino beam. On this note, we describe the current status of the ICARUS detector and its achievements in this presentation, and review the plans for ongoing development of the analysis tools needed to fulfill its physics program. Full article
(This article belongs to the Proceedings of The 23rd International Workshop on Neutrinos from Accelerators)
Show Figures

Figure 1

6 pages, 2709 KiB  
Proceeding Paper
Characterization of the ERAM Detectors for the High Angle TPC of the T2K near Detector Upgrade
by Matteo Feltre
Phys. Sci. Forum 2023, 8(1), 47; https://doi.org/10.3390/psf2023008047 - 30 Aug 2023
Viewed by 1376
Abstract
The High-Angle Time Projection Chambers (HA-TPCs) are a new set of detectors that will equip the off-axis near detector (ND280) of the T2K long-baseline neutrino oscillation experiment. A prototype of the Field Cage instrumented with one ERAM detector has been recently exposed to [...] Read more.
The High-Angle Time Projection Chambers (HA-TPCs) are a new set of detectors that will equip the off-axis near detector (ND280) of the T2K long-baseline neutrino oscillation experiment. A prototype of the Field Cage instrumented with one ERAM detector has been recently exposed to a DESY electron beam. In order to ensure that the HA-TPCs satisfy the required performances for the ND280 Upgrade (space point resolution better than 600 µm and dE/dx resolution smaller than 10%), the ERAM detectors have been characterized with X-ray sources and by exposing them to the DESY electron beam. In addition, a detailed simulation of the charge spreading phenomenon and of the electronic response is reported. Full article
(This article belongs to the Proceedings of The 23rd International Workshop on Neutrinos from Accelerators)
Show Figures

Figure 1

6 pages, 2745 KiB  
Proceeding Paper
ARIADNE+: Large Scale Demonstration of Fast Optical Readout for Dual-Phase LArTPCs at the CERN Neutrino Platform
by Adam John Lowe, Pablo Amedo-Martinez, Diego González-Díaz, Alexander Deisting, Krishanu Majumdar, Konstantinos Mavrokoridis, Marzio Nessi, Barney Philippou, Francesco Pietropaolo, Sudikshan Ravinthiran, Filippo Resnati, Adam Roberts, Angela Saá Hernández, Christos Touramanis and Jared Vann
Phys. Sci. Forum 2023, 8(1), 46; https://doi.org/10.3390/psf2023008046 - 24 Aug 2023
Cited by 6 | Viewed by 1409
Abstract
Optical readout of large scale dual-phase liquid Argon TPCs is an attractive alternative to charge readout and has been successfully demonstrated on a 2 × 2 m active region within the CERN protoDUNE cold box. ARIADNE+ uses four Timepix3 cameras imaging the [...] Read more.
Optical readout of large scale dual-phase liquid Argon TPCs is an attractive alternative to charge readout and has been successfully demonstrated on a 2 × 2 m active region within the CERN protoDUNE cold box. ARIADNE+ uses four Timepix3 cameras imaging the S2 light produced by 16 novel, patent pending, glass THGEMs. ARIADNE+ takes advantage of the raw Timepix3 data coming natively 3D and zero suppressed with a 1.6 ns timing resolution. Three of the four THGEM quadrants implement readouts in the visible light range through wavelength shifting, with the fourth featuring a VUV light intensifier, thus removing the need for wavelength shifting altogether. Cosmic ray reconstruction and energy calibration were performed. Presented is a summary of the detector setup and experimental run, preliminary analysis of the run data and future outlook for the ARIADNE program. Full article
(This article belongs to the Proceedings of The 23rd International Workshop on Neutrinos from Accelerators)
Show Figures

