Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = TiO2/Ag/Cu coatings

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 8131 KiB  
Article
Utilizing Fly Ash from Coal-Fired Power Plants to Join ZrO2 and Crofer by Reactive Air Brazing
by Shu-Wei Chang, Ren-Kae Shiue and Liang-Wei Huang
Materials 2025, 18(9), 1956; https://doi.org/10.3390/ma18091956 - 25 Apr 2025
Viewed by 433
Abstract
This study attempts to use fly ash as the brazing filler additive to increase the sustainable use of coal-fired power plant by-product materials. The experimental results show that adding 5 wt% fly ash into the Ag paste filler contributes to the interfacial reactions [...] Read more.
This study attempts to use fly ash as the brazing filler additive to increase the sustainable use of coal-fired power plant by-product materials. The experimental results show that adding 5 wt% fly ash into the Ag paste filler contributes to the interfacial reactions in heterogeneous reactive air brazing (RAB) of the ZrO2 and Crofer alloy. The Ag-rich phase dominates the brazed zone. The interfacial reaction layers contain oxidation of the Cu-Ti coating layer, Crofer alloy, and the Si/Al-rich oxides from the fly ash particles. The 5% fly ash RAB joint maintained airtightness for 280 h under 2 psig helium at room temperature. When the test temperature was raised to 600 °C for 24 h, the pressure of the joint assembly still did not drop. When the fly ash addition was increased to 10 wt%, the joint assembly was no longer leak-free at room temperature. Many visible voids and cracks exist in the brazed zone and at the ZrO2/braze and braze/Crofer interfaces. A high volume fraction of the fly ash particles results in many brittle Si/Al-rich oxides in the joint after RAB, and the fracture of these oxides significantly deteriorates the airtightness of the joint. This study shows the feasibility and potential of introducing 5 wt% fly ash particles to the Ag-rich paste filler during the RAB of ZrO2 and Crofer for airtight applications. Full article
Show Figures

Figure 1

19 pages, 3222 KiB  
Article
Polyol Formation of Silver@Metal Oxides Nanohybrid for Photocatalytic and Antibacterial Performance
by Jovairya Azam, Zahoor Ahmad, Ali Irfan, Asima Naz, Muhammad Arshad, Rabia Sattar, Mohammad Raish, Bakar Bin Khatab Abbasi and Yousef A. Bin Jardan
Catalysts 2025, 15(3), 283; https://doi.org/10.3390/catal15030283 - 17 Mar 2025
Viewed by 1210
Abstract
The polyol method under a single pot has successfully produced a coating of CuO, TiO2, and the combination of CuO/TiO2 around Ag NWs under sequential addition. The Ag NWs and their coating with a pure metal oxide and a hybrid [...] Read more.
The polyol method under a single pot has successfully produced a coating of CuO, TiO2, and the combination of CuO/TiO2 around Ag NWs under sequential addition. The Ag NWs and their coating with a pure metal oxide and a hybrid of metal oxide were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) coupled with EDX, X-ray photoelectron spectroscopy (XPS), UV–Visible, photoluminescent (PL) spectroscopy, and cyclic voltammetry (CV). The formation of ultra-thin NWs was also been seen in the presence of the TiO2 coating. The ultra-thin and co-axial coating of each metal oxide and their hybrid form preserved the SPR of the Ag NWs and demonstrated photon harvesting from the 400–800 nm range. The band gap hybridization was confirmed by CV for the Ag@CuO/TiO2 design, which made the structure a reliable catalyst. Therefore, the material expresses excellent photocatalytic activities for carcinogenic textile dyes such as turquoise blue (TB), sapphire blue (SB), and methyl orange (MO), with and without the reagent H2O2. The hybrid form (i.e., Ag@CuO/TiO2) exhibited degradation within 6 min in the presence of H2O2. Additionally, the material showed antibacterial activities against various bacteria (Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Bacillus subtilis, and Bacillus pumilus) when assayed using broth media. Therefore, the materials have established degrading and disinfection roles suitable for environmental perspectives. The role of coating with each metal oxide and their hybrid texture further improved the growth of Ag NWs. The preparatory route possibly ensued metal–metal oxide and metal–hybrid metal oxide Schottky junctions, which would expectedly transform it into a diode material for electronic applications. Full article
Show Figures

