Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (76)

Search Parameters:
Keywords = Ti-6Al-2Sn-4Zr-2Mo

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6158 KB  
Article
Improving Surface Roughness and Printability of LPBF Ti6246 Components Without Affecting Their Structure, Mechanical Properties and Building Rate
by Thibault Mouret, Aurore Leclercq, Patrick K. Dubois and Vladimir Brailovski
Metals 2026, 16(1), 32; https://doi.org/10.3390/met16010032 - 27 Dec 2025
Viewed by 281
Abstract
Laser powder bed fusion (LPBF) is the best suited technology to manufacture temperature-resistant Ti-6Al-2Sn-4Zr-6Mo parts with complex geometrical features for high-end applications. Improving printing accuracy by reducing the layer thickness (t) generally requires repeating a tedious and time-consuming process optimization routine. [...] Read more.
Laser powder bed fusion (LPBF) is the best suited technology to manufacture temperature-resistant Ti-6Al-2Sn-4Zr-6Mo parts with complex geometrical features for high-end applications. Improving printing accuracy by reducing the layer thickness (t) generally requires repeating a tedious and time-consuming process optimization routine. To simplify this endeavour, the present work proposes three process equivalence criteria allowing to transfer optimized process conditions from one printing parameter set to another. This approach recommends keeping the volumetric laser energy density (VED) and hatching space-to-layer thickness ratio (h/t) constant, while adjusting the scanning speed (v) and hatching space (h) accordingly. To validate this approach, Ti6246 parts were printed with 50 µm and 25 µm layer thicknesses, while keeping VED = 100 J/mm3 and h/t = 3 constant for both cases. The printed samples were analyzed in terms of their density, microstructure and mechanical properties, as well as the geometric compliance of wall-, gap- and channel-containing artefacts. Highly dense samples exhibiting comparable microstructures and mechanical properties were obtained with both parameters sets investigated. However, they induced markedly differing geometric characteristics. Notably, using 25 µm layers allowed printing walls as thin as 0.2 mm as compared to 1.0 mm for 50 µm layers. Full article
(This article belongs to the Special Issue Recent Advances in Powder-Based Additive Manufacturing of Metals)
Show Figures

Figure 1

40 pages, 4728 KB  
Review
Crystallographic Texture and Phase Transformation in Titanium Alloys Fabricated via Powder Bed Fusion Processes: A Comprehensive Review
by Rajesh Kannan Arasappan, Hafiz Muhammad Rehan Tariq, Ha-Seong Baek, Minki Kim and Tea-Sung Jun
Metals 2026, 16(1), 25; https://doi.org/10.3390/met16010025 - 26 Dec 2025
Viewed by 412
Abstract
Additive manufacturing (AM) of titanium alloys enables the production of complex, high-performance components, but the steep thermal gradients and rapid solidification involved make it challenging to control crystallographic texture and phase evolution. This review synthesizes the current understanding of how these thermal conditions [...] Read more.
Additive manufacturing (AM) of titanium alloys enables the production of complex, high-performance components, but the steep thermal gradients and rapid solidification involved make it challenging to control crystallographic texture and phase evolution. This review synthesizes the current understanding of how these thermal conditions influence grain morphology, texture intensity, and solid-state transformations in key alloys such as Ti-6Al-4V (Ti64), Ti-6Al-2Sn-4Zr-2Mo (Ti6242), Ti-5Al-5Mo-5V-3Cr (Ti5553), and metastable β-Ti systems processed by powder bed fusion-based processes (PBF) such as laser powder bed fusion (LPBF) and electron beam powder bed fusion (EBPBF/EBM). Emphasis is placed on mechanisms governing epitaxial columnar β-grain growth, α′ martensite formation, and the development of heterogeneous α/β distributions. The impact of processing variables on texture development and transformation kinetics is critically examined, alongside phase fractions. Across studies, AM-induced textures are consistently linked to mechanical anisotropy, with performance strongly dependent on build direction and alloy chemistry. Post-processing strategies, including tailored heat treatments and hot isostatic pressing (HIP), show clear potential to modify grain structure, reduce texture intensity, and stabilize desirable phase balances in titanium alloys. These insights highlight the emerging ability to deliberately engineer microstructures for reliable, application-specific properties in powder-based AM titanium alloys. Full article
Show Figures