Figure 1

6 pages, 2516 KiB  
Proceeding Paper
The T2K Near Detector Upgrade
by Aoi Eguchi
Phys. Sci. Forum 2023, 8(1), 38; https://doi.org/10.3390/psf2023008038 - 15 Aug 2023
Viewed by 1511
Abstract
The T2K experiment is a long baseline neutrino oscillation experiment conducted in Japan. It aims to precisely measure the neutrino oscillation parameters by measuring the muon neutrino beam produced at the J-PARC accelerator complex at both near and far detectors. The magnetized T2K [...] Read more.
The T2K experiment is a long baseline neutrino oscillation experiment conducted in Japan. It aims to precisely measure the neutrino oscillation parameters by measuring the muon neutrino beam produced at the J-PARC accelerator complex at both near and far detectors. The magnetized T2K near detector complex ND280 plays an important role in measuring the neutrino interactions before the oscillations and constraining the systematic uncertainties in the measurements of neutrino oscillation parameters. The physics goals of T2K are to test Charge-Parity (CP) symmetry in the lepton sector, to precisely measure the neutrino oscillation parameters θ23 and Δm322, and to determine the neutrino mass ordering and the octant of θ23. T2K has disfavored CP conservation with a significance level of 2σ, and the higher significance level can be achieved by increasing the statistics and reducing the systematic uncertainties. Thus, the T2K collaboration proposed upgrading ND280 by replacing the P0D detector with a new fine-grained scintillator detector SuperFGD and two Time-Projection Chambers (TPCs). In addition, these new detectors will be covered by six Time Of Flight (TOF) planes. The performances of these upgrade detectors have been tested and confirmed to satisfy the requirements of the ND280 upgrade program. The physics performances of the upgraded ND280 have also been studied and they show promising improvements in neutrino interaction measurements by introducing transverse kinematics variables. Full article
(This article belongs to the Proceedings of The 23rd International Workshop on Neutrinos from Accelerators)
Show Figures

Figure 1

6 pages, 20277 KiB  
Proceeding Paper
Status of the Short-Baseline Near Detector at Fermilab
by Miquel Nebot-Guinot
Phys. Sci. Forum 2023, 8(1), 22; https://doi.org/10.3390/psf2023008022 - 25 Jul 2023
Cited by 3 | Viewed by 1263
Abstract
The Short-Baseline Near Detector (SBND) will be one of three Liquid Argon Time Projection Chamber (LArTPC) neutrino detectors positioned along the axis of the Booster Neutrino Beam (BNB) at Fermilab, as part of the Short-Baseline Neutrino (SBN) Program. The detector is currently in [...] Read more.
The Short-Baseline Near Detector (SBND) will be one of three Liquid Argon Time Projection Chamber (LArTPC) neutrino detectors positioned along the axis of the Booster Neutrino Beam (BNB) at Fermilab, as part of the Short-Baseline Neutrino (SBN) Program. The detector is currently in the construction phase and is anticipated to begin operation in 2023. SBND is characterized by superb imaging capabilities and will record over a million neutrino interactions per year. Thanks to its unique combination of measurement resolution and statistics, SBND will carry out a rich program of neutrino interaction measurements and novel searches for physics beyond the Standard Model (BSM). It will enable the potential of the overall SBN sterile neutrino program by performing a precise characterization of the unoscillated event rate, and by constraining BNB flux and neutrino–argon cross-section systematic uncertainties. In this proceedings article, the physics reach, current status, and future prospects of SBND are discussed. Full article
(This article belongs to the Proceedings of The 23rd International Workshop on Neutrinos from Accelerators)
Show Figures

