Novel Engineered Carbon Cloth-Based Self-Cleaning Membrane for High-Efficiency Oil–Water Separation
Abstract
1. Introduction
2. Experimental
2.1. Materials and Synthesis
2.2. Characterizations
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Zhang, G.; Liu, Y.; Chen, C.; Long, L.; He, J.; Tian, D.; Luo, L.; Yang, G.; Zhang, X.; Zhang, Y. MOF-based cotton fabrics with switchable superwettability for oil–water separation. Chem. Eng. Sci. 2022, 256, 117695. [Google Scholar] [CrossRef]
- Zhang, S.; Su, Q.; Yan, J.; Wu, Z.; Tang, L.; Xiao, W.; Wang, L.; Huang, X.; Gao, J. Flexible nanofiber composite membrane with photothermally induced switchable wettability for different oil/water emulsions separation. Chem. Eng. Sci. 2022, 264, 118175. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, J.; Wang, X.; Cai, Z. Facile preparation of hybrid coating-decorated cotton cloth with superoleophobicity in air for efficient light oil/water separation. Surf. Interfaces 2022, 31, 102033. [Google Scholar] [CrossRef]
- Li, C.; Gao, Z.; Qi, X.; Han, X.; Liu, Z. Preparation and research of Mn-TiO2/ Fe membrane with high efficiency light-oil/water emulsion separation. Surf. Interfaces 2022, 31, 101995. [Google Scholar] [CrossRef]
- Kabiri, B.; Norouzbeigi, R.; Velayi, E. Efficient oil/water separation using grass-like nano-cobalt oxide bioinspired dual-structured coated mesh filters. Surf. Interfaces 2022, 30, 101825. [Google Scholar] [CrossRef]
- Zhang, C.; Gao, J.; Hankett, J.; Varanasi, P.; Borst, J.; Shirazi, Y.; Zhao, S.; Chen, Z. Corn Oil-Water Separation: Interactions of Proteins and Surfactants at Corn Oil/Water Interfaces. Langmuir 2020, 36, 4044–4054. [Google Scholar] [CrossRef]
- Chen, J.; Xiao, X.; Xu, Y.; Liu, J.; Lv, X. Fabrication of hydrophilic and underwater superoleophobic SiO2/silk fibroin coated mesh for oil/water separation. J. Environ. Chem. Eng. 2021, 9, 105085. [Google Scholar] [CrossRef]
- Bauza, M.; Turnes Palomino, G.; Palomino Cabello, C. MIL-100(Fe)-derived carbon sponge as high-performance material for oil/water separation. Sep. Purif. Technol. 2021, 257, 117951. [Google Scholar] [CrossRef]
- Zhuang, J.; Dai, J.; Ghaffar, S.H.; Yu, Y.; Tian, Q.; Fan, M. Development of highly efficient, renewable and durable alginate composite aerogels for oil/water separation. Surf. Coat. Technol. 2020, 388, 125551. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, C.; Hu, J.; Li, J.; Wang, Y. Photocatalytic performance of TiO2 nanotube structure based on TiN coating doped with Ag and Cu. Ceram. Int. 2021, 47, 7233–7240. [Google Scholar] [CrossRef]
- Hu, W.; Huang, J.; Zhang, X.; Zhao, S.; Li, Z.; Zhang, C.; Liu, Y.; Wang, Z. A mechanically robust and reversibly wettable benzoxazine/epoxy/mesoporous TiO2 coating for oil/water separation. Appl. Surf. Sci. 2020, 507, 145168. [Google Scholar] [CrossRef]
- Bao, Z.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. Superamphiphilic and underwater superoleophobic membrane for oil/water emulsion separation and organic dye degradation. J. Mater. Sci. 2020, 598, 117804. [Google Scholar] [CrossRef]
