Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = ThyX

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2146 KiB  
Systematic Review
Impact of Molecular Testing on Surgical Decision-Making in Indeterminate Thyroid Nodules: A Systematic Review and Meta-Analysis of Recent Advancements
by Raisa Chowdhury, Jessica Hier, Kayla E. Payne, Mawaddah Abdulhaleem, Orr Dimitstein, Netanel Eisenbach, Véronique-Isabelle Forest and Richard J. Payne
Cancers 2025, 17(7), 1156; https://doi.org/10.3390/cancers17071156 - 29 Mar 2025
Cited by 2 | Viewed by 1340
Abstract
Background: The management of indeterminate thyroid nodules (Bethesda III/IV) has evolved with molecular testing, aiming to reduce unnecessary surgeries. However, the comparative effectiveness of different platforms in influencing surgical decision-making remains unclear. This systematic review and meta-analysis evaluate the impact of molecular [...] Read more.
Background: The management of indeterminate thyroid nodules (Bethesda III/IV) has evolved with molecular testing, aiming to reduce unnecessary surgeries. However, the comparative effectiveness of different platforms in influencing surgical decision-making remains unclear. This systematic review and meta-analysis evaluate the impact of molecular testing on surgical avoidance rates. Methods: A systematic literature search was conducted across eight electronic databases, including Embase, PubMed, and Cochrane Library, from January 2019 to December 2024, following PRISMA guidelines to encompass most recent advancements in the last 5 years. Studies evaluating Afirma Gene Expression Classifier (GEC), Afirma Genomic Sequencing Classifier (GSC), ThyroSeq V2, ThyroSeq V3, and ThyGenX/ThyraMIR were included. The primary outcome was surgical avoidance, analyzed using a random-effects model. Results: Thirty-one studies comprising 4464 indeterminate thyroid nodules met inclusion criteria. Pooled surgical avoidance rates varied across platforms: ThyroSeq V2 (50.3%, 95% CI: 20.8–79.6%), ThyroSeq V3 (62.5%, 95% CI: 54.8–70.0%), Afirma GEC (58.8%, 95% CI: 43.6–73.1%), Afirma GSC (50.6%, 95% CI: 34.3–66.8%), and ThyGenX/ThyraMIR (68.6%, 95% CI: 63.1–73.9%). ThyGenX/ThyraMIR had the highest surgical avoidance rate and lowest heterogeneity (I2 = 51.2%), while ThyroSeq showed improvement from V2 to V3. Conclusions: Molecular testing reduces unnecessary thyroid surgeries, with avoidance rates ranging from 50.3% to 68.6%. While ThyGenX/ThyraMIR showed the highest avoidance rate, its limited representation warrants cautious interpretation. Standardized protocols are needed to optimize clinical application. Further prospective studies should compare platforms and assess long-term outcomes and cost-effectiveness. Full article
(This article belongs to the Special Issue Thyroid Cancer: Diagnosis, Prognosis and Treatment (2nd Edition))
Show Figures

Figure 1

10 pages, 2607 KiB  
Article
Structural Plasticity of Flavin-Dependent Thymidylate Synthase Controlled by the Enzyme Redox State
by Ludovic Pecqueur, Murielle Lombard and Djemel Hamdane
Biomolecules 2025, 15(3), 318; https://doi.org/10.3390/biom15030318 - 21 Feb 2025
Viewed by 785
Abstract
2′-Deoxythymidine-5′-monophosphate, dTMP, is an essential precursor of thymine, one of the four canonical bases of DNA. In almost all living organisms, dTMP is synthesized de novo by a reductive methylation reaction of 2′-deoxyuridine-5′-monophosphate (dUMP) catalyzed by the thymidylate synthase, where the carbon used [...] Read more.
2′-Deoxythymidine-5′-monophosphate, dTMP, is an essential precursor of thymine, one of the four canonical bases of DNA. In almost all living organisms, dTMP is synthesized de novo by a reductive methylation reaction of 2′-deoxyuridine-5′-monophosphate (dUMP) catalyzed by the thymidylate synthase, where the carbon used for the methylation is derived from methylenetetrahydrofolate (CH2THF). Many microbes, including human pathogens, utilize the flavin-dependent thymidylate synthase encoded by the thyX gene to generate dTMP. The mechanism of action relies on the reduced coenzyme FADH, which acts both as a mediator, facilitating methylene transfer from CH2THF to dUMP, and as a reducing agent. Here, we present for the first-time crystallographic structures of ThyX from Thermotoga maritima in the reduced state alone and in complex with dUMP. ThyX flavin reduction appears to order the active site, favoring a flavin conformation that drastically deviates from that observed in the oxidized enzyme. The structures show that FADH potentially controls access to the folate site and the conformation of two active site loops, affecting the degree of accessibility of substrate pockets to the solvent. Our results provide the molecular basis for the sequential enzyme mechanism implemented by ThyX during dTMP biosynthesis. Full article
(This article belongs to the Special Issue Feature Papers in Enzymology—2nd Edition)
Show Figures

