Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = Te vacancies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2034 KB  
Article
Te Vacancy Defect Engineering on Fe3GeTe2 (001) Basal Planes for Enhanced Oxygen Evolution Reaction: A First-Principles Study
by Yunjie Gao, Wei Su, Yuan Qiu, Dan Shan and Jing Pan
Nanomaterials 2025, 15(16), 1272; https://doi.org/10.3390/nano15161272 - 18 Aug 2025
Viewed by 259
Abstract
Photocatalytic water splitting for hydrogen production is an attractive renewable energy technology, but the oxygen evolution reaction (OER) at the anode is severely constrained by a high overpotential. The two-dimensional vdW ferromagnetic material Fe3GeTe2, with its good stability and [...] Read more.
Photocatalytic water splitting for hydrogen production is an attractive renewable energy technology, but the oxygen evolution reaction (OER) at the anode is severely constrained by a high overpotential. The two-dimensional vdW ferromagnetic material Fe3GeTe2, with its good stability and excellent metallic conductivity, has potential as an electrocatalyst, but its sluggish surface catalytic reactivity limits its large-scale application. In this work, we adapted DFT calculations to introduce surface Te vacancies to boost OER performance of the Fe3GeTe2 (001) surface. Te vacancies induce the charge redistribution of active sites, optimizing the adsorption and desorption of oxygen-containing intermediates. Consequently, the overpotential of the rate-determining step in the OER process of Fe3GeTe2 is reduced to 0.34 V, bringing the performance close to that of the benchmark IrO2 catalyst (0.56 V). Notably, the vacancies’ concentration and configuration significantly modify the electronic structure and thus influence OER activity. This study provides important theoretical evidence for defect engineering in OER catalysis and offers new design strategies for developing efficient and stable electrocatalysts for sustainable energy conversion. Full article
(This article belongs to the Topic Electrocatalytic Advances for Sustainable Energy)
Show Figures

Graphical abstract

20 pages, 15575 KB  
Article
Transport Properties of One-Dimensional van der Waals Heterostructures Based on Molybdenum Dichalcogenides
by Daulet Sergeyev and Kuanyshbek Shunkeyev
Crystals 2025, 15(7), 656; https://doi.org/10.3390/cryst15070656 - 18 Jul 2025
Viewed by 795
Abstract
The transport properties of one-dimensional van der Waals nanodevices composed of carbon nanotubes (CNTs), hexagonal boron nitride (hBN) nanotubes, and molybdenum dichalcogenide (MoX2) nanotubes were investigated within the framework of density functional theory (DFT). It was found that in nanodevices based [...] Read more.
The transport properties of one-dimensional van der Waals nanodevices composed of carbon nanotubes (CNTs), hexagonal boron nitride (hBN) nanotubes, and molybdenum dichalcogenide (MoX2) nanotubes were investigated within the framework of density functional theory (DFT). It was found that in nanodevices based on MoS2(24,24) and MoTe2(24,24), the effect of resonant tunneling is suppressed due to electron–phonon scattering. This suppression arises from the fact that these materials are semiconductors with an indirect band gap, where phonon participation is required to conserve momentum during transitions between the valence and conduction bands. In contrast, nanodevices incorporating MoSe2(24,24), which possesses a direct band gap, exhibit resonant tunneling, as quasiparticles can tunnel between the valence and conduction bands without a change in momentum. It was demonstrated that the presence of vacancy defects in the CNT segment significantly degrades quasiparticle transport compared to Stone–Wales (SW) defects. Furthermore, it was revealed that resonant interactions between SW defects in MoTe2(24,24)–hBN(27,27)–CNT(24,24) nanodevices can enhance the differential conductance under certain voltages. These findings may be beneficial for the design and development of nanoscale diodes, back nanodiodes, and tunneling nanodiodes. Full article
Show Figures