- Ren, J.; Tao, F.; Liu, L.; Wang, X.; Cui, Y. A novel TiO2@stearic acid/chitosan coating with reversible wettability for controllable oil/water and emulsions separation. Carbohydr. Polym. 2020, 232, 115807. [Google Scholar] [CrossRef]
- Cai, Y.; Zhao, Q.; Quan, X.; Feng, W.; Wang, Q. Fluorine-free and hydrophobic hexadecyltrimethoxysilane-TiO2 coated mesh for gravity-driven oil/water separation. Colloids Surf. Physicochem. Eng. Asp. 2020, 586, 124189. [Google Scholar] [CrossRef]
- Miao, X.; Han, L.; Wang, L.; Wang, M.; Sun, X.; Zhu, X.; Ge, B. Preparation of PDVB/TiO2 composites and the study on the oil-water separation and degradation performances. Sci. China Technol. Sc. 2019, 62, 1217–1223. [Google Scholar] [CrossRef]
- Chen, Y.; Xie, A.; Cui, J.; Lang, J.; Li, C.; Yan, Y.; Dai, J. One-step facile fabrication of visible light driven antifouling carbon cloth fibers membrane for efficient oil-water separation. Sep. Purif. Technol. 2019, 228, 115769. [Google Scholar] [CrossRef]
- Chen, Z.; Segev, M. Highlighting photonics: Looking into the next decade. eLight 2021, 1, 2. [Google Scholar] [CrossRef]
- Zhang, Z.; Gan, Z.; Bao, R.; Ke, K.; Liu, Z.; Yang, M.; Yang, W. Green and robust superhydrophilic electrospun stereocomplex polylactide membranes: Multifunctional oil/water separation and self-cleaning. J. Membr. Sci 2020, 593, 117420. [Google Scholar] [CrossRef]
- Yang, W.; Shen, H.; Min, H.; Ge, J. Enhanced visible light-driven photodegradation of rhodamine B by Ti3+ self-doped TiO2@Ag nanoparticles prepared using Ti vapor annealing. J. Mater. Sci. 2020, 55, 701–712. [Google Scholar] [CrossRef]
- Hariharan, D.; Thangamuniyandi, P.; Christy, A.J.; Vasantharaja, R.; Selvakumar, P.; Sagadevan, S.; Pugazhendhi, A.; Nehru, L.C. Enhanced photocatalysis and anticancer activity of green hydrothermal synthesized Ag@TiO2 nanoparticles. J. Photochem. Photobiol. B Biol. 2020, 202, 111636. [Google Scholar] [CrossRef]
- Luo, Z.; Lyu, S.; Mo, D. Cauliflower-like Nickel with Polar Ni(OH)2/NiOxFy Shell To Decorate Copper Meshes for Efficient Oil/Water Separation. ACS Omega 2019, 4, 20486–20492. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, W.; Li, B.; Wang, P.; Feng, L.; Wei, Y. Mussel-inspired Ag nanoparticles anchored sponge for oil/water separation and contaminants catalytic reduction. Sep. Purif. Technol. 2019, 225, 18–23. [Google Scholar] [CrossRef]
- Nikitas, P.; Sukosin, T.; Nikolay, I.Z.; Abajo, F.J.G.d. The magnetic response of graphene split-ring metamaterials. Light-Sci. Appl. 2013, 2, e78. [Google Scholar] [CrossRef]
- Lee, D.; So, S.; Hu, G.; Kim, M.; Badloe, T.; Cho, H.; Kim, J.; Kim, H.; Qiu, C.; Rho, J. Hyperbolic metamaterials: Fusing artificial structures to natural 2D materials. eLight 2022, 2, 1. [Google Scholar] [CrossRef]