Figure 1

6 pages, 402 KiB  
Proceeding Paper
Calibrating for Precision Calorimetry in LArTPCs at ICARUS and SBN
by Gray Putnam
Phys. Sci. Forum 2023, 8(1), 15; https://doi.org/10.3390/psf2023008015 - 20 Jul 2023
Viewed by 1006
Abstract
The Short-Baseline Neutrino (SBN) Program at Fermilab consists of multiple Liquid Argon Time Projection Chamber (LArTPC) detectors in a single neutrino beam. SBN will have a broad physics program that includes GeV-scale neutrino cross section measurements and physics searches beyond the Standard Model [...] Read more.
The Short-Baseline Neutrino (SBN) Program at Fermilab consists of multiple Liquid Argon Time Projection Chamber (LArTPC) detectors in a single neutrino beam. SBN will have a broad physics program that includes GeV-scale neutrino cross section measurements and physics searches beyond the Standard Model including a search for short-baseline neutrino oscillations. Especially for the oscillation program at SBN (and, looking ahead, at DUNE) it is imperative to have accurate and precise energy measurements that can be related to the true neutrino energy. At ICARUS, we have developed a precise energy scale calibration procedure to match the needs of these physics goals. Two innovations are important here. First, diffusion plays a role in determining the energy scale in LArTPC calibration in a manner unappreciated by previous experiments. Second, incorporating systematic uncertainties into the energy scale calibration fit allows for a precise determination of the uncertainty of calorimetric measurements in a way that could be propogated to higher-level analyses. The result from the calibration procedure outlined herein is now being applied to neutrino beam data at ICARUS. Full article
(This article belongs to the Proceedings of The 23rd International Workshop on Neutrinos from Accelerators)
Show Figures

Figure 1

6 pages, 953 KiB  
Proceeding Paper
Sensitivity to Cabibbo-Suppressed Λ Production in MicroBooNE
by Christopher Thorpe
Phys. Sci. Forum 2023, 8(1), 16; https://doi.org/10.3390/psf2023008016 - 20 Jul 2023
Viewed by 874
Abstract
The MicroBooNE detector is a liquid argon time projection chamber (LArTPC) with an 85 ton active mass that receives flux from the Booster Neutrino and the Nutrinos from the Main Injector (NuMI) beams, providing excellent spatial resolution of the reconstructed final-state particles. Since [...] Read more.
The MicroBooNE detector is a liquid argon time projection chamber (LArTPC) with an 85 ton active mass that receives flux from the Booster Neutrino and the Nutrinos from the Main Injector (NuMI) beams, providing excellent spatial resolution of the reconstructed final-state particles. Since 2015, MicroBooNE has accumulated many neutrino and anti-neutrino scattering events with argon nuclei enabling searches for rare interaction channels. The Cabibbo-suppressed production of hyperons in anti-neutrino–nucleus interactions provides sensitivity to a range of effects, including second-class currents, SU(3) symmetry violations and reinteractions between the hyperon and the nuclear remnant. This channel exclusively involves anti-neutrinos, offering an unambiguous constraint on wrong-sign contamination. The effects of nucleon structure and final state interactions are distinct from those affecting the quasielastic channel and modify the Λ and Σ production cross sections in different ways, providing new information that could help to break their degeneracy. Few measurements of this channel have been made, primarily in older experiments such as Gargamelle. We present the sensitivity of the MicroBooNE experiment to the cross section for direct (Cabibbo-suppressed) Λ production in muon anti-neutrino interactions, using anti-neutrinos from the off-axis NuMI beam. Full article
(This article belongs to the Proceedings of The 23rd International Workshop on Neutrinos from Accelerators)
Show Figures