Figure 1

11 pages, 2286 KB  
Article
The Barrier Inhomogeneity and the Electrical Characteristics of W/Au β-Ga2O3 Schottky Barrier Diodes
by Lei Xie, Tao Zhang, Shengrui Xu, Huake Su, Hongchang Tao, Yuan Gao, Xu Liu, Jincheng Zhang and Yue Hao
Micromachines 2025, 16(4), 369; https://doi.org/10.3390/mi16040369 - 25 Mar 2025
Viewed by 653
Abstract
In this work, the electrical properties of the Ga2O3 Schottky barrier diodes (SBDs) using W/Au as the Schottky metal were investigated. Due to the 450 °C post-anode annealing (PAA), the reduced oxygen vacancy defects on the β-Ga2O [...] Read more.
In this work, the electrical properties of the Ga2O3 Schottky barrier diodes (SBDs) using W/Au as the Schottky metal were investigated. Due to the 450 °C post-anode annealing (PAA), the reduced oxygen vacancy defects on the β-Ga2O3 surface resulted in the improvement in the forward characteristics of the W/Au Ga2O3 Schottky diode, and the breakdown voltage was significantly enhanced, increasing by 56.25% from 400 V to 625 V after PAA treatment. Additionally, the temperature dependence of barrier heights and ideality factors was analyzed using the thermionic emission (TE) model combined with a Gaussian distribution of barrier heights. Post-annealing reduced the apparent barrier height standard deviation from 112 meV to 92 meV, indicating a decrease in barrier height fluctuations. And the modified Richardson constants calculated for the as-deposited and annealed samples were in close agreement with the theoretical value, demonstrating that the barrier inhomogeneity of the W/Au Ga2O3 SBDs can be accurately explained using the TE model with a Gaussian distribution of barrier heights. Full article
(This article belongs to the Section D1: Semiconductor Devices)
Show Figures

Figure 1

11 pages, 3380 KB  
Article
Atomic Pathways of Crystal-to-Crystal Transitions and Electronic Origins of Resistive Switching in MnTe for Ultralow-Power Memory
by Rui Wu, Nian-Ke Chen, Ming-Yu Ma, Bai-Qian Wang, Yu-Ting Huang, Bin Zhang and Xian-Bin Li
Nanomaterials 2025, 15(3), 231; https://doi.org/10.3390/nano15030231 - 31 Jan 2025
Viewed by 1137
Abstract
In conventional phase change memory (PCM) technology, the melting process required to create an amorphous state typically results in extremely high power consumption. Recently, a new type of PCM device based on a melting-free crystal-to-crystal phase transition in MnTe has been developed, offering [...] Read more.
In conventional phase change memory (PCM) technology, the melting process required to create an amorphous state typically results in extremely high power consumption. Recently, a new type of PCM device based on a melting-free crystal-to-crystal phase transition in MnTe has been developed, offering a potential solution to the problem. However, the electronic and atomic mechanisms underlying this transition remain unclear. In this work, by first-principles calculations, the resistance contrast is attributed to the differences in hole effective mass and vacancy formation energy of the two phases. Moreover, two phase transition pathways of the α-MnTe-to-β-MnTe transition, namely, the ‘slide-and-stand-up’ transitions, are identified based on coherent atomic movements. The energy barriers for the two pathways are 0.17 eV per formula unit (f.u.) and 0.38 eV/f.u., respectively. Furthermore, the energy barriers can be reduced to 0.10 eV/f.u. and 0.26 eV/f.u. via c-axis tensile strains, which makes the phase transition easier. The current result provides new insights into the non-melting phase transition process in MnTe, facilitating the development of low-power PCM technology. Full article
(This article belongs to the Special Issue Semiconductor Nanomaterials for Memory Devices)
Show Figures