- Deng, W.; Li, C.; Pan, F.; Li, Y. Efficient oil/water separation by a durable underwater superoleophobic mesh membrane with TiO2 coating via biomineralization. Sep. Purif. Technol. 2019, 222, 35–44. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Z.; Sun, J. Facile preparation of superhydrophilic and underwater superoleophobic mesh for oil/water separation in harsh environments. J. Dispers. Sci. Technol. 2019, 40, 784–793. [Google Scholar] [CrossRef]
- Chen, Y.; Xie, A.; Cui, J.; Lang, J.; Yan, Y.; Li, C.; Dai, J. UV-Driven Antifouling Paper Fiber Membranes for Efficient Oil-Water Separation. Ind. Eng. Chem. Res. 2019, 58, 5186–5194. [Google Scholar] [CrossRef]
- Xie, A.; Cui, J.; Chen, Y.; Lang, J.; Li, C.; Yan, Y.; Dai, J. One-step facile fabrication of sustainable cellulose membrane with superhydrophobicity via a sol-gel strategy for efficient oil/water separation. Surf. Coat. Technol. 2019, 361, 19–26. [Google Scholar] [CrossRef]
- Gautam, J.; Yang, J.; Yang, B.L. Transition metal co-doped TiO2 nanotubes decorated with Pt nanoparticles on optical fibers as an efficient photocatalyst for the decomposition of hazardous gaseous pollutants. Colloids Surf. Physicochem. Eng. Asp. 2022, 643, 128786. [Google Scholar] [CrossRef]
- Lan, K.; Wang, R.; Zhang, W.; Zhao, Z.; Elzatahry, A.; Zhang, X.; Liu, Y.; Al-Dhayan, D.; Xia, Y.; Zhao, D. Mesoporous TiO2 Microspheres with Precisely Controlled Crystallites and Architectures. Chem 2018, 4, 2436–2450. [Google Scholar] [CrossRef]
- Chen, Y.; Shen, C.; Wang, J.; Xiao, G.; Luo, G. Green Synthesis of Ag-TiO2 Supported on Porous Glass with Enhanced Photocatalytic Performance for Oxidative Desulfurization and Removal of Dyes under Visible Light. ACS Sustain. Chem. Eng. 2018, 6, 13276–13286. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Z.; Lang, J.; Wang, J.; Zhang, Q.; Wang, J.; Han, Q.; Yang, J. Tuning red emission and photocatalytic properties of highly active ZnO nanosheets by Eu addition. J. Lumin. 2018, 204, 573–580. [Google Scholar] [CrossRef]
- Zhang, Z.; Song, Y.; Wu, S.; Guo, J.; Zhang, Q.; Wang, J.; Yang, J.; Hua, Z.; Lang, J. Tuning the defects and luminescence of ZnO:(Er, Sm) nanoflakes for application in organic wastewater treatment. J. Mater. Sci. Mater. Electron. 2019, 30, 15869–15879. [Google Scholar] [CrossRef]
- Yang, S.; Yao, J.; Quan, Y.; Hu, M.; Su, R.; Gao, M.; Han, D.; Yang, J. Monitoring the charge-transfer process in a Nd-doped semiconductor based on photoluminescence and SERS technology. Light-Sci. Appl. 2020, 9, 117. [Google Scholar] [CrossRef]
- Qi, P.; Luo, Y.; Shi, B.; Li, W.; Liu, D.; Zheng, L.; Liu, Z.; Hou, Y.; Fang, Z. Phonon scattering and exciton localization: Molding exciton flux in two dimensional disorder energy landscape. eLight 2021, 1, 6. [Google Scholar] [CrossRef]
- Li, Y.; Cao, S.; Zhang, A.; Zhang, C.; Qu, T.; Zhao, Y.; Chen, A. Carbon and nitrogen co-doped bowl-like Au/TiO2 nanostructures with tunable size for enhanced visible-light-driven photocatalysis. Appl. Surf. Sci. 2018, 445, 350–358. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, Y.; Mu, S.; Jiang, C.; Song, M.; Fang, Q.; Xue, M.; Qiu, S.; Chen, B. UiO-66-Coated Mesh Membrane with Underwater Superoleophobicity for High-Efficiency Oil-Water Separation. ACS Appl. Mater. Interfaces 2018, 10, 17301–17308. [Google Scholar] [CrossRef]