Figure 1

15 pages, 5545 KiB  
Article
Electroless Copper Patterning on TiO2-Functionalized Mica for Flexible Electronics
by Bozhidar I. Stefanov, Boriana R. Tzaneva, Valentin M. Mateev and Ivo T. Iliev
Appl. Sci. 2024, 14(21), 9780; https://doi.org/10.3390/app14219780 - 25 Oct 2024
Viewed by 1226
Abstract
The formation of conductive copper patterns on mica holds promise for developing cost-effective flexible electronics and sensing devices, though it is challenging due to the low adhesion of mica’s atomically flat surface. Herein, we present a wet-chemical method for copper patterning on flexible [...] Read more.
The formation of conductive copper patterns on mica holds promise for developing cost-effective flexible electronics and sensing devices, though it is challenging due to the low adhesion of mica’s atomically flat surface. Herein, we present a wet-chemical method for copper patterning on flexible mica substrates via electroless copper deposition (Cu-ELD). The process involves pre-functionalizing 50 µm thick muscovite mica with a titanium dioxide (TiO2) layer, via a sol–gel dip-coating method with a titanium acetylacetonate-based sol. Photolithography is employed to selectively activate the TiO2-coated mica substrates for Cu-ELD, utilizing in situ photodeposited silver (Ag) nanoclusters as a catalyst. Copper is subsequently plated using a formaldehyde-based Cu-ELD bath, with the duration of deposition primarily determining the thickness and electrical properties of the copper layer. Conductive Cu layers with thicknesses in the 70–130 nm range were formed within 1–2 min of deposition, exhibiting an inverse relationship between plating time and sheet resistance, which ranged from 600 to 300 mΩ/sq. The electrochemical thickening of these layers to 1 μm further reduced the sheet resistance to 27 mΩ/sq. Finally, the potential of Cu-ELD patterning on TiO2-functionalized mica for creating functional sensing devices was demonstrated by fabricating a functional resistance temperature detector (RTD) on the titania surface. Full article
(This article belongs to the Section Chemical and Molecular Sciences)
Show Figures

Figure 1

13 pages, 17643 KiB  
Article
Zirconia and Crofer Joint Made by Reactive Air Brazing Using the Silver Base Paste and Cu-Ti Coating Layer
by Shu-Wei Chang, Ren-Kae Shiue and Liang-Wei Huang
Materials 2024, 17(15), 3822; https://doi.org/10.3390/ma17153822 - 2 Aug 2024
Cited by 1 | Viewed by 991
Abstract
This study proposes a method to enhance the airtightness of the joint between the ZrO2 and Crofer alloy using coating technology. With the aid of vacuum sputtering technology, a titanium–copper alloy layer with a thickness between 1.5 μm and 6 μm was [...] Read more.
This study proposes a method to enhance the airtightness of the joint between the ZrO2 and Crofer alloy using coating technology. With the aid of vacuum sputtering technology, a titanium–copper alloy layer with a thickness between 1.5 μm and 6 μm was first deposited on the surface of ZrO2 and Crofer, respectively. The chemical composition of the deposited reaction layer was 70.2 Cu and 29.8 Ti in at%. Then, using silver as the base material in the reactive air brazing (RAB) process, we explore the use of this material design to improve the microstructure and reaction mechanism of the joint surface between ceramics and metal, compare the effects of different pretreatment thicknesses on the microstructure, and evaluate its effectiveness through air tightness tests. The results show that a coating of Cu-Ti alloy on the ZrO2 substrate can significantly improve bonding between the Ag filler and ZrO2. The Cu-Ti metallization layer on the ZrO2 substrate is beneficial to the RAB. After the brazing process, the coated Cu-Ti layers form suitable reaction interfaces between the filler, the metal, the filler, and the ceramic. In terms of coating layer thickness, the optimized 3 μm coated Cu-Ti alloy layer is achieved from the experiment. Melting and dissolving the Cu-Ti coated layer into the ZrO2 substrate results in a defect-free interface between the Ag-rich braze and the ZrO2. The air tightness test result shows no leakage under 2 psig at room temperature for 28 h. The pressure condition can still be maintained even under high-temperature conditions of 600 °C for 24 h. Full article
Show Figures