Figure 1

5 pages, 834 KiB  
Proceeding Paper
Energy Reconstruction and Calibration of the MicroBooNE LArTPC
by Wanwei Wu
Phys. Sci. Forum 2023, 8(1), 11; https://doi.org/10.3390/psf2023008011 - 14 Jul 2023
Viewed by 927
Abstract
The Liquid Argon Time Projection Chamber (LArTPC) is increasingly becoming the chosen technology for current and future precision neutrino oscillation experiments due to its superior capability in particle tracking and energy calorimetry. In LArTPCs, calorimetric information is critical for particle identification, which is [...] Read more.
The Liquid Argon Time Projection Chamber (LArTPC) is increasingly becoming the chosen technology for current and future precision neutrino oscillation experiments due to its superior capability in particle tracking and energy calorimetry. In LArTPCs, calorimetric information is critical for particle identification, which is the foundation for neutrino cross-sections and oscillation measurements, as well as searches for beyond-standard-model physics. One of the primary challenges in employing LArTPC technology is characterizing its performance and quantifying the associated systematic uncertainties. MicroBooNE, the longest-operating LArTPC to date, has performed numerous such measurements, including studies of detector physics and electromagnetic shower reconstruction. Here, we present results on the operation and performance of the detector during its data taking, highlighting accomplishments toward calorimetric reconstruction, calibration, and detector physics. Full article
(This article belongs to the Proceedings of The 23rd International Workshop on Neutrinos from Accelerators)
Show Figures

Figure 1

9 pages, 725 KiB  
Communication
MPD TPC Alignment
by Valentin Kuzmin
Physics 2023, 5(2), 508-516; https://doi.org/10.3390/physics5020036 - 23 Apr 2023
Cited by 1 | Viewed by 2077
Abstract
A method of determining the position of the readout sectors of a time projection chamber using experimental data is proposed. Considering the results of modeling the response of sensitive elements of the time projection chamber of the multipurpose detector, three types of tracks [...] Read more.
A method of determining the position of the readout sectors of a time projection chamber using experimental data is proposed. Considering the results of modeling the response of sensitive elements of the time projection chamber of the multipurpose detector, three types of tracks were reconstructed: cosmic muons, beams of the laser detector system, and muons from the interaction of nuclei. Employing data from the experiment simulation and the proposed method of finding the position and orientation of sectors of the time projection chamber, the accuracy of the chamber alignment is investigated. For cosmic and laser rays, the accuracy is approximately the same. It is about 750 microns for the shift of the origin of the sector and 7 arc minutes for Euler angles. The accuracy in the case of muons born in collisions of nuclei is several times worse. Full article
(This article belongs to the Special Issue From Heavy Ions to Astroparticle Physics)
Show Figures

Figure 1

15 pages, 14330 KiB  
Review
The Long Journey of ICARUS: From the LAr-TPC Concept to the First Full-Scale Detector
by Alessandro Menegolli
Universe 2023, 9(2), 74; https://doi.org/10.3390/universe9020074 - 30 Jan 2023
Cited by 1 | Viewed by 1392
Abstract
The Liquid Argon Time Projection Chamber (LAr-TPC) technology was conceived at the end of the 1970s as a way to combine the excellent spatial and calorimetric performance of the traditional bubble chambers with the electronic read-out of the TPCs, obtaining the so-called “electronic [...] Read more.
The Liquid Argon Time Projection Chamber (LAr-TPC) technology was conceived at the end of the 1970s as a way to combine the excellent spatial and calorimetric performance of the traditional bubble chambers with the electronic read-out of the TPCs, obtaining the so-called “electronic bubble chambers”. This technology was intended to be applied in particular to neutrino physics as an alternative to Ring Water Cherenkov detectors. The main technological issues of such an innovative technique were investigated from the very beginning within the ICARUS program, with staged R&D starting from prototypes of increasing mass to arrive, at the end of 1990s, at the largest LAr-TPC detector ever built at that time: ICARUS-T600, with almost 500 tons of active LAr. The successful operations of the ICARUS-T600 LAr-TPC in its more than twenty years of life, from the first run at surface in Pavia (Italy) in 2001 to the LNGS (Italy) underground run being exposed to the CNGS beam from CERN to Gran Sasso (2010–2013) and finally to the ongoing run at Fermilab (USA) for sterile neutrino searches (2020–), have demonstrated the huge potential of the LAr-TPC technique, paving the way to future larger LAr-TPCs detectors as DUNE. Full article
(This article belongs to the Special Issue Neutrinos from Artificial Sources)
Show Figures

Figure 1

Back to TopTop