Status of the Short-Baseline Near Detector at Fermilab †
Abstract
:1. Introduction
2. The Short-Baseline Neutrino Program
Liquid Argon Time Projection Chambers
3. SBND Physics Program
- It will resolve the question of the existence of the sterile neutrino by constraining the unoscillated flux as a part of the Short-Baseline Neutrino program for sterile neutrino searches. The near detector plays a fundamental role in answering whether the MiniBooNE low-energy excess is intrinsic to the BNB, or if it appears along the beam line, indicating a sterile oscillation [10];
- Likewise, SBND, with its improved particle identification and momentum resolution capabilities, and with the large number of neutrinos it will detect given its target proximity (it will be the largest sample of neutrino–argon interactions to date), will perform the most precise neutrino cross-section measurements;
- In addition, SBND will search for new physics beyond the Standard Model [11].
4. The Short-Baseline Near Detector: Description and Status
5. Summary
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aguilar-Arevalo, A.; Auerbach, L.B.; Burman, R.L.; Caldwell, D.O.; Church, E.D.; Cochran, A.K.; Donahue, J.B.; Fazely, A.; Garvey, G.T.; Gunasingha, R.M.; et al. (LSND Collaboration). Evidence for neutrino oscillations from the observation of appearance in a beam. Phys. Rev. D 2001, 64, 112007. [Google Scholar] [CrossRef] [Green Version]
- Aguilar-Arevalo, A.; Brown, B.C.; Conrad, J.M.; Dharmapalan, R.; Diaz, A.; Djurcic, Z.; Finley, D.A.; Ford, R.; Garvey, G.T.; Gollapinni, S.; et al. (MiniBooNE Collaboration). Updated MiniBooNE neutrino oscillation results with increased data and new background studies. Phys. Rev. D 2021, 103, 052002. [Google Scholar]
- Acciarri, R.; Adams, C.; An, R.; Andreopoulos, C.; Ankowski, A.M.; Antonello, M.; Asaadi, J.; Badgett, W.; Bagby, L.; Baibussinov, B.; et al. (MicroBooNE, LAr1-ND and ICARUS-WA104). A Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program in the Fermilab Booster Neutrino Beam. arXiv 2022, arXiv:1503.01520. [Google Scholar]
- Machado, P.; Palamara, O.; Schmitz, D.W. The Short-Baseline Neutrino Program at Fermilab. Ann. Rev. Nucl. Part. Sci. 2019, 69, 363–387. [Google Scholar] [CrossRef] [Green Version]
- Aguilar-Arevalo, A.; Anderson, C.E.; Bazarko, A.O.; Brice, S.J.; Brown, B.C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J.M.; Cox, D.C.; et al. (MiniBooNE Collaboration). The Neutrino Flux prediction at MiniBooNE. Phys. Rev. D 2009, 79, 072002. [Google Scholar] [CrossRef] [Green Version]
- Acciarri, R.; Adams, C.; An, R.; Aparicio, A.; Aponte, S.; Asaadi, J.; Auger, M.; Ayoub, N.; Bagby, L.; Baller, B.; et al. (MicroBooNE Collaboration), Design and Construction of the MicroBooNE Detector. JINST 2017, 12, P02017. [Google Scholar] [CrossRef] [Green Version]
- Abratenko, P.; An, R.; Anthony, J.; Arellano, L.; Asaadi, J.; Ashkenazi, A.; Balasubramanian, S.; Baller, B.; Barnes, C.; Barr, G.; et al. (MicroBooNE Collaboration). Search for an Excess of Electron Neutrino Interactions in MicroBooNE Using Multiple Final-State Topologies. Phys. Rev. Lett. 2022, 128, 241801. [Google Scholar] [CrossRef]
- Amerio, S.; Amoruso, S.; Antonello, M.; Aprili, P.; Armenante, M.; Arneodo, F.; Badertscher, A.; Baiboussinov, B.; Ceolin, M.B.; Battistoni, G.; et al. (ICARUS Collaboration). Design, construction and tests of the ICARUS T600 detector. Nucl. Instrum. Meth. A 2004, 527, 329–410. [Google Scholar]
- Garcia-Gamez, D.; Green, P.; Szelc, A.M. Predicting Transport Effects of Scintillation Light Signals in Large-Scale Liquid Argon Detectors. Eur. Phys. J. C 2021, 81, 349. [Google Scholar]
- DelTutto, M. SBND-PRISM: Sampling Multiple Off-Axis Neutrino Fluxes with the Same Detector. In Proceedings of the NuFACT22, Salt Lake City, UT, USA, 30 July–6 August 2022. [Google Scholar]
- Balasubramanian, S. Beyond the Standard Model New Physics Searches with SBND. In Proceedings of the NuFACT22, Salt Lake City, UT, USA, 30 July–6 August 2022. [Google Scholar]
- Brizzolari, C.; Brovelli, S.; Bruni, F.; Carniti, P.; Cattadori, C.M.; Falcone, A.; Gotti, C.; Machado, A.A.; Meinardi, F.; Pessina, G.; et al. Enhancement of the X-Arapuca photon detection device for the DUNE experiment. JINST 2021, 16, P09027. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nebot-Guinot, M., on behalf of the SBND Collaboration. Status of the Short-Baseline Near Detector at Fermilab. Phys. Sci. Forum 2023, 8, 22. https://doi.org/10.3390/psf2023008022
Nebot-Guinot M on behalf of the SBND Collaboration. Status of the Short-Baseline Near Detector at Fermilab. Physical Sciences Forum. 2023; 8(1):22. https://doi.org/10.3390/psf2023008022
Chicago/Turabian StyleNebot-Guinot, Miquel on behalf of the SBND Collaboration. 2023. "Status of the Short-Baseline Near Detector at Fermilab" Physical Sciences Forum 8, no. 1: 22. https://doi.org/10.3390/psf2023008022
APA StyleNebot-Guinot, M., on behalf of the SBND Collaboration. (2023). Status of the Short-Baseline Near Detector at Fermilab. Physical Sciences Forum, 8(1), 22. https://doi.org/10.3390/psf2023008022