Figure 1

38 pages, 8249 KiB  
Review
Atomic Layer Deposition of Antibacterial Nanocoatings: A Review
by Denis Nazarov, Lada Kozlova, Elizaveta Rogacheva, Ludmila Kraeva and Maxim Maximov
Antibiotics 2023, 12(12), 1656; https://doi.org/10.3390/antibiotics12121656 - 24 Nov 2023
Cited by 12 | Viewed by 3209
Abstract
In recent years, antibacterial coatings have become an important approach in the global fight against bacterial pathogens. Developments in materials science, chemistry, and biochemistry have led to a plethora of materials and chemical compounds that have the potential to create antibacterial coatings. However, [...] Read more.
In recent years, antibacterial coatings have become an important approach in the global fight against bacterial pathogens. Developments in materials science, chemistry, and biochemistry have led to a plethora of materials and chemical compounds that have the potential to create antibacterial coatings. However, insufficient attention has been paid to the analysis of the techniques and technologies used to apply these coatings. Among the various inorganic coating techniques, atomic layer deposition (ALD) is worthy of note. It enables the successful synthesis of high-purity inorganic nanocoatings on surfaces of complex shape and topography, while also providing precise control over their thickness and composition. ALD has various industrial applications, but its practical application in medicine is still limited. In recent years, a considerable number of papers have been published on the proposed use of thin films and coatings produced via ALD in medicine, notably those with antibacterial properties. The aim of this paper is to carefully evaluate and analyze the relevant literature on this topic. Simple oxide coatings, including TiO2, ZnO, Fe2O3, MgO, and ZrO2, were examined, as well as coatings containing metal nanoparticles such as Ag, Cu, Pt, and Au, and mixed systems such as TiO2-ZnO, TiO2-ZrO2, ZnO-Al2O3, TiO2-Ag, and ZnO-Ag. Through comparative analysis, we have been able to draw conclusions on the effectiveness of various antibacterial coatings of different compositions, including key characteristics such as thickness, morphology, and crystal structure. The use of ALD in the development of antibacterial coatings for various applications was analyzed. Furthermore, assumptions were made about the most promising areas of development. The final section provides a comparison of different coatings, as well as the advantages, disadvantages, and prospects of using ALD for the industrial production of antibacterial coatings. Full article
(This article belongs to the Special Issue Development and Biomedical Application of Antibacterial Coatings)
Show Figures

Figure 1

12 pages, 3655 KiB  
Article
Improvement of Heat Dissipation in Ag/Ni Substrates for Testing Cu-TiO2/TiO2-Modified Filters Using SERS Spectroscopy
by Hanna Bandarenka, Aliaksandr Burko, Kseniya Girel, Diana Laputsko, Elizaveta Orel, Anna Mizgailo, Utkirjon Sharopov, Alise Podelinska, Uladzislau Shapel, Vladimir Pankratov, Sergei Piskunov and Dmitry Bocharov
Crystals 2023, 13(5), 749; https://doi.org/10.3390/cryst13050749 - 30 Apr 2023
Cited by 5 | Viewed by 2281
Abstract
Surface-enhanced Raman scattering (SERS) spectroscopy is used to investigate a composition of wash swabs from the Cu-TiO2/TiO2-modified filters with disinfecting ability. Macroporous Si chips coated with conformal 800 nm thick Ni layer and Ag particles (Ag/Ni) are engineered to [...] Read more.
Surface-enhanced Raman scattering (SERS) spectroscopy is used to investigate a composition of wash swabs from the Cu-TiO2/TiO2-modified filters with disinfecting ability. Macroporous Si chips coated with conformal 800 nm thick Ni layer and Ag particles (Ag/Ni) are engineered to act as SERS-active substrates. Such substrates are characterized by a moderate reflection band in the visible range and provide an improved heat dissipation from contaminants in wash swabs during SERS study. This prevents thermal-induced destruction of analyzing media for reliable assessment of its composition. The anatase Cu-TiO2 and TiO2 nanoparticles are synthesized using the sol-gel method and characterized via Raman spectroscopy and X-ray diffractometry. The filters are modified with Cu-TiO2/TiO2 nanoparticles and embedded in three-valve facial masks that are worn by a volunteer to breathe for 4 h. Comparative SERS analysis of the filters shows that they slightly destroy chemical bonds in the molecules constituting airborne contaminations upon ceiling day lights, which can be associated with Cu-TiO2 photocatalytic activity. The filters additionally exposed to near-ultraviolet light prominently decrease the intensity of Raman signatures of airborne contaminant due to the presence of pure TiO2. Full article
Show Figures