Figure 1

14 pages, 9212 KB  
Article
Effect of Post-Processing Heat Treatment Temperature on Microstructural Evolution and Mechanical Properties of the Ti-6Al-2Sn-4Zr-2Mo Alloy Fabricated by Laser Powder Bed Fusion
by Kanghyun Park, Yunjong Jung, Seongjin Im, Kangjin Lee, Mincheol Kwon, Soonjik Hong, Jongun Moon, Junmo Seong, Jinman Park and Gian Song
Micromachines 2026, 17(1), 16; https://doi.org/10.3390/mi17010016 - 24 Dec 2025
Viewed by 378
Abstract
In this study, the influence of post-processing heat treatment on microstructure and mechanical properties of Ti-6Al-2Sn-4Zr-2Mo (Ti-6242) alloy fabricated by laser powder bed fusion (L-PBF) was investigated. The mechanical properties of the as-built and heat-treated samples with various temperatures (600–850 °C) were evaluated [...] Read more.
In this study, the influence of post-processing heat treatment on microstructure and mechanical properties of Ti-6Al-2Sn-4Zr-2Mo (Ti-6242) alloy fabricated by laser powder bed fusion (L-PBF) was investigated. The mechanical properties of the as-built and heat-treated samples with various temperatures (600–850 °C) were evaluated using a tensile test at room temperature. After heat treatments, both yield strength (YS) and ultimate tensile strength (UTS) gradually decreased, while the tensile elongation tended to increase as the heat treatment temperature increased. These variations were closely related to the microstructural evolution caused by heat treatment. Specifically, the decomposition of α′ martensite into the α + β lamellar structure and subsequent coarsening were promoted with increasing temperature, leading to stress relief and improved dislocation storage capability, which resulted in the variation in mechanical properties. Notably, although the mechanical strength was reduced after heat treatment with increasing temperatures, the lowest yield strength and ultimate tensile strength were measured as 1086.4 ± 16.5 and 1135.0 ± 15.0 MPa, respectively, which are comparable to or higher than those of conventionally processed Ti-6242. As a result, the post-processing heat treatment could be an effective approach to achieve desirable performance for targeted applications. Full article
(This article belongs to the Section D:Materials and Processing)
Show Figures

Figure 1

15 pages, 9158 KB  
Article
Effect of Solution Temperature on Corrosion Behavior of Ti-6Al-4Zr-3Nb-1.1Mo-1Sn-1V Alloy in Hydrochloric Acid Solution
by Chengliang Mao, Siyuan Zhang, Silan Li, Jialu Wang, Qian Li and Weiju Jia
Materials 2026, 19(1), 47; https://doi.org/10.3390/ma19010047 - 22 Dec 2025
Viewed by 262
Abstract
Ti-6Al-4Zr-3Nb-1.1Mo-1Sn-1V (Ti90) alloy is widely used in marine engineering and oil and gas extraction due to its excellent strength, impact toughness, and corrosion resistance. The corrosion behavior of Ti90 alloy after solution treatment at 750 °C, 900 °C, 940 °C, and 960 °C [...] Read more.
Ti-6Al-4Zr-3Nb-1.1Mo-1Sn-1V (Ti90) alloy is widely used in marine engineering and oil and gas extraction due to its excellent strength, impact toughness, and corrosion resistance. The corrosion behavior of Ti90 alloy after solution treatment at 750 °C, 900 °C, 940 °C, and 960 °C in 5 M hydrochloric acid (HCl) solution was investigated using open-circuit potential (OCP), potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), static immersion tests, and surface characterization. The results of electrochemical tests indicate that the corrosion resistance of Ti90 alloy increases with rising solid solution temperature. The static immersion tests show that the variation trend of the annual corrosion rate at different solid solution temperatures in 5 M HCl solution is consistent with the electrochemical test results. The corrosion morphology of Ti90 alloy reveals that the α phase is more prone to decomposition than the β phase. The corrosion behavior of Ti90 alloy in 5 M HCl solution is mainly influenced by the volume fraction of the β phase and the size of the α phase. Full article
(This article belongs to the Section Corrosion)
Show Figures