Figure 1

26 pages, 20145 KB  
Article
In Situ Compositional and Sulfur Isotopic Analysis of Sphalerite from the Erdaodianzi Gold Deposit in Southern Jilin Province, Northeast China
by Qingqing Shang, Fengdi Ren, Qun Yang and Bin Wang
Minerals 2025, 15(1), 57; https://doi.org/10.3390/min15010057 - 7 Jan 2025
Cited by 3 | Viewed by 881
Abstract
The newly discovered Erdaodianzi gold deposit in southern Jilin Province, Northeast China, is located in the eastern segment of the northern margin of the North China Craton (NCC). It is a large-scale gold deposit with reserves of 38.4 tons of gold. Gold mineralization [...] Read more.
The newly discovered Erdaodianzi gold deposit in southern Jilin Province, Northeast China, is located in the eastern segment of the northern margin of the North China Craton (NCC). It is a large-scale gold deposit with reserves of 38.4 tons of gold. Gold mineralization in the ore district primarily occurs in gold-bearing quartz–sulfide veins. The gold ore occurs mainly as vein, veinlet, crumby, and disseminated structures. The hydrothermal process can be divided into three stages: stage I, characterized by quartz, arsenopyrite, and pyrite; stage II, featuring quartz, arsenopyrite, pyrite, pyrrhotite, chalcopyrite, sphalerite, and native gold; and stage III, consisting of quartz, pyrite, sphalerite, galena, electrum (a naturally occurring Au–Ag alloy), and calcite. Electrum and native gold primarily occur within the fissures of the polymetallic sulfides. To determine the enrichment mechanism of the Au element and the genetic types of ore deposits in the Erdaodianzi deposit, sourcing in situ trace element data, element mapping and sulfur isotope analysis were carried out on sphalerites from different stages using LA-ICP-MS. Minor invisible gold, in the form of Au–Ag alloy inclusions, is present within sphalerites, as revealed by time-resolved depth profiles. The LA-ICP-MS trace element data and mapping results indicate that trivalent or quadrivalent cations, such as Sb3+ and Te4+, exhibit a strong correlation with Au. This correlation can be explained by a coupled substitution mechanism, where these cations (Sb3+ and Te4+) replace zinc ions within the mineral structure, resulting in a strong association with Au. Similarly, the element Pb exhibits a close relationship with Au, which can be attributed to the incorporation of tetravalent cations like Te4+ into the mineral structure. The positive correlation between Hg and Au can be attributed to the formation of vacancies and defects within sphalerite, caused by the aforementioned coupled substitution mechanism. A slight positive relationship between Au and other divalent cations, including Fe2+, Mn2+, and Cd2+, may result from these cations simply replacing Zn within the sphalerite lattice. The crystallization temperatures of the sphalerite, calculated via the Fe/Zn ratio, range from 238 °C to 320 °C. The δ34S values are divided into two intervals: one ranging from −1.99 to −1.12‰ and the other varying from 10.96 to 11.48‰. The sulfur isotopic analysis revealed that the ore-forming materials originated from magmatic rock, with some incorporation of metamorphic rock. Comparative studies of the Erdaodianzi gold deposit and other gold deposits in the Jiapigou–Haigou gold belt have confirmed that they are all mesothermal magmatic–hydrothermal lode gold deposits formed at the subduction of the Paleo-Pacific Plate beneath the Eurasian Plate during the Middle Jurassic. The Jiapigou–Haigou gold belt extends northwest to the Huadian area of Jilin province. This suggests potential for research on gold mineralization in the northwest of the belt and indicates a new direction for further gold prospecting in the region. Full article
Show Figures

Figure 1

12 pages, 3869 KB  
Article
Defect Analysis in a Long-Wave Infrared HgCdTe Auger-Suppressed Photodiode
by Małgorzata Kopytko, Kinga Majkowycz, Krzysztof Murawski, Jan Sobieski, Waldemar Gawron and Piotr Martyniuk
Sensors 2024, 24(11), 3566; https://doi.org/10.3390/s24113566 - 1 Jun 2024
Cited by 1 | Viewed by 1309
Abstract
Deep defects in the long-wave infrared (LWIR) HgCdTe heterostructure photodiode were measured via deep-level transient spectroscopy (DLTS) and photoluminescence (PL). The n+-P+-π-N+ photodiode structure was grown by following the metal–organic chemical vapor deposition (MOCVD) technique on a GaAs [...] Read more.
Deep defects in the long-wave infrared (LWIR) HgCdTe heterostructure photodiode were measured via deep-level transient spectroscopy (DLTS) and photoluminescence (PL). The n+-P+-π-N+ photodiode structure was grown by following the metal–organic chemical vapor deposition (MOCVD) technique on a GaAs substrate. DLTS has revealed two defects: one electron trap with an activation energy value of 252 meV below the conduction band edge, located in the low n-type-doped transient layer at the π-N+ interface, and a second hole trap with an activation energy value of 89 meV above the valence band edge, located in the π absorber. The latter was interpreted as an isolated point defect, most probably associated with mercury vacancies (VHg). Numerical calculations applied to the experimental data showed that this VHg hole trap is the main cause of increased dark currents in the LWIR photodiode. The determined specific parameters of this trap were the capture cross-section for the holes of σp = 10−16–4 × 10−15 cm2 and the trap concentration of NT = 3–4 × 1014 cm−3. PL measurements confirmed that the trap lies approximately 83–89 meV above the valence band edge and its location. Full article
Show Figures