Figure 1

15 pages, 8113 KiB  
Article
Novel Engineered Carbon Cloth-Based Self-Cleaning Membrane for High-Efficiency Oil–Water Separation
by Nuo Chen, Kexin Sun, Huicong Liang, Bingyan Xu, Si Wu, Qi Zhang, Qiang Han, Jinghai Yang and Jihui Lang
Nanomaterials 2023, 13(4), 624; https://doi.org/10.3390/nano13040624 - 4 Feb 2023
Cited by 3 | Viewed by 1944
Abstract
A novel engineered carbon cloth (CC)-based self-cleaning membrane containing a Cu:TiO2 and Ag coating has been created via hydrothermal and light deposition methods. The engineered membrane with chrysanthemum morphology has superhydrophilic and underwater superoleophilic performance. The cooperativity strategy of Cu doping and [...] Read more.
A novel engineered carbon cloth (CC)-based self-cleaning membrane containing a Cu:TiO2 and Ag coating has been created via hydrothermal and light deposition methods. The engineered membrane with chrysanthemum morphology has superhydrophilic and underwater superoleophilic performance. The cooperativity strategy of Cu doping and Ag coating to the TiO2 is found to be critical for engineering the separation efficiency and self-cleaning skill of the CC-based membrane under visible light due to the modulated bandgap structure and surface plasmon resonance. The CC-based membrane has excellent oil–water separation performance when Cu is fixed at 2.5 wt% and the Ag coating reaches a certain amount of 0.003 mol/L AgNO3. The contact angle of underwater oil and the separation efficiency are 156° and 99.76%, respectively. Furthermore, the membrane has such an outstanding self-cleaning ability that the above performance can be nearly completely restored after 30 min of visible light irradiation, and the separation efficiency can still reach 99.65% after 100 cycles. Notably, the membrane with exceptional wear resistance and durability can work in various oil–water mixtures and harsh environments, indicating its potential as a new platform of the industrial-level available membrane in dealing with oily wastewater. Full article
(This article belongs to the Topic Advanced Self-Cleaning Surfaces)
Show Figures

Figure 1

16 pages, 4966 KiB  
Article
Ag-CuO-Decorated Ceramic Membranes for Effective Treatment of Oily Wastewater
by Amos Avornyo, Arumugham Thanigaivelan, Rambabu Krishnamoorthy, Shadi W. Hassan and Fawzi Banat
Membranes 2023, 13(2), 176; https://doi.org/10.3390/membranes13020176 - 1 Feb 2023
Cited by 27 | Viewed by 2457
Abstract
Although ultrafiltration is a reliable method for separating oily wastewater, the process is limited by problems of low flux and membrane fouling. In this study, for the first time, commercial TiO2/ZrO2 ceramic membranes modified with silver-functionalized copper oxide (Ag-CuO) nanoparticles [...] Read more.
Although ultrafiltration is a reliable method for separating oily wastewater, the process is limited by problems of low flux and membrane fouling. In this study, for the first time, commercial TiO2/ZrO2 ceramic membranes modified with silver-functionalized copper oxide (Ag-CuO) nanoparticles are reported for the improved separation performance of emulsified oil. Ag-CuO nanoparticles were synthesized via hydrothermal technique and dip-coated onto commercial membranes at varying concentrations (0.1, 0.5, and 1.0 wt.%). The prepared membranes were further examined to understand the improvements in oil-water separation due to Ag-CuO coating. All modified ceramic membranes exhibited higher hydrophilicity and decreased porosity. Additionally, the permeate flux, oil rejection, and antifouling performance of the Ag-CuO-coated membranes were more significantly improved than the pristine commercial membrane. The 0.5 wt.% modified membrane exhibited a 30% higher water flux (303.63 L m−2 h−1) and better oil rejection efficiency (97.8%) for oil/water separation among the modified membranes. After several separation cycles, the 0.5 wt.% Ag-CuO-modified membranes showed a constant permeate flux with an excellent oil rejection of >95% compared with the unmodified membrane. Moreover, the corrosion resistance of the coated membrane against acid, alkali, actual seawater, and oily wastewater was remarkable. Thus, the Ag-CuO-modified ceramic membranes are promising for oil separation applications due to their high flux, enhanced oil rejection, better antifouling characteristics, and good stability. Full article
Show Figures