Graphical abstract

20 pages, 7256 KB  
Article
High-Speed Impeller Design for the First Stage of a Hydrogen Compressor System
by Piotr Klimaszewski, Piotr Klonowicz, Łukasz Witanowski and Piotr Lampart
Materials 2025, 18(17), 4184; https://doi.org/10.3390/ma18174184 - 5 Sep 2025
Cited by 1 | Viewed by 1247
Abstract
Hydrogen compressors are key components of emerging hydrogen infrastructure. They are needed to meet the growing demand for hydrogen as an energy carrier. One of the challenges in their design is selecting a material and geometry for the impeller that ensures safe operation [...] Read more.
Hydrogen compressors are key components of emerging hydrogen infrastructure. They are needed to meet the growing demand for hydrogen as an energy carrier. One of the challenges in their design is selecting a material and geometry for the impeller that ensures safe operation at high rotational speeds. This paper presents a numerical and structural analysis of a high-speed impeller designed for the first stage of a hydrogen compressor intended for pipeline transmission. The impeller geometry was developed using a 0D design algorithm and verified with CFD simulations. Stress and deformation were assessed using finite element method tools. The operating conditions considered were 28,356 rpm and a compression ratio of 1.25 at an isentropic efficiency of 75%. Four materials were analysed: aluminium 7075-T6, aluminium 2024 T851, stainless steel AISI 420, and titanium alloy Ti-6Al-2Sn-2Zr-2Mo. Equivalent stresses obtained from simulations were compared to the yield strengths of the materials. This study showed that aluminium 7075-T6 is the most suitable material due to its strength, machinability, and availability. It showed an equivalent stress of 398 MPa at a yield strength of 460–530 MPa. The results support the development of safe and efficient impellers for hydrogen compressors that can operate in future energy systems. Full article
(This article belongs to the Special Issue Hydrides for Energy Storage: Materials, Technologies and Applications)
Show Figures

Figure 1

20 pages, 691 KB  
Review
Alloy Selection and Manufacturing Technologies for Total Ankle Arthroplasty: A Narrative Review
by Kishen Mitra, Arun K. Movva, Michael O. Sohn, Joshua M. Tennyson, Grayson M. Talaski, Samuel B. Adams and Albert T. Anastasio
Materials 2025, 18(16), 3770; https://doi.org/10.3390/ma18163770 - 11 Aug 2025
Cited by 2 | Viewed by 1026
Abstract
Total ankle arthroplasty (TAA) has evolved significantly through advances in alloy selection and manufacturing technologies. This narrative review examines the metallurgical foundations of contemporary TAA implants, analyzing primary alloy systems and their mechanical properties. Cobalt-chromium alloys provide superior mechanical strength and durability but [...] Read more.
Total ankle arthroplasty (TAA) has evolved significantly through advances in alloy selection and manufacturing technologies. This narrative review examines the metallurgical foundations of contemporary TAA implants, analyzing primary alloy systems and their mechanical properties. Cobalt-chromium alloys provide superior mechanical strength and durability but present metal ion release concerns, while titanium alloys (Ti6Al4V) optimize biocompatibility with elastic modulus values (101–113 GPa) closer to bone, despite tribological limitations. Novel β-titanium formulations (Ti-35Nb-7Zr-5Ta, Ti10Mo6Zr4Sn3Nb) eliminate toxic aluminum and vanadium components while achieving lower elastic modulus values (50–85 GPa) that better match cortical bone properties. Manufacturing has transitioned from traditional methods (investment casting, forging, CNC machining) toward additive manufacturing technologies. Selective laser melting and electron beam melting enable patient-specific geometries, controlled porosity, and optimized microstructures, though challenges remain with residual stresses, surface finish requirements, and post-processing needs. Emerging biodegradable materials, composite structures, and hybrid implant designs represent promising future directions for addressing current material limitations. This review provides evidence-based insights for alloy selection and manufacturing approaches, emphasizing the critical role of materials engineering in TAA implant performance and clinical outcomes. Full article
(This article belongs to the Special Issue Microstructure and Mechanical Properties of Alloys (2nd Edition))
Show Figures