Graphical abstract

12 pages, 3090 KiB  
Article
Resistance of Wolbachia to Trimethoprim: Insights into Genes Encoding Dihydrofolate Reductase, Thymidylate Synthase and Serine Hydroxymethyltransferase in the Rickettsiales
by Ann M. Fallon
Insects 2025, 16(1), 18; https://doi.org/10.3390/insects16010018 - 28 Dec 2024
Viewed by 827
Abstract
Bacterial and eukaryotic dihydrofolate reductase (DHFR) enzymes are essential for DNA synthesis and are differentially sensitive to the competitive inhibitors trimethoprim and methotrexate. Unexpectedly, trimethoprim did not reduce Wolbachia abundance, and the wStri DHFR homolog contained amino acid substitutions associated with trimethoprim [...] Read more.
Bacterial and eukaryotic dihydrofolate reductase (DHFR) enzymes are essential for DNA synthesis and are differentially sensitive to the competitive inhibitors trimethoprim and methotrexate. Unexpectedly, trimethoprim did not reduce Wolbachia abundance, and the wStri DHFR homolog contained amino acid substitutions associated with trimethoprim resistance in E. coli. A phylogenetic tree showed good association of DHFR protein sequences with supergroup A and B assignments. In contrast, DHFR is not encoded by wFol (supergroup E) and wBm (supergroup D) or by genomes of the closely related genera Anaplasma, Ehrlichia, Neorickettsia, and possibly Orientia. In E. coli and humans, DHFR participates in a coupled reactions with the conventional thymidylate synthase (TS) encoded by thyA to produce the dTMP required for DNA synthesis. In contrast, Wolbachia and other Rickettsiales express the unconventional FAD-TS enzyme encoded by thyX, even when folA is present. The exclusive use of FAD-TS suggests that Wolbachia DHFR provides a supplementary rather than an essential function for de novo synthesis of dTMP, possibly reflecting the relative availability of, and competing demands for, FAD and NAD coenzymes in the diverse intracellular environments of its hosts. Whether encoded by thyA or thyX, TS produces dTMP by transferring a methyl group from methylene tetrahydrofolate to dUMP. In the Rickettsiales, serine hydroxymethyltransferase (SMHT), encoded by a conserved glyA gene, regenerates methylene tetrahydrofolate. Unlike thyA, thyX lacks a human counterpart and thus provides a potential target for the treatment of infections caused by pathogenic members of the Rickettsiales. Full article
(This article belongs to the Section Medical and Livestock Entomology)
Show Figures