Figure 1

14 pages, 5677 KiB  
Article
Z-Scheme CuOx/Ag/TiO2 Heterojunction as Promising Photoinduced Anticorrosion and Antifouling Integrated Coating in Seawater
by Xiaomin Guo, Guotao Pan, Lining Fang, Yan Liu and Zebao Rui
Molecules 2023, 28(1), 456; https://doi.org/10.3390/molecules28010456 - 3 Jan 2023
Cited by 18 | Viewed by 2646
Abstract
In the marine environment, steel materials usually encounter serious problems with chemical or electrochemical corrosion and fouling by proteins, bacteria, and other marine organisms. In this work, a green bifunctional Z-scheme CuOx/Ag/P25 heterostructure coating material was designed to achieve the coordination [...] Read more.
In the marine environment, steel materials usually encounter serious problems with chemical or electrochemical corrosion and fouling by proteins, bacteria, and other marine organisms. In this work, a green bifunctional Z-scheme CuOx/Ag/P25 heterostructure coating material was designed to achieve the coordination of corrosion prevention and antifouling by matching the redox potential of the reactive oxygen species and the corrosion potential of 304SS. When CuOx/Ag/P25 heterostructure was coupled with the protected metal, the open circuit potential under illumination negatively shifted about 240 mV (vs. Ag/AgCl) and the photoinduced current density reached 16.6 μA cm−2. At the same time, more reactive oxygen species were produced by the Z-shape structure, and then the photocatalytic sterilization effect was stronger. Combined with the chemical sterilization of Ag and the oxide of Cu, the bacterial survival rate of CuOx/Ag/P25 was low (0.006%) compared with the blank sample. This design provides a strategy for developing green dual-functional coating materials with photoelectrochemical anticorrosion and antifouling properties. Full article
(This article belongs to the Special Issue Catalytic Nanomaterials: Energy and Environment)
Show Figures

Figure 1

15 pages, 27173 KiB  
Review
Photocatalytic Inactivation of Viruses and Prions: Multilevel Approach with Other Disinfectants
by Takashi Onodera, Katsuaki Sugiura, Makoto Haritani, Tohru Suzuki, Morikazu Imamura, Yoshifumi Iwamaru, Yasuhisa Ano, Hiroyuki Nakayama and Akikazu Sakudo
Appl. Microbiol. 2022, 2(4), 701-715; https://doi.org/10.3390/applmicrobiol2040054 - 23 Sep 2022
Cited by 3 | Viewed by 2397
Abstract
Ag, Cu, Zn, Ti, and Au nanoparticles show enhanced photocatalytic properties. Efficient indoor disinfection strategies are imperative to manage the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Virucidal agents, such as ethanol, sodium hypochlorite, 222-nm UV light, and electrolyzed water inactivate SARS-CoV-2 [...] Read more.
Ag, Cu, Zn, Ti, and Au nanoparticles show enhanced photocatalytic properties. Efficient indoor disinfection strategies are imperative to manage the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Virucidal agents, such as ethanol, sodium hypochlorite, 222-nm UV light, and electrolyzed water inactivate SARS-CoV-2 in indoor environments. Tungsten trioxide (WO3) photocatalyst and visible light disinfect abiotic surfaces against SARS-CoV-2. The titanium dioxide (TiO2)/UV system inactivates SARS-CoV-2 in aerosols and on deliberately contaminated TiO2-coated glass slide surfaces in photocatalytic chambers, wherein 405-nm UV light treatment for 20 min sterilizes the environment and generates reactive oxygen species (ROS) that inactivate the virus by targeting S and envelope proteins and viral RNA. Mesoscopic calcium bicarbonate solution (CAC-717) inactivates pathogens, such as prions, influenza virus, SARS-CoV-2, and noroviruses, in fluids; it presumably acts similarly on human and animal skin. The molecular complexity of cementitious materials promotes the photocatalysis of microorganisms. In combination, the two methods can reduce the pathogen load in the environment. As photocatalysts and CAC-717 are potent disinfectants for prions, disinfectants against prionoids could be developed by combining photocatalysis, gas plasma methodology, and CAC-717 treatment, especially for surgical devices and instruments. Full article
Show Figures