Graphical abstract

17 pages, 4992 KB  
Article
Effect of Heat Treatments and Related Microstructural Modifications on High-Cycle Fatigue Behavior of Powder Bed Fusion–Laser Beam-Fabricated Ti-6Al-2Sn-4Zr-6Mo Alloy
by Gianluca Pirro, Alessandro Morri, Alessandra Martucci, Mariangela Lombardi and Lorella Ceschini
Metals 2025, 15(8), 849; https://doi.org/10.3390/met15080849 - 29 Jul 2025
Cited by 1 | Viewed by 1028
Abstract
The study investigates the influence of microstructures on fatigue behavior and failure mechanisms of the α-β titanium alloy Ti6246, fabricated via Powder Bed Fusion-Laser Beam (PBF-LB). In particular, the investigation assesses the effect of two post-processing heat treatments, namely α-β annealing at 875 [...] Read more.
The study investigates the influence of microstructures on fatigue behavior and failure mechanisms of the α-β titanium alloy Ti6246, fabricated via Powder Bed Fusion-Laser Beam (PBF-LB). In particular, the investigation assesses the effect of two post-processing heat treatments, namely α-β annealing at 875 °C (AN875) and solution treatment at 825 °C followed by aging at 500 °C (STA825), on the alloy’s rotating and bending fatigue behavior. The results indicate that the STA825 condition provides superior fatigue resistance (+25%) compared to AN875, due to the presence of a finer bilamellar microstructure, characterized by thinner primary α lamellae (αp) and a more homogeneous distribution of secondary α lamellae (αs) within the β matrix. Additionally, an investigation conducted using the Kitagawa–Takahashi (KT) approach and the El-Haddad model, based on the relationship between the fatigue limit and defect sensitivity, revealed improved crack propagation resistance from pre-existing defects (ΔKth) for the STA825 condition compared to AN875. Notably, the presence of fine αs after aging for STA825 is effective in delaying crack nucleation and propagation at early stages, while refined αp contributes to hindering macrocrack growth. The fatigue behavior of the STA825-treated Ti6246 alloy was even superior to that of the PBF-LB-processed Ti64, representing a viable alternative for the production of high-performance components in the automotive and aerospace sectors. Full article
Show Figures