- Grossmann, T.; Wienhold, T.; Bog, U.; Beck, T.; Friedmann, C.; Kalt, H.; Mappes, T. Polymeric photonic molecule super-mode lasers on silicon. Light-Sci. Appl. 2013, 2, e82. [Google Scholar] [CrossRef]
- Xiong, J.; Wu, S. Planar liquid crystal polarization optics for augmented reality and virtual reality: From fundamentals to applications. eLight 2021, 3, 3. [Google Scholar] [CrossRef]
- Jia, A.; Zhang, Y.; Song, T.; Zhang, Z.; Tang, C.; Hu, Y.; Zheng, W.; Luo, M.; Lu, J.; Huang, W. Crystal-plane effects of anatase TiO2 on the selective hydrogenation of crotonaldehyde over Ir/TiO2 catalysts. J. Catal. 2021, 395, 10–22. [Google Scholar] [CrossRef]
- Feng, Z.; Lv, X.; Wang, T. TiO2 porous ceramic/Ag-AgCl composite for enhanced photocatalytic degradation of dyes under visible light irradiation. J. Porous Mater. 2018, 25, 189–198. [Google Scholar] [CrossRef]
- Kalaiarasi, S.; Sivakumar, A.; Dhas, S.A.M.B.; Jose, M. Shock wave induced anatase to rutile TiO2 phase transition using pressure driven shock tube. Mater. Lett. 2018, 219, 72–75. [Google Scholar] [CrossRef]
- You, H.; Jin, Y.; Chen, J.; Li, C. Direct coating of a DKGM hydrogel on glass fabric for multifunctional oil-water separation in harsh environments. Chem. Eng. J. 2018, 334, 2273–2282. [Google Scholar] [CrossRef]
- Jin, Z.; Janoschka, D.; Deng, J.; Ge, L.; Dreher, P.; Frank, B.; Hu, G.; Ni, J.; Yang, Y.; Li, J.; et al. Phyllotaxis-inspired nanosieves with multiplexed orbital angular momentum. eLight 2021, 1, 5. [Google Scholar] [CrossRef]
- Shu, Y.; Ji, J.; Xu, Y.; Deng, J.; Huang, H.; He, M.; Leung, D.Y.C.; Wu, M.; Liu, S.; Liu, S.; et al. Promotional role of Mn doping on catalytic oxidation of VOCs over mesoporous TiO2 under vacuum ultraviolet (VUV) irradiation. Appl. Catal. B 2018, 220, 78–87. [Google Scholar] [CrossRef]
- Chang, X.; Bian, L.; Zhang, J. Large-scale phase retrieval. eLight 2021, 1, 4. [Google Scholar] [CrossRef]
- Stoev, I.D.; Seelbinder, B.; Erben, E.; Maghelli, N.; Kreysing, M. Highly sensitive force measurements in an optically generated, harmonic hydrodynamic trap. eLight 2021, 1, 7. [Google Scholar] [CrossRef]
- Corro, G.; Vidal, E.; Cebada, S.; Pal, U.; Banuelos, F.; Vargas, D.; Guilleminot, E. Electronic state of silver in Ag/SiO2 and Ag/ZnO catalysts and its effect on diesel particulate matter oxidation: An XPS study. Appl. Catal. B 2017, 216, 1–10. [Google Scholar] [CrossRef]
- Bensouici, F.; Bououdina, M.; Dakhel, A.A.; Tala-Ighil, R.; Tounane, M.; Iratni, A.; Souier, T.; Liu, S.; Cai, W. Optical, structural and photocatalysis properties of Cu-doped TiO2 thin films. Appl. Surf. Sci. 2017, 395, 110–116. [Google Scholar] [CrossRef]
- Khalid, N.R.; Ahmed, E.; Hong, Z.; Ahmad, M.; Zhang, Y.; Khalid, S. Cu-doped TiO2 nanoparticles/graphene composites for efficient visible-light photocatalysis. Ceram. Int. 2013, 39, 7107–7113. [Google Scholar] [CrossRef]