Graphical abstract

13 pages, 1630 KiB  
Article
Competition between H4PteGlu and H2PtePAS Confers para-Aminosalicylic Acid Resistance in Mycobacterium tuberculosis
by Ji-Fang Yu, Jin-Tian Xu, Ao Feng, Bao-Ling Qi, Jing Gu, Jiao-Yu Deng and Xian-En Zhang
Antibiotics 2024, 13(1), 13; https://doi.org/10.3390/antibiotics13010013 - 21 Dec 2023
Cited by 3 | Viewed by 2040
Abstract
Tuberculosis remains a serious challenge to human health worldwide. para-Aminosalicylic acid (PAS) is an important anti-tuberculosis drug, which requires sequential activation by Mycobacterium tuberculosis (M. tuberculosis) dihydropteroate synthase and dihydrofolate synthase (DHFS, FolC). Previous studies showed that loss of function [...] Read more.
Tuberculosis remains a serious challenge to human health worldwide. para-Aminosalicylic acid (PAS) is an important anti-tuberculosis drug, which requires sequential activation by Mycobacterium tuberculosis (M. tuberculosis) dihydropteroate synthase and dihydrofolate synthase (DHFS, FolC). Previous studies showed that loss of function mutations of a thymidylate synthase coding gene thyA caused PAS resistance in M. tuberculosis, but the mechanism is unclear. Here we showed that deleting thyA in M. tuberculosis resulted in increased content of tetrahydrofolate (H4PteGlu) in bacterial cells as they rely on the other thymidylate synthase ThyX to synthesize thymidylate, which produces H4PteGlu during the process. Subsequently, data of in vitro enzymatic activity experiments showed that H4PteGlu hinders PAS activation by competing with hydroxy dihydropteroate (H2PtePAS) for FolC catalysis. Meanwhile, over-expressing folC in ΔthyA strain and a PAS resistant clinical isolate with known thyA mutation partially restored PAS sensitivity, which relieved the competition between H4PteGlu and H2PtePAS. Thus, loss of function mutations in thyA led to increased H4PteGlu content in bacterial cells, which competed with H2PtePAS for catalysis by FolC and hence hindered the activation of PAS, leading to decreased production of hydroxyl dihydrofolate (H2PtePAS-Glu) and finally caused PAS resistance. On the other hand, functional deficiency of thyA in M. tuberculosis pushes the bacterium switch to an unidentified dihydrofolate reductase for H4PteGlu biosynthesis, which might also contribute to the PAS resistance phenotype. Our study revealed how thyA mutations confer PAS resistance in M. tuberculosis and provided new insights into studies on the folate metabolism of the bacterium. Full article
Show Figures

Figure 1

24 pages, 4446 KiB  
Article
The Effect of Fat Intake with Increased Omega-6-to-Omega-3 Polyunsaturated Fatty Acid Ratio in Animal Models of Early and Late Alzheimer’s Disease-like Pathogenesis
by Pablo Galeano, Marialuisa de Ceglia, Mauricio Mastrogiovanni, Lorenzo Campanelli, Dina Medina-Vera, Nicolás Campolo, Gisela V. Novack, Cristina Rosell-Valle, Juan Suárez, Adrián Aicardo, Karen Campuzano, Eduardo M. Castaño, Sonia Do Carmo, A. Claudio Cuello, Silvina Bartesaghi, Rafael Radi, Fernando Rodríguez de Fonseca and Laura Morelli
Int. J. Mol. Sci. 2023, 24(23), 17009; https://doi.org/10.3390/ijms242317009 - 30 Nov 2023
Cited by 7 | Viewed by 2963
Abstract
This work aims to clarify the effect of dietary polyunsaturated fatty acid (PUFA) intake on the adult brain affected by amyloid pathology. McGill-R-Thy1-APP transgenic (Tg) rat and 5xFAD Tg mouse models that represent earlier or later disease stages were employed. The animals were [...] Read more.
This work aims to clarify the effect of dietary polyunsaturated fatty acid (PUFA) intake on the adult brain affected by amyloid pathology. McGill-R-Thy1-APP transgenic (Tg) rat and 5xFAD Tg mouse models that represent earlier or later disease stages were employed. The animals were exposed to a control diet (CD) or an HFD based on corn oil, from young (rats) or adult (mice) ages for 24 or 10 weeks, respectively. In rats and mice, the HFD impaired reference memory in wild-type (WT) animals but did not worsen it in Tg, did not cause obesity, and did not increase triglycerides or glucose levels. Conversely, the HFD promoted stronger microglial activation in Tg vs. WT rats but had no effect on cerebral amyloid deposition. IFN-γ, IL-1β, and IL-6 plasma levels were increased in Tg rats, regardless of diet, while CXCL1 chemokine levels were increased in HFD-fed mice, regardless of genotype. Hippocampal 3-nitrotyrosine levels tended to increase in HFD-fed Tg rats but not in mice. Overall, an HFD with an elevated omega-6-to-omega-3 ratio as compared to the CD (25:1 vs. 8.4:1) did not aggravate the outcome of AD regardless of the stage of amyloid pathology, suggesting that many neurobiological processes relevant to AD are not directly dependent on PUFA intake. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