Graphical abstract

17 pages, 1411 KB  
Article
Mineral Composition of Chelidonium majus L. and Soils in Urban Areas
by Oimahmad Rahmonov, Dorota Środek, Sławomir Pytel, Teobald Kupka and Natalina Makieieva
Appl. Sci. 2025, 15(9), 4718; https://doi.org/10.3390/app15094718 - 24 Apr 2025
Cited by 2 | Viewed by 1869
Abstract
Chelidonium majus L. is a species with a wide medicinal use, commonly found in anthropogenically degraded habitats, forest edges, and urban parks. This study aimed to determine the chemical composition of the leaves, stems, and roots of Ch. majus and the soil in [...] Read more.
Chelidonium majus L. is a species with a wide medicinal use, commonly found in anthropogenically degraded habitats, forest edges, and urban parks. This study aimed to determine the chemical composition of the leaves, stems, and roots of Ch. majus and the soil in its rhizosphere in terms of the content of the main elements (Fe, Ca, P, Mg, Al, Na, K, S), trace elements and rare earth minerals (Ti, Mo, Ag, U, Au, Th, Sb, Bi, V, La, B, W, Sc, Tl, Se, Te, Ga, Cs, Ge, Hf, Nb, Rb, Sn, Ta, Zr, Y, Ce, In, Be, and Li), and their comparison in the parts analyzed. The study was conducted in five urban parks in southern Poland in a historically industrialized area. The results showed that Ca has the highest content among the macroelements. Its leaf content ranges from 24,700 to 40,700 mg·kg−1, while in soil, it ranges from 6500 to 15,000 mg·kg−1. In leaves, low values of Al (100–500 mg·kg−1) and Na (100 mg·kg−1) were found in comparison to the other elements tested, while high values of Al (5100–9800 mg·kg−1) were found in soils. Among the macroelements in the Ch. majus stems, K showed the highest concentration (>100,000 mg·kg−1), while the Ca content was 3–4 times lower in the stems than in the leaves. Rhizomes of Ch. majus accumulate the most K and Ca, in the range of 22,800–29,900 mg·kg−1 and 5400–8900 mg·kg−1, respectively. Fe and Al in all locations have higher values in the soil than in the tissues. In turn, the content of Ca, P, Mg, K, and S is higher in plants than in the soil. Determining the elemental content of medicinal plants is important information, as the plant draws these elements from the soil, and, at higher levels of toxicity, it may indicate that the plant should not be taken from this habitat for medicinal purposes. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

14 pages, 4682 KB  
Article
The Burela Kaolin Deposit (NW Spain): Genesis, Composition and Micro- and Nanotexture
by Blanca Bauluz, Alfonso Yuste, Sergio Alvira and Andrea García-Vicente
Minerals 2025, 15(4), 416; https://doi.org/10.3390/min15040416 - 17 Apr 2025
Viewed by 1101
Abstract
A set of samples from the Monte Castelo kaolin deposits (Burela, NW Spain), corresponding to igneous acidic rocks affected by chemical weathering with variable intensity have been investigated in order to establish the mineralogical and chemical changes with weathering, and the micro- and [...] Read more.
A set of samples from the Monte Castelo kaolin deposits (Burela, NW Spain), corresponding to igneous acidic rocks affected by chemical weathering with variable intensity have been investigated in order to establish the mineralogical and chemical changes with weathering, and the micro- and nano-scale textures developed. For the study, XRD, FESEM, HRTEM and chemical analyses have been used. The more intense the weathering, the more the dissolution of aluminosilicates (albite, K feldspars and K micas) and the crystallization of kaolinite is favored. Kaolinite grows, forming booklets and generating a fine-grained matrix and, along the cleavages of muscovite, forming mica–kaolinite intergrowths. Bidimensional crystallographic continuity between mica and kaolinite has been observed and no intermediate phases have been identified as a consequence of the high W/R ratio. Kaolin mainly contains kaolinite with high crystallinity; however, when there are quartz impurities, they interfere with the ‘optimal’ reflections for the calculation of the Hinckley index. In this case, the use of the AGFI index almost eliminates the effect that the relative intensities of the quartz and feldspar impurities may have on those of kaolinite. With weathering, there is a progressive decrease in the contents of most chemical elements, except Al, TiO2, HREEs, Ta, Hf, Th, U, V, Cr, S, Zr, Mo and Sn. Full article
Show Figures