Figure 1

13 pages, 3395 KiB  
Article
Antifouling Systems Based on Copper and Silver Nanoparticles Supported on Silica, Titania, and Silica/Titania Mixed Oxides
by Carla Calabrese, Valeria La Parola, Simone Cappello, Annamaria Visco, Cristina Scolaro and Leonarda Francesca Liotta
Nanomaterials 2022, 12(14), 2371; https://doi.org/10.3390/nano12142371 - 11 Jul 2022
Cited by 6 | Viewed by 2958
Abstract
Silica, titania, and mixed silica–titania powders have been used as supports for loading 5 wt% Cu, 5 wt% Ag, and 2.5 wt% Cu-2.5 wt% Ag with the aim of providing a series of nanomaterials with antifouling properties. All the solids were easily prepared [...] Read more.
Silica, titania, and mixed silica–titania powders have been used as supports for loading 5 wt% Cu, 5 wt% Ag, and 2.5 wt% Cu-2.5 wt% Ag with the aim of providing a series of nanomaterials with antifouling properties. All the solids were easily prepared by the wetness-impregnation method from commercially available chemical precursors. The resulting materials were characterized by several techniques such as X-ray diffraction analysis, X-ray photoelectron spectroscopy, N2 physisorption, and temperature-programmed reduction measurements. Four selected Cu and Ag SiO2- and TiO2-supported powders were tested as fillers for the preparation of marine antifouling coatings and complex viscosity measurements. Titania-based coatings showed better adhesion than silica-based coatings and the commercial topcoat. The addition of fillers enhances the resin viscosity, suggesting better workability of titania-based coatings than silica-based ones. The ecotoxicological performance of the powders was evaluated by Microtox luminescence tests, using the marine luminescent bacterium Vibrio fisheri. Further investigations of the microbiological activity of such materials were carried out focusing on the bacterial growth of Pseudoalteromonas sp., Alteromonas sp., and Pseudomonas sp. through measurements of optical density at 600 nm (OD600nm). Full article
(This article belongs to the Topic Catalysis for Sustainable Chemistry and Energy)
Show Figures

Graphical abstract

27 pages, 2708 KiB  
Review
Application of Metal Nanoparticles for Production of Self-Sterilizing Coatings
by Dariusz Góral and Małgorzata Góral-Kowalczyk
Coatings 2022, 12(4), 480; https://doi.org/10.3390/coatings12040480 - 1 Apr 2022
Cited by 19 | Viewed by 4804
Abstract
Metal nanoparticles (NPs) are increasingly being used in many areas, e.g., industry, pharmacy, and biomedical engineering. NPs can be obtained through chemical and biological synthesis or using physical methods. AgNPs, AuNPs, CuNPs, FeNPs, MgNPs, SnO2NPs, TiO2NPs, and ZnONPs are [...] Read more.
Metal nanoparticles (NPs) are increasingly being used in many areas, e.g., industry, pharmacy, and biomedical engineering. NPs can be obtained through chemical and biological synthesis or using physical methods. AgNPs, AuNPs, CuNPs, FeNPs, MgNPs, SnO2NPs, TiO2NPs, and ZnONPs are the most commonly synthesized metal nanoparticles. Many of them have anti-microbial properties and documented activity supported by many tests against some species of pathogenic bacteria, viruses, and fungi. AgNPs, which are used for the production of commercial self-sterilizing packages, are one of the best-explored nanoparticles. Moreover, the EFSA has approved the use of small doses of silver nanoparticles (0.05 mg Ag·kg−1) to food products. Recent studies have shown that metal NPs can be used for the production of coatings to prevent the spread of the SARS-CoV-2 virus, which has caused the global pandemic. Some nanoparticles (e.g., ZnONPs and MgONPs) have the Generally Recognized As Safe (GRAS) status, i.e., they are considered safe for consumption and can be used for the production of edible coatings, protecting food against spoilage. Promising results have been obtained in research on the use of more than one type of nanometals, which prevents the development of pathogen resistance through various mechanisms of inactivation thereof. Full article
Show Figures