17 pages, 2183 KiB  
Article
Polysarcosine-Functionalized mRNA Lipid Nanoparticles Tailored for Immunotherapy
by Christoph Wilhelmy, Isabell Sofia Keil, Lukas Uebbing, Martin A. Schroer, Daniel Franke, Thomas Nawroth, Matthias Barz, Ugur Sahin, Heinrich Haas, Mustafa Diken and Peter Langguth
Pharmaceutics 2023, 15(8), 2068; https://doi.org/10.3390/pharmaceutics15082068 - 1 Aug 2023
Cited by 20 | Viewed by 6174
Abstract
Lipid nanoparticles (LNPs) have gained great attention as carriers for mRNA-based therapeutics, finding applications in various indications, extending beyond their recent use in vaccines for infectious diseases. However, many aspects of LNP structure and their effects on efficacy are not well characterized. To [...] Read more.
Lipid nanoparticles (LNPs) have gained great attention as carriers for mRNA-based therapeutics, finding applications in various indications, extending beyond their recent use in vaccines for infectious diseases. However, many aspects of LNP structure and their effects on efficacy are not well characterized. To further exploit the potential of mRNA therapeutics, better control of the relationship between LNP formulation composition with internal structure and transfection efficiency in vitro is necessary. We compared two well-established ionizable lipids, namely DODMA and MC3, in combination with two helper lipids, DOPE and DOPC, and two polymer-grafted lipids, either with polysarcosine (pSar) or polyethylene glycol (PEG). In addition to standard physicochemical characterization (size, zeta potential, RNA accessibility), small-angle X-ray scattering (SAXS) was used to analyze the structure of the LNPs. To assess biological activity, we performed transfection and cell-binding assays in human peripheral blood mononuclear cells (hPBMCs) using Thy1.1 reporter mRNA and Cy5-labeled mRNA, respectively. With the SAXS measurements, we were able to clearly reveal the effects of substituting the ionizable and helper lipid on the internal structure of the LNPs. In contrast, pSar as stealth moieties affected the LNPs in a different manner, by changing the surface morphology towards higher roughness. pSar LNPs were generally more active, where the highest transfection efficiency was achieved with the LNP formulation composition of MC3/DOPE/pSar. Our study highlights the utility of pSar for improved mRNA LNP products and the importance of pSar as a novel stealth moiety enhancing efficiency in future LNP formulation development. SAXS can provide valuable information for the rational development of such novel formulations by elucidating structural features in different LNP compositions. Full article
(This article belongs to the Special Issue Nanoparticles and Microparticles in Drug Delivery)
Show Figures

Graphical abstract

19 pages, 7314 KiB  
Article
Synthesis and Spectral Characterisation of Fabricated Cerium-Doped Magnesium Oxide Nanoparticles: Evaluation of the Antimicrobial Potential and Its Membranolytic Activity through Large Unilamellar Vesicles
by Ashapurna Khatua, Kajal Kumari, Deepak Khatak, Annesha Roy, Neelima Bhatt, Bernard Paul, Aparupa Naik, Amiya Kumar Patel, Uttam Kumar Panigrahi, Santosh Kumar Sahu, Muthupandian Saravanan and Ramovatar Meena
J. Funct. Biomater. 2023, 14(2), 112; https://doi.org/10.3390/jfb14020112 - 17 Feb 2023
Cited by 14 | Viewed by 3288
Abstract
Considerable attention has been given to Magnesium oxide nanoparticles lately due to their antimicrobial potential, low toxicity to humans, high thermal stability, biocompatibility, and low cost of production. However, their successful transformation into sustainable drugs is limited due to their low membrane permeability, [...] Read more.
Considerable attention has been given to Magnesium oxide nanoparticles lately due to their antimicrobial potential, low toxicity to humans, high thermal stability, biocompatibility, and low cost of production. However, their successful transformation into sustainable drugs is limited due to their low membrane permeability, which reduces their bioavailability in target cells. Herein we propose Cerium-doped magnesium oxide nanoparticles (MgOCeNPs) as a powerful solution to above mentioned limitations and are compared with MgO NPs for their membrane permeability and antimicrobial activity. Both pure and Ce-doped were characterized by various spectroscopic and microscopic techniques, in which an X-ray diffraction (XRD) examination reveals the lattice patterns for doped nanoparticles. Furthermore, Atomic Force Microscopy (AFM) revealed the three-dimensional (3D) structure and height of the nanoparticle. The crystal structure (FCC) of MgO did not change with Ce doping. However, microstructural properties like lattice parameter, crystallite size and biological activity of MgO significantly changed with Ce doping. In order to evaluate the antimicrobial potential of MgOCeNPs in comparison to MgO NPs and to understand the underlying mechanisms, the antibacterial activity was investigated against human pathogenic bacteria E. coli and P. aeruginosa, and antifungal activity against THY-1, a fungal strain. MgOCeNPs were studied by several methods, which resulted in a strong antibacterial and antifungal activity in the form of an elevated zone of inhibition, reduced growth curve, lower minimum inhibitory concentration (MIC80) and enhanced cytotoxicity in both bacterial and fungal strain as compared to MgO nanoparticles. The study of the growth curve showed early and prolonged stationary phase and early decline log phase. Both bacterial and fungal strains showed dose-dependent cytotoxicity with enhancement in intracellular reactive oxygen species (ROS) generation and formation of pores in the membrane when interacting with egg-phosphatidylcholine model Large Unilamellar Vesicles (LUVs). The proposed mechanism of MgOCeNPs toxicity evidently is membranolytic activity and induction of ROS production, which may cause oxidative stress-mediated cytotoxicity. These results confirmed that MgOCeNPs are a novel and very potent antimicrobial agent with a great promise of controlling and treating other microbes. Full article
(This article belongs to the Section Antibacterial Biomaterials)
Show Figures