Figure 1

19 pages, 12669 KB  
Article
Hot Deformation Behavior and Microstructure Evolution of Near-α Titanium Alloy TA32 in Dual-Phase Zone
by Jiajun Jiang, Yi Meng, Yingxu Cheng, Ruiqi Wang and Xingang Liu
Materials 2025, 18(7), 1476; https://doi.org/10.3390/ma18071476 - 26 Mar 2025
Cited by 1 | Viewed by 1123
Abstract
The hot deformation behavior of the near-α titanium alloy TA32 (Ti-5.5Al-3.5Sn-3Zr-1Mo-0.5Nb-0.7Ta-0.3Si) was studied by isothermal compression tests. The deformation temperatures ranged from 700 to 950 °C, with strain rates ranging from 0.001 to 1.0 s⁻¹. The stress–strain curves corresponding to different deformation parameters [...] Read more.
The hot deformation behavior of the near-α titanium alloy TA32 (Ti-5.5Al-3.5Sn-3Zr-1Mo-0.5Nb-0.7Ta-0.3Si) was studied by isothermal compression tests. The deformation temperatures ranged from 700 to 950 °C, with strain rates ranging from 0.001 to 1.0 s⁻¹. The stress–strain curves corresponding to different deformation parameters were studied to evaluate the mechanical behavior. A prediction model of peak stress of TA32 titanium alloy in the dual-phase zone was established, utilizing friction-temperature-corrected flow stress. Electron backscatter diffraction (EBSD) and scanning electron microscopy (SEM) were used to examine the influence of deformation parameters on microstructure evolution. The findings reveal that at 950 °C and 0.01 s⁻¹, the recrystallized volume fraction reaches 34.6%, with an average recrystallized grain size measuring 3.03 μm, which is significantly enhanced compared with those at lower deformation temperatures. By examining the softening behavior across different deformation parameters, it was concluded that dynamic recrystallization (DRX) becomes the primary mechanism. The conclusions of this study can provide some reference and guidance for the microstructure evolution of TA32 alloy during the hot deformation process so as to accelerate the design and optimization of deformation process parameters and the development and popularization of a new high-temperature titanium alloy TA32. Full article
Show Figures

Figure 1

11 pages, 4474 KB  
Article
Hot-Deformed Microstructure and Texture of Ti-62222 Alloy
by Chanho Park, Haeju Jo, Jae H. Kim, Jongtaek Yeom, Namhyun Kang and Wookjin Lee
Metals 2025, 15(3), 244; https://doi.org/10.3390/met15030244 - 25 Feb 2025
Cited by 2 | Viewed by 1128
Abstract
The Ti-62222 (Ti-6Al-2Sn-2Zr-2Mo-2Cr) alloy has considerable potential for structural applications in the aerospace industry owing to its exceptional fracture resistance and specific strength. This study investigates the influence of local strain parameters and solution treatment and aging (STA) on the microstructure, texture evolution, [...] Read more.
The Ti-62222 (Ti-6Al-2Sn-2Zr-2Mo-2Cr) alloy has considerable potential for structural applications in the aerospace industry owing to its exceptional fracture resistance and specific strength. This study investigates the influence of local strain parameters and solution treatment and aging (STA) on the microstructure, texture evolution, and microhardness of a hot-forged Ti-62222 alloy. The strain distribution was simulated using the finite element method (FEM). The results showed that in the specimens before heat treatment, the morphology of the primary Ti α phase grains elongated perpendicular to the compression direction as the strain increased. In contrast, the post-heat-treated specimens (PHTSs) exhibited similar aspect ratios, regardless of the strain level, owing to grain spheroidization induced by the STA heat treatment process. Spheroidal primary Ti α phase and acicular Ti α’ phase were observed in the specimens before and after heat treatment. Texture analysis revealed that the specimens subjected to heat treatment had a weaker texture than the before-heat-treatment specimens. The near (112¯0)//FD texture tended to develop along the direction perpendicular to the forging direction. The microhardness analysis results indicated that strain had no significant effect on the microhardness of either the as-forged specimen or the PHTS. After heat treatment, the specimens showed consistent microhardness values regardless of the strain level. The PHTS exhibited increased microhardness, attributed to the aging process during STA. Full article
(This article belongs to the Special Issue Design, Processing and Characterization of Metals and Alloys)
Show Figures