- Geng, Z.; Yang, X.; Boo, C.; Zhu, S.; Lu, Y.; Fan, W.; Huo, M.; Elimelech, M.; Yang, X. Self-cleaning anti-fouling hybrid ultrafiltration membranes via side chain grafting of poly(aryl ether sulfone) and titanium dioxide. J. Mater. Sci. 2017, 529, 1–10. [Google Scholar] [CrossRef]
- Mendez-Medrano, M.G.; Kowalska, E.; Lehoux, A.; Herissan, A.; Ohtani, B.; Bahena, D.; Briois, V.; Colbeau-Justin, C.; Rodriguez-Lopez, J.L.; Remita, H. Surface Modification of TiO2 with Ag Nanoparticles and CuO Nanoclusters for Application in Photocatalysis. J. Phys. Chem. C 2016, 120, 5143–5154. [Google Scholar] [CrossRef]
- Huo, H.; Jiang, Y.; Zhao, T.; Wang, Z.; Hu, Y.; Xu, X.; Lin, K. Quantitatively loaded ultra-small Ag nanoparticles on molecularly imprinted mesoporous silica for highly efficient catalytic reduction process. J. Mater. Sci. 2020, 55, 1475–1488. [Google Scholar] [CrossRef]
- Qi, C.; Zongxue, Y.; Fei, L.; Yang, Y.; Yang, P.; Yixin, P.; Xi, Y.; Guangyong, Z. A novel photocatalytic membrane decorated with RGO-Ag-TiO2 for dye degradation and oil–water emulsion separation. J. Chem. Technol. Biotechnol. 2017, 93, 761–775. [Google Scholar] [CrossRef]
- Devi, L.G.; Reddy, K.M. Photocatalytic performance of silver TiO2: Role of electronic energy levels. Appl. Surf. Sci. 2011, 257, 6821–6828. [Google Scholar] [CrossRef]
- Chen, Q.; Yu, Z.; Pan, Y.; Zeng, G.; Shi, H.; Yang, X.; Li, F.; Yang, S.; He, Y. Enhancing the photocatalytic and antibacterial property of polyvinylidene fluoride membrane by blending Ag–TiO2 nanocomposites. J. Mater. Sci. Mater. Electron. 2016, 28, 3865–3874. [Google Scholar] [CrossRef]
- Hou, X.; Hu, Y.; Grinthal, A.; Khan, M.; Aizenberg, J. Liquid-based gating mechanism with tunable multiphase selectivity and antifouling behaviour. Nature 2015, 519, 70–73. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, N.; Sun, K.; Liang, H.; Xu, B.; Wu, S.; Zhang, Q.; Han, Q.; Yang, J.; Lang, J. Novel Engineered Carbon Cloth-Based Self-Cleaning Membrane for High-Efficiency Oil–Water Separation. Nanomaterials 2023, 13, 624. https://doi.org/10.3390/nano13040624
Chen N, Sun K, Liang H, Xu B, Wu S, Zhang Q, Han Q, Yang J, Lang J. Novel Engineered Carbon Cloth-Based Self-Cleaning Membrane for High-Efficiency Oil–Water Separation. Nanomaterials. 2023; 13(4):624. https://doi.org/10.3390/nano13040624
Chicago/Turabian StyleChen, Nuo, Kexin Sun, Huicong Liang, Bingyan Xu, Si Wu, Qi Zhang, Qiang Han, Jinghai Yang, and Jihui Lang. 2023. "Novel Engineered Carbon Cloth-Based Self-Cleaning Membrane for High-Efficiency Oil–Water Separation" Nanomaterials 13, no. 4: 624. https://doi.org/10.3390/nano13040624
APA StyleChen, N., Sun, K., Liang, H., Xu, B., Wu, S., Zhang, Q., Han, Q., Yang, J., & Lang, J. (2023). Novel Engineered Carbon Cloth-Based Self-Cleaning Membrane for High-Efficiency Oil–Water Separation. Nanomaterials, 13(4), 624. https://doi.org/10.3390/nano13040624