Figure 1

13 pages, 4221 KiB  
Article
Joining of Zirconia to Ti6Al4V Using Ag-Cu Sputter-Coated Ti Brazing Filler
by Sónia Simões, Omid Emadinia, Carlos José Tavares and Aníbal Guedes
Metals 2022, 12(2), 358; https://doi.org/10.3390/met12020358 - 20 Feb 2022
Cited by 4 | Viewed by 2195
Abstract
The joining of zirconia (ZrO2) to Ti6Al4V using Ag-Cu sputter-coated Ti brazing filler foil was investigated. Brazing experiments were performed at 900, 950, and 980 °C for 30 min under vacuum. The microstructural features of the brazed interfaces were evaluated by [...] Read more.
The joining of zirconia (ZrO2) to Ti6Al4V using Ag-Cu sputter-coated Ti brazing filler foil was investigated. Brazing experiments were performed at 900, 950, and 980 °C for 30 min under vacuum. The microstructural features of the brazed interfaces were evaluated by optical microscopy (OM) and by scanning electron microscopy (SEM). The chemical composition of the brazed interfaces was analyzed by energy dispersive X-ray spectroscopy (EDS). Room temperature shear tests and Vickers microhardness tests performed across the interfaces were used to evaluate the mechanical strength of the joints. Multilayered interfaces were produced for all brazing temperatures, consisting essentially in α-Ti + Ti2(Ag, Cu), TiAg. Joining to ZrO2 was promoted by the formation of a hard layer, reaching a maximum of 1715 HV0.01, possibly consisting mainly in α-Ti and Ti oxide(s). Joining to the Ti6Al4V was established by a layer composed of a mixture of α-Ti and Ti2(Ag, Cu). The highest shear strength (152 ± 4 MPa) was obtained for brazing at 980 °C and fracture of joints occurred partially across the interface, throughout the hardest layers formed close to ZrO2, and partially across the ceramic sample. Full article
(This article belongs to the Special Issue Mechanical Characteristics of Brazed Joints in Metallic Materials)
Show Figures