Figure 1

12 pages, 5940 KB  
Article
A Comparison Between the Residual Stresses of Ti6Al4V and Ti-6Al-2Sn-4Zr-6Mo Processed by Laser Powder Bed Fusion
by Alberta Aversa, Alessandro Carrozza, Vincenza Mercurio, Flaviana Calignano, Olha Sereda, Vaclav Pejchal and Mariangela Lombardi
Materials 2025, 18(3), 689; https://doi.org/10.3390/ma18030689 - 5 Feb 2025
Cited by 5 | Viewed by 1680
Abstract
Metal additive manufacturing processes induce residual stress in as-built components. These residual stresses are detrimental to part quality as they can induce defects such as warping and delamination. In some cases, when complex components are built, residual stress can even cause a build [...] Read more.
Metal additive manufacturing processes induce residual stress in as-built components. These residual stresses are detrimental to part quality as they can induce defects such as warping and delamination. In some cases, when complex components are built, residual stress can even cause a build job to fail due to the recoater crashing into the distorted part. In this paper, the residual stress values of Ti6Al4V and Ti-6Al-2Sn-4Zr-6Mo alloys were evaluated by the cantilever approach and by the X-ray diffraction sin2(Ψ) method. The results showed that, as expected, Ti6Al4V as-built cantilevers displayed high distortion and von Mises equivalent stress values up to 494 MPa. On the contrary, as-built Ti-6Al-2Sn-4Zr-6Mo cantilevers were characterized by almost null warping and a residual stress value in the as-built state of 191 MPa. This different behavior is mainly due to the different properties of the hexagonal α’ martensite in Ti6Al4V and the soft orthorhombic α’’ martensite in Ti6246. The post-processing heat treatment significantly reduced the residual stress in Ti6Al4V, lowering it to 44 MPa, while, in the case of Ti-6Al-2Sn-4Zr-6Mo, the post-processing heat treatment did not affect the residual stress conditions. These findings suggest that Ti-6Al-2Sn-4Zr-6Mo could be a suitable candidate for the additive manufacturing production of extremely complex parts, as it could reduce the risks associated with recoater crashes and job failures. Full article
(This article belongs to the Special Issue Materials for Additive Manufacturing Processes)
Show Figures

Figure 1

14 pages, 2751 KB  
Article
Synthesis of Y2O3 Oxide Dispersion-Strengthened Ti-6Al-2Sn-4Zr-2Mo Alloy Powder by In Situ Gas Atomization Method
by Hyeon-Tae Im, Ryun-Ho Kwak, Sung-Min Park, Chang-Soo Park and Hyung-Ki Park
Materials 2025, 18(3), 521; https://doi.org/10.3390/ma18030521 - 23 Jan 2025
Cited by 3 | Viewed by 2229
Abstract
Oxide dispersion-strengthened (ODS) alloys demonstrate enhanced mechanical properties at elevated temperatures and show potential as next-generation powder materials for additive manufacturing. These alloys can mitigate defects such as micropores and cracks by regulating solidification and grain growth behaviors during the additive manufacturing process. [...] Read more.
Oxide dispersion-strengthened (ODS) alloys demonstrate enhanced mechanical properties at elevated temperatures and show potential as next-generation powder materials for additive manufacturing. These alloys can mitigate defects such as micropores and cracks by regulating solidification and grain growth behaviors during the additive manufacturing process. This study investigates the fabrication technology for ODS Ti-6Al-2Sn-4Zr-2Mo (Ti6242) alloy powder to achieve uniform oxide distribution within the alloy powders. Thermodynamic calculations were employed to determine the optimal Ti6242–Y2O3 composition for in situ gas atomization, ensuring complete dissolution of the oxide in the Ti6242 molten metal and subsequent reprecipitation upon cooling. A rod-shaped ingot was produced via vacuum arc melting, resulting in coarse Y2O3 precipitating along the grain boundaries. The powder was fabricated through an electrode induction gas atomization method, and the ODS Ti6242 powder exhibited a spherical shape and a smooth surface. Cross-sectional analysis revealed the uniform distribution of Y2O3 oxide particles, measuring several tens of nanometers in size, within the alloy powder. This research demonstrates the successful synthesis of oxide-integrated ODS Ti6242 alloy powder through the in situ gas atomization method, potentially advancing the field of additive manufacturing for high-temperature applications. Full article
(This article belongs to the Special Issue Advanced Materials for Multifunctional Applications, 2nd Edition)
Show Figures