Figure 1

12 pages, 2656 KB  
Article
Theoretical Study of Single-Atom Catalysts for Hydrogen Evolution Reaction Based on BiTeBr Monolayer
by Tao Yang and Qiquan Luo
Materials 2024, 17(10), 2377; https://doi.org/10.3390/ma17102377 - 15 May 2024
Cited by 2 | Viewed by 1803
Abstract
Developing an inexpensive and efficient catalyst for a hydrogen evolution reaction (HER) is an effective measure to alleviate the energy crisis. Single-atom catalysts (SACs) based on Janus materials demonstrated promising prospects for the HER. Herein, density functional theory calculations were conducted to systematically [...] Read more.
Developing an inexpensive and efficient catalyst for a hydrogen evolution reaction (HER) is an effective measure to alleviate the energy crisis. Single-atom catalysts (SACs) based on Janus materials demonstrated promising prospects for the HER. Herein, density functional theory calculations were conducted to systematically investigate the performance of SACs based on the BiTeBr monolayer. Among the one hundred and forty models that were constructed, fourteen SACs with potential HER activity were selected. Significantly, the SAC, in which a single Ru atom is anchored on a BiTeBr monolayer with a Bi vacancy (RuS2/VBi-BiTeBr), exhibits excellent HER activity with an ultra-low |ΔGH*| value. A further investigation revealed that RuS2/VBi-BiTeBr tends to react through the Volmer–Heyrovsky mechanism. An electronic structure analysis provided deeper insights into this phenomenon. This is because the Tafel pathway requires overcoming steric hindrance and disrupting stable electron filling states, making it challenging to proceed. This study finally employed constant potential calculations, which approximate experimental situations. The results indicated that the ΔGH* value at pH = 0 is 0.056 eV for RuS2/VBi-BiTeBr, validating the rationality of the traditional Computational Hydrogen Electrode (CHE) method for performance evaluation in this system. This work provides a reference for the research of new HER catalysts. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