Figure 1

13 pages, 2345 KiB  
Article
Comparative Pharmacokinetics of a Dual Inhibitor of HIV-1, NBD-14189, in Rats and Dogs with a Proof-of-Concept Evaluation of Antiviral Potency in SCID-hu Mouse Model
by Cheryl A. Stoddart, Francesca Curreli, Stephen Horrigan, Andrea Altieri, Alexander V. Kurkin and Asim K. Debnath
Viruses 2022, 14(10), 2268; https://doi.org/10.3390/v14102268 - 16 Oct 2022
Cited by 1 | Viewed by 2142
Abstract
We earlier reported substantial progress in designing gp120 antagonists. Notably, we discovered that NBD-14189 is not only the most active gp120 antagonist but also shows antiviral activity against HIV-1 Reverse Transcriptase (RT). We also confirmed its binding to HIV-1 RT by X-ray crystallography. [...] Read more.
We earlier reported substantial progress in designing gp120 antagonists. Notably, we discovered that NBD-14189 is not only the most active gp120 antagonist but also shows antiviral activity against HIV-1 Reverse Transcriptase (RT). We also confirmed its binding to HIV-1 RT by X-ray crystallography. The dual inhibition is highly significant because, intriguingly, this compound bridges the dNTP and NNRTI-binding sites and inhibits the polymerase activity of isolated RT in the enzymatic assay. This novel finding is expected to lead to new avenues in designing a novel class of HIV-1 dual inhibitors. Therefore, we needed to advance this inhibitor to preclinical assessment. To this end, we report the pharmacokinetics (PK) study of NBD-14189 in rats and dogs. Subsequently, we assessed the toxicity and therapeutic efficacy in vivo in the SCID-hu Thy/Liv mouse model. The PK data indicated a favorable half-life (t1/2) and excellent oral bioavailability (%F = 61%). NBD-14189 did not show any measurable toxicity in the mice, and treatment reduced HIV replication at 300 mg/kg per day in the absence of clear evidence of protection from HIV-mediated human thymocyte depletion. The data indicated the potential of this inhibitor as an anti-HIV-1 agent and needs to be assessed in a non-human primate (NHP) model. Full article
(This article belongs to the Special Issue HIV-1 Entry Inhibitors)
Show Figures