Figure 1

21 pages, 14970 KiB  
Article
Biodegradable Nanohybrid Materials as Candidates for Self-Sanitizing Filters Aimed at Protection from SARS-CoV-2 in Public Areas
by Anton M. Manakhov, Elizaveta S. Permyakova, Natalya A. Sitnikova, Alphiya R. Tsygankova, Alexander Y. Alekseev, Maria V. Solomatina, Victor S. Baidyshev, Zakhar I. Popov, Lucie Blahová, Marek Eliáš, Lenka Zajíčková, Andrey M. Kovalskii, Alexander N. Sheveyko, Philipp V. Kiryukhantsev-Korneev, Dmitry V. Shtansky, David Nečas and Anastasiya O. Solovieva
Molecules 2022, 27(4), 1333; https://doi.org/10.3390/molecules27041333 - 16 Feb 2022
Cited by 12 | Viewed by 3175
Abstract
The COVID-19 pandemic has raised the problem of efficient, low-cost materials enabling the effective protection of people from viruses transmitted through the air or via surfaces. Nanofibers can be a great candidate for efficient air filtration due to their structure, although they cannot [...] Read more.
The COVID-19 pandemic has raised the problem of efficient, low-cost materials enabling the effective protection of people from viruses transmitted through the air or via surfaces. Nanofibers can be a great candidate for efficient air filtration due to their structure, although they cannot protect from viruses. In this work, we prepared a wide range of nanofibrous biodegradable samples containing Ag (up to 0.6 at.%) and Cu (up to 20.4 at.%) exhibiting various wettability. By adjusting the magnetron current (0.3 A) and implanter voltage (5 kV), the deposition of TiO2 and Ag+ implantation into PCL/PEO nanofibers was optimized in order to achieve implantation of Ag+ without damaging the nanofibrous structure of the PCL/PEO. The optimal conditions to implant silver were achieved for the PCL-Ti0.3-Ag-5kV sample. The coating of PCL nanofibers by a Cu layer was successfully realized by magnetron sputtering. The antiviral activity evaluated by widely used methodology involving the cultivation of VeroE6 cells was the highest for PCL-Cu and PCL-COOH, where the VeroE6 viability was 73.1 and 68.1%, respectively, which is significantly higher compared to SARS-CoV-2 samples without self-sanitizing (42.8%). Interestingly, the samples with implanted silver and TiO2 exhibited no antiviral effect. This difference between Cu and Ag containing nanofibers might be related to the different concentrations of ions released from the samples: 80 μg/L/day for Cu2+ versus 15 µg/L/day for Ag+. The high antiviral activity of PCL-Cu opens up an exciting opportunity to prepare low-cost self-sanitizing surfaces for anti-SARS-CoV-2 protection and can be essential for air filtration application and facemasks. The rough cost estimation for the production of a biodegradable nanohybrid PCL-Cu facemask revealed ~$0.28/piece, and the business case for the production of these facemasks would be highly positive, with an Internal Rate of Return of 34%. Full article
(This article belongs to the Special Issue Thin-Film Nanomaterials: Applications in Biotechnology)
Show Figures

Graphical abstract

34 pages, 14064 KiB  
Review
Recent Advances in Metal-Based Antimicrobial Coatings for High-Touch Surfaces
by Martin Birkett, Lynn Dover, Cecil Cherian Lukose, Abdul Wasy Zia, Murtaza M. Tambuwala and Ángel Serrano-Aroca
Int. J. Mol. Sci. 2022, 23(3), 1162; https://doi.org/10.3390/ijms23031162 - 21 Jan 2022
Cited by 97 | Viewed by 12944
Abstract
International interest in metal-based antimicrobial coatings to control the spread of bacteria, fungi, and viruses via high contact human touch surfaces are growing at an exponential rate. This interest recently reached an all-time high with the outbreak of the deadly COVID-19 disease, which [...] Read more.
International interest in metal-based antimicrobial coatings to control the spread of bacteria, fungi, and viruses via high contact human touch surfaces are growing at an exponential rate. This interest recently reached an all-time high with the outbreak of the deadly COVID-19 disease, which has already claimed the lives of more than 5 million people worldwide. This global pandemic has highlighted the major role that antimicrobial coatings can play in controlling the spread of deadly viruses such as SARS-CoV-2 and scientists and engineers are now working harder than ever to develop the next generation of antimicrobial materials. This article begins with a review of three discrete microorganism-killing phenomena of contact-killing surfaces, nanoprotrusions, and superhydrophobic surfaces. The antimicrobial properties of metals such as copper (Cu), silver (Ag), and zinc (Zn) are reviewed along with the effects of combining them with titanium dioxide (TiO2) to create a binary or ternary contact-killing surface coatings. The self-cleaning and bacterial resistance of purely structural superhydrophobic surfaces and the potential of physical surface nanoprotrusions to damage microbial cells are then considered. The article then gives a detailed discussion on recent advances in attempting to combine these individual phenomena to create super-antimicrobial metal-based coatings with binary or ternary killing potential against a broad range of microorganisms, including SARS-CoV-2, for high-touch surface applications such as hand rails, door plates, and water fittings on public transport and in healthcare, care home and leisure settings as well as personal protective equipment commonly used in hospitals and in the current COVID-19 pandemic. Full article
(This article belongs to the Special Issue Frontiers in Antimicrobial Materials)
Show Figures

Figure 1

Back to TopTop