Graphical abstract

17 pages, 6630 KB  
Article
Microstructural Influences on High Cycle Fatigue Crack Initiation Mechanism in Ti-Al-Mo-Cr-V-Nb-Zr-Sn Metastable β Titanium Alloy
by Chenxi Zhao, Yongxin Wang, Rui Hu, Guoqiang Shang, Yuxue Wu and Yunmei Lu
Materials 2025, 18(2), 336; https://doi.org/10.3390/ma18020336 - 13 Jan 2025
Cited by 2 | Viewed by 2111
Abstract
In this work, the high cycle fatigue behavior and tensile properties of Ti-Al-Mo-Cr-V-Nb-Zr-Sn titanium alloy at room temperature with a basketweave structure and bimodal structure were studied. The results show that the fatigue strength of the basketweave structure is higher, while the balance [...] Read more.
In this work, the high cycle fatigue behavior and tensile properties of Ti-Al-Mo-Cr-V-Nb-Zr-Sn titanium alloy at room temperature with a basketweave structure and bimodal structure were studied. The results show that the fatigue strength of the basketweave structure is higher, while the balance of strength and plasticity of the bimodal microstructure is better. However, the fatigue performance of the bimodal microstructure is unstable due to the bilinear phenomenon of the S-N curve. By fractographic analysis and the study of the crystal orientation, as well as the slip traces of the primary α grains and β matrix at the facets, it was found that the facets are formed on the {101¯1}<112¯0> slip system with the highest Schmid factor, and the microcracks grow along the {110}<111> slip system in the β grain, but the driving force of microcrack propagation may exceed the restriction of crystallographic orientation. Based on the conclusions above, the phenomenological models of the fatigue crack initiation mechanism of Ti-Al-Mo-Cr-V-Nb-Zr-Sn titanium alloy are established. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

12 pages, 5927 KB  
Article
Residual Stress Analysis in Linear Friction Welded Ti17
by Peng He, Yunxin Wu, Tao Zhang and Junlong Jin
Materials 2024, 17(18), 4507; https://doi.org/10.3390/ma17184507 - 13 Sep 2024
Cited by 1 | Viewed by 1169
Abstract
Residual stresses with a complex distribution are generated after linear friction welding, which affects the service performance of the weldment. In this work, a numerical model for linear-friction-welded Ti17 (Ti-5Al-2Sn-2Zr-4Mo-4Cr) was developed to investigate the evolution of residual stresses and the effect of [...] Read more.
Residual stresses with a complex distribution are generated after linear friction welding, which affects the service performance of the weldment. In this work, a numerical model for linear-friction-welded Ti17 (Ti-5Al-2Sn-2Zr-4Mo-4Cr) was developed to investigate the evolution of residual stresses and the effect of welding parameters on residual stresses. Additionally, a method for predicting internal residual stresses was constructed. The results indicate that the residual stresses near the contact interface are largest in the oscillatory direction, peaking at ~661 MPa at 2 mm away from the contact interface. The evolution of stresses is not only related to the inhomogeneous thermal gradient, but also to the forging force. And the stress distribution essentially stabilizes within the duration of the forging force applied. Increasing the amplitude and frequency results in higher peaks of tensile residual stresses and a more concentrated distribution. Conversely, increasing the forging force only reduces the magnitude of the residual stresses. The developed prediction method, based on the similarity of internal residual stress distributions, facilitates the prediction of internal residual stresses using measured surface residual stresses. Full article
Show Figures

Figure 1

Back to TopTop