Figure 1

27 pages, 6979 KiB  
Article
Synthesis and Structure–Activity Relationship Studies of Pyrido [1,2-e]Purine-2,4(1H,3H)-Dione Derivatives Targeting Flavin-Dependent Thymidylate Synthase in Mycobacterium tuberculosis
by Nicolas G. Biteau, Vincent Roy, Cyril Nicolas, Hubert F. Becker, Jean-Christophe Lambry, Hannu Myllykallio and Luigi A. Agrofoglio
Molecules 2022, 27(19), 6216; https://doi.org/10.3390/molecules27196216 - 21 Sep 2022
Cited by 2 | Viewed by 2475
Abstract
In 2002, a new class of thymidylate synthase (TS) involved in the de novo synthesis of dTMP named Flavin-Dependent Thymidylate Synthase (FDTS) encoded by the thyX gene was discovered; FDTS is present only in 30% of prokaryote pathogens and not in [...] Read more.
In 2002, a new class of thymidylate synthase (TS) involved in the de novo synthesis of dTMP named Flavin-Dependent Thymidylate Synthase (FDTS) encoded by the thyX gene was discovered; FDTS is present only in 30% of prokaryote pathogens and not in human pathogens, which makes it an attractive target for the development of new antibacterial agents, especially against multi-resistant pathogens. We report herein the synthesis and structure-activity relationship of a novel series of hitherto unknown pyrido[1,2-e]purine-2,4(1H,3H)-dione analogues. Several synthetics efforts were done to optimize regioselective N1-alkylation through organopalladium cross-coupling. Modelling of potential hits were performed to generate a model of interaction into the active pocket of FDTS to understand and guide further synthetic modification. All those compounds were evaluated on an in-house in vitro NADPH oxidase assays screening as well as against Mycobacterium tuberculosis ThyX. The highest inhibition was obtained for compound 23a with 84.3% at 200 µM without significant cytotoxicity (CC50 > 100 μM) on PBM cells. Full article
(This article belongs to the Special Issue Bioactive Heterocyclic Compounds in Drug Design)
Show Figures

Figure 1

11 pages, 3172 KiB  
Article
A Gadolinium(III) Complex Based on the Thymine Nucleobase with Properties Suitable for Magnetic Resonance Imaging
by Marta Orts-Arroyo, Amadeo Ten-Esteve, Sonia Ginés-Cárdenas, Isabel Castro, Luis Martí-Bonmatí and José Martínez-Lillo
Int. J. Mol. Sci. 2021, 22(9), 4586; https://doi.org/10.3390/ijms22094586 - 27 Apr 2021
Cited by 12 | Viewed by 2967
Abstract
The paramagnetic gadolinium(III) ion is used as contrast agent in magnetic resonance (MR) imaging to improve the lesion detection and characterization. It generates a signal by changing the relaxivity of protons from associated water molecules and creates a clearer physical distinction between the [...] Read more.
The paramagnetic gadolinium(III) ion is used as contrast agent in magnetic resonance (MR) imaging to improve the lesion detection and characterization. It generates a signal by changing the relaxivity of protons from associated water molecules and creates a clearer physical distinction between the molecule and the surrounding tissues. New gadolinium-based contrast agents displaying larger relaxivity values and specifically targeted might provide higher resolution and better functional images. We have synthesized the gadolinium(III) complex of formula [Gd(thy)2(H2O)6](ClO4)3·2H2O (1) [thy = 5-methyl-1H-pyrimidine-2,4-dione or thymine], which is the first reported compound based on gadolinium and thymine nucleobase. 1 has been characterized through UV-vis, IR, SEM-EDAX, and single-crystal X-ray diffraction techniques, and its magnetic and relaxometric properties have been investigated by means of SQUID magnetometer and MR imaging phantom studies, respectively. On the basis of its high relaxivity values, this gadolinium(III) complex can be considered a suitable candidate for contrast-enhanced magnetic resonance imaging. Full article
(This article belongs to the Special Issue Metal Complexes in Diagnosis and Therapy)
Show Figures