30 pages, 6637 KB  
Review
Enrichment Characteristics and Mechanisms of Critical Metals in Marine Fe-Mn Crusts and Nodules: A Review
by Sucheng Huang and Yazhou Fu
Minerals 2023, 13(12), 1532; https://doi.org/10.3390/min13121532 - 9 Dec 2023
Cited by 12 | Viewed by 3703
Abstract
Marine Co-rich ferromanganese crusts and polymetallic nodules, which are widely distributed in oceanic environments, are salient potential mineral resources that are enriched with many critical metals. Many investigations have achieved essential progress and findings regarding critical metal enrichment in Fe-Mn crusts and nodules. [...] Read more.
Marine Co-rich ferromanganese crusts and polymetallic nodules, which are widely distributed in oceanic environments, are salient potential mineral resources that are enriched with many critical metals. Many investigations have achieved essential progress and findings regarding critical metal enrichment in Fe-Mn crusts and nodules. This study systematically reviews the research findings of previous investigations and elaborates in detail on the enrichment characteristics, enrichment processes and mechanisms and the influencing factors of the critical metals enriched in Fe-Mn crusts and nodules. The influencing factors of critical metal enrichments in Fe-Mn crusts and nodules mainly include the growth rate, water depth, post-depositional phosphatization and structural uptake of adsorbents. The major enrichment pathways of critical metals in marine Fe-Mn (oxy)hydroxides are primarily as follows: direct substitution on the surface of δ-MnO2 for Ni, Cu, Zn and Li; oxidative substitution on the δ-MnO2 surface for Co, Ce and Tl; partition between Mn and Fe phases through surface complexation according to electro-species attractiveness for REY (except for Ce), Cd, Mo, W and V; combined Mn-Fe phases enrichment for seawater anionic Te, Pt, As and Sb, whose low-valence species are mostly oxidatively enriched on δ-MnO2, in addition to electro-chemical adsorption onto FeOOH, while high-valence species are likely structurally incorporated by amorphous FeOOH; and dominant sorption and incorporation by amorphous FeOOH for Ti and Se. The coordination preferences of critical metals in the layered and tunneled Mn oxides are primarily as follows: metal incorporations in the layer/tunnel-wall for Co, Ni and Cu; triple-corner-sharing configurations above the structural vacancy for Co, Ni, Cu, Zn and Tl; double-corner-sharing configurations for As, Sb, Mo, W, V and Te; edge-sharing configurations at the layer rims for corner-sharing metals when they are less competitive in taking up the corner-sharing position or under less oxidizing conditions when the metals are less feasible for reactions with layer vacancy; and hydrated interlayer or tunnel-center sorption for Ni, Cu, Zn, Cd, Tl and Li. The major ore-forming elements (e.g., Co, Ni, Cu and Zn), rare earth elements and yttrium, platinum-group elements, dispersed elements (e.g., Te, Tl, Se and Cd) and other enriched critical metals (e.g., Li, Ti and Mo) in polymetallic nodules and Co-rich Fe-Mn crusts of different geneses have unique and varied enrichment characteristics, metal occurrence states, enrichment processes and enrichment mechanisms. This review helps to deepen the understanding of the geochemical behaviors of critical metals in oceanic environments, and it also bears significance for understanding the extreme enrichment and mineralization of deep-sea critical metals. Full article
Show Figures

Figure 1

15 pages, 3852 KB  
Article
Molecular Beam Epitaxy of Twin-Free Bi2Se3 and Sb2Te3 on In2Se3/InP(111)B Virtual Substrates
by Kaushini S. Wickramasinghe, Candice Forrester and Maria C. Tamargo
Crystals 2023, 13(4), 677; https://doi.org/10.3390/cryst13040677 - 14 Apr 2023
Cited by 2 | Viewed by 2592
Abstract
Three-dimensional topological insulators (3D-TIs) are a new generation of materials with insulating bulk and exotic metallic surface states that facilitate a wide variety of ground-breaking applications. However, utilization of the surface channels is often hampered by the presence of crystal defects, such as [...] Read more.
Three-dimensional topological insulators (3D-TIs) are a new generation of materials with insulating bulk and exotic metallic surface states that facilitate a wide variety of ground-breaking applications. However, utilization of the surface channels is often hampered by the presence of crystal defects, such as antisites, vacancies, and twin domains. For terahertz device applications, twinning is shown to be highly deleterious. Previous attempts to reduce twins using technologically important InP(111) substrates have been promising, but have failed to completely suppress twin domains while preserving high structural quality. Here we report growth of twin-free molecular beam epitaxial Bi2Se3 and Sb2Te3 structures on ultra-thin In2Se3 layers formed by a novel selenium passivation technique during the oxide desorption of smooth, non-vicinal InP(111)B substrates, without the use of an indium source. The formation of un-twinned In2Se3 provides a favorable template to fully suppress twin domains in 3D-TIs, greatly broadening novel device applications in the terahertz regime. Full article
(This article belongs to the Special Issue Epitaxial Growth of Semiconductor Materials and Devices)
Show Figures