Graphical abstract

15 pages, 1648 KiB  
Article
Supramolecular Dimerization in a Polymer Melt from Small-Angle X-ray Scattering and Rheology: A Miscible Model System
by Mariapaola Staropoli, Margarita Kruteva, Jürgen Allgaier, Andreas Wischnewski and Wim Pyckhout-Hintzen
Polymers 2020, 12(4), 880; https://doi.org/10.3390/polym12040880 - 10 Apr 2020
Cited by 3 | Viewed by 3265
Abstract
We present a structural and dynamic study on the simplest supramolecular hetero-association, recently investigated by the authors to prepare architectural homogeneous structures in the melt state, based on the bio-inspired hydrogen-bonding of thymine/diaminotriazine (thy–DAT) base-pairs. In the combination with an amorphous low T [...] Read more.
We present a structural and dynamic study on the simplest supramolecular hetero-association, recently investigated by the authors to prepare architectural homogeneous structures in the melt state, based on the bio-inspired hydrogen-bonding of thymine/diaminotriazine (thy–DAT) base-pairs. In the combination with an amorphous low Tg poly(butylene oxide) (PBO), no micellar structures are formed, which is expected for nonpolar polymers because of noncompatibility with the highly polar supramolecular groups. Instead, a clear polymer-like transient architecture is retrieved. This makes the heterocomplementary thy–DAT association an ideal candidate for further exploitation of the hydrogen-bonding ability in the bulk for self-healing purposes, damage management in rubbers or even the development of easily processable branched polymers with built-in plasticizer. In the present work, we investigate the temperature range from Tg + 20 °C to Tg + 150 °C of an oligomeric PBO using small-angle X-ray scattering (SAXS) and linear rheology on the pure thy and pure DAT monofunctionals and on an equimolar mixture of thy/DAT oligomers. The linear rheology performed at low temperature is found to correspond to fully closed-state dimeric configurations. At intermediate temperatures, SAXS probes the equilibrium between open and closed states of the thy–DAT mixtures. The temperature-dependent association constant in the full range between open and closed H-bonds and an enhancement of the monomeric friction coefficient due to the groups is obtained. The thy–DAT association in the melt is more stable than the DAT–DAT, whereas the thy–thy association seems to involve additional long-lived interactions. Full article
(This article belongs to the Special Issue Multifunctional Supramolecular Polymers)
Show Figures

Figure 1

16 pages, 5355 KiB  
Article
Intracellular Ca2+ Increases and Connexin 43 Hemichannel Opening Are Necessary but Not Sufficient for Thy-1-Induced Astrocyte Migration
by Raúl Lagos-Cabré, Marianne Brenet, Jorge Díaz, Ramón D. Pérez, Leonardo A. Pérez, Rodrigo Herrera-Molina, Andrew F. G. Quest and Lisette Leyton
Int. J. Mol. Sci. 2018, 19(8), 2179; https://doi.org/10.3390/ijms19082179 - 26 Jul 2018
Cited by 28 | Viewed by 5727
Abstract
Under pro-inflammatory conditions, astrocytes become reactive and acquire a migratory phenotype. Our results show that hemichannels formed by connexin 43 (Cx43) play an important role in Thy-1-induced astrocyte migration. The neuronal protein Thy-1 binds to αvβ3 integrin in astrocytes, thereby leading to intricate [...] Read more.
Under pro-inflammatory conditions, astrocytes become reactive and acquire a migratory phenotype. Our results show that hemichannels formed by connexin 43 (Cx43) play an important role in Thy-1-induced astrocyte migration. The neuronal protein Thy-1 binds to αvβ3 integrin in astrocytes, thereby leading to intricate signaling pathways that include calcium (Ca2+) release from intracellular stores, opening of Cx43 hemichannels, release of ATP, activation of P2X7 receptor, and Ca2+ influx. However, because these Thy-1 effects occur exclusively in reactive astrocytes, we wondered whether by elevating calcium levels and promoting hemichannel opening we could prompt non-reactive astrocytes to respond to Thy-1. Cx43 immunoreactivity increased at juxta-membrane sites, where hemichannels (not gap junctions) participate in astrocyte polarization and migration stimulated by Thy-1. Also, intracellular Ca2+ increase, due to ionomycin treatment, induced hemichannel opening, but activated astrocyte migration only partially, and this limitation was overcome by pre-treatment with tumor necrosis factor (TNF) and Thy-1. Finally, αvβ3 integrin formed membrane clusters after TNF stimulation or overexpression of β3 integrin. We suggest that these microclusters are required for cells to respond to Thy-1 stimulation. Therefore, the large increase in intracellular Ca2+ and hemichannel opening induced by ionomycin are required, but not sufficient, to permit Thy-1-induced astrocyte migration. Thus, we suggest that proinflammatory stimuli prompt astrocytes to respond to migratory signals of neuronal cells. Full article
Show Figures

Figure 1

Back to TopTop