Figure 1

12 pages, 4473 KB  
Article
Structural Evolution from Neutron Powder Diffraction of Nanostructured SnTe Obtained by Arc Melting
by Javier Gainza, Federico Serrano-Sánchez, João E. F. S. Rodrigues, Oscar J. Dura, Brenda Fragoso, Mateus M. Ferrer, Norbert M. Nemes, José L. Martínez, María T. Fernández-Díaz and José A. Alonso
Crystals 2023, 13(1), 49; https://doi.org/10.3390/cryst13010049 - 27 Dec 2022
Viewed by 2060
Abstract
Among chalcogenide thermoelectric materials, SnTe is an excellent candidate for intermediate temperature applications, in replacement of toxic PbTe. We have prepared pure polycrystalline SnTe by arc melting, and investigated the structural evolution by temperature-dependent neutron powder diffraction (NPD) from room temperature up to [...] Read more.
Among chalcogenide thermoelectric materials, SnTe is an excellent candidate for intermediate temperature applications, in replacement of toxic PbTe. We have prepared pure polycrystalline SnTe by arc melting, and investigated the structural evolution by temperature-dependent neutron powder diffraction (NPD) from room temperature up to 973 K. In this temperature range, the sample is cubic (space group Fm-3m) and shows considerably larger displacement parameters for Te than for Sn. The structural analysis allowed the determination of the Debye model parameters and provided information on the Sn–Te chemical bonds. SEM images show a conspicuous nanostructuration in layers below 30 nm thick, which contributes to the reduction of the thermal conductivity down to 2.5 W/m·K at 800 K. The SPS treatment seems to reduce the number of Sn vacancies, thus diminishing the carrier density and increasing the Seebeck coefficient, which reaches 60 μV K−1 at 700 K, as well as the weighted mobility, almost doubled compared with that of the as-grown sample. Full article
(This article belongs to the Special Issue Nanostructured Thermoelectric Materials)
Show Figures

Figure 1

12 pages, 3108 KB  
Article
Phase-Controllable Chemical Vapor Deposition Synthesis of Atomically Thin MoTe2
by Tao Xu, Aolin Li, Shanshan Wang, Yinlong Tan and Xiang’ai Cheng
Nanomaterials 2022, 12(23), 4133; https://doi.org/10.3390/nano12234133 - 23 Nov 2022
Cited by 9 | Viewed by 3602
Abstract
Two-dimensional (2D) molybdenum telluride (MoTe2) is attracting increasing attention for its potential applications in electronic, optoelectronic, photonic and catalytic fields, owing to the unique band structures of both stable 2H phase and 1T′ phase. However, the direct growth of high-quality atomically [...] Read more.
Two-dimensional (2D) molybdenum telluride (MoTe2) is attracting increasing attention for its potential applications in electronic, optoelectronic, photonic and catalytic fields, owing to the unique band structures of both stable 2H phase and 1T′ phase. However, the direct growth of high-quality atomically thin MoTe2 with the controllable proportion of 2H and 1T′ phase seems hard due to easy phase transformation since the potential barrier between the two phases is extremely small. Herein, we report a strategy of the phase-controllable chemical vapor deposition (CVD) synthesis for few-layer (<3 layer) MoTe2. Besides, a new understanding of the phase-controllable growth mechanism is presented based on a combination of experimental results and DFT calculations. The lattice distortion caused by Te vacancies or structural strain might make 1T′-MoTe2 more stable. The conditions for 2H to 1T′ phase conversion are determined to be the following: Te monovacancies exceeding 4% or Te divacancies exceeding 8%, or lattice strain beyond 6%. In contrast, sufficient Te supply and appropriate tellurization velocity are essential to obtaining the prevailing 2H-MoTe2. Our work provides a novel perspective on the preparation of 2D transition metal chalcogenides (TMDs) with the controllable proportion of 2H and 1T′ phase and paves the way to their subsequent potential application of these hybrid phases. Full article
(This article belongs to the Special Issue 2D Semiconductor Nanomaterials and Heterostructures)
Show Figures

Graphical abstract

10 pages, 591 KB  
Communication
Non-Radiative Transitions of Holes on Mercury Vacancies in Narrow-Gap HgCdTe
by Dmitry V. Kozlov, Vladimir V. Rumyantsev, Anton V. Ikonnikov, Vladimir V. Utochkin, Anna A. Razova, Ksenia A. Mazhukina, Nikolay N. Mikhailov, Sergey A. Dvoretsky, Sergey V. Morozov and Vladimir I. Gavrilenko
Photonics 2022, 9(12), 887; https://doi.org/10.3390/photonics9120887 - 22 Nov 2022
Cited by 4 | Viewed by 1509
Abstract
Mercury vacancies, acting as double acceptors, are the dominant point defects in ternary HgCdTe alloys. Though HgCdTe is one of the leading materials in infrared optoelectronics, the energy spectra of the vacancies are still a matter of some debate. This work investigated the [...] Read more.
Mercury vacancies, acting as double acceptors, are the dominant point defects in ternary HgCdTe alloys. Though HgCdTe is one of the leading materials in infrared optoelectronics, the energy spectra of the vacancies are still a matter of some debate. This work investigated the rates at which holes are captured to a singly ionized mercury vacancy via acoustic phonon emission in narrow-gap Hg1−xCdxTe with technologically relevant x~0.22. Combined with the calculated rates of intracenter transitions, the data allow one to predict the most pronounced optical transitions in the emission spectrum of a double-charged acceptor. The results are sustained by the photoluminescence spectroscopy in the terahertz domain, allowing one to identify the emission band that is related to neutral vacancies. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

12 pages, 2475 KB  
Article
Regulating the Configurational Entropy to Improve the Thermoelectric Properties of (GeTe)1−x(MnZnCdTe3)x Alloys
by Yilun Huang, Shizhen Zhi, Shengnan Zhang, Wenqing Yao, Weiqin Ao, Chaohua Zhang, Fusheng Liu, Junqin Li and Lipeng Hu
Materials 2022, 15(19), 6798; https://doi.org/10.3390/ma15196798 - 30 Sep 2022
Cited by 14 | Viewed by 2352
Abstract
In thermoelectrics, entropy engineering as an emerging paradigm-shifting strategy can simultaneously enhance the crystal symmetry, increase the solubility limit of specific elements, and reduce the lattice thermal conductivity. However, the severe lattice distortion in high-entropy materials blocks the carrier transport and hence results [...] Read more.
In thermoelectrics, entropy engineering as an emerging paradigm-shifting strategy can simultaneously enhance the crystal symmetry, increase the solubility limit of specific elements, and reduce the lattice thermal conductivity. However, the severe lattice distortion in high-entropy materials blocks the carrier transport and hence results in an extremely low carrier mobility. Herein, the design principle for selecting alloying species is introduced as an effective strategy to compensate for the deterioration of carrier mobility in GeTe-based alloys. It demonstrates that high configurational entropy via progressive MnZnCdTe3 and Sb co-alloying can promote the rhombohedral-cubic phase transition temperature toward room temperature, which thus contributes to the enhanced density-of-states effective mass. Combined with the reduced carrier concentration via the suppressed Ge vacancies by high-entropy effect and Sb donor doping, a large Seebeck coefficient is attained. Meanwhile, the severe lattice distortions and micron-sized Zn0.6Cd0.4Te precipitations restrain the lattice thermal conductivity approaching to the theoretical minimum value. Finally, the maximum zT of Ge0.82Sb0.08Te0.90(MnZnCdTe3)0.10 reaches 1.24 at 723 K via the trade-off between the degraded carrier mobility and the improved Seebeck coefficient, as well as the depressed lattice thermal conductivity. These results provide a reference for the implementation of entropy engineering in GeTe and other thermoelectric materials. Full article
Show Figures

Figure 1

17 pages, 7473 KB  
Article
Cl-Doped CdTe Crystal Growth for Medical Imaging Applications
by Rubi Gul, John Stuart McCloy, Magesh Murugesan, Benjamin Montag and Jasdeep Singh
Crystals 2022, 12(10), 1365; https://doi.org/10.3390/cryst12101365 - 27 Sep 2022
Cited by 3 | Viewed by 2620
Abstract
CdTe:Cl doped single crystals were grown under conditions of tellurium excess by using an accelerated crucible rotation technique, modified vertical Bridgman (ACRT-MVB) method. Chlorine dopant levels were kept at 4.4 × 1019 at·cm−3, for all growths, while the Te excess [...] Read more.
CdTe:Cl doped single crystals were grown under conditions of tellurium excess by using an accelerated crucible rotation technique, modified vertical Bridgman (ACRT-MVB) method. Chlorine dopant levels were kept at 4.4 × 1019 at·cm−3, for all growths, while the Te excess level varied from 3.5 to 15% by weight. The relationship between the detector performance, Te inclusions, and resistivity was investigated in detail. Tellurium excess caused additional nucleation which decreased the average single crystal grain size. At the same time, the increasing Te excess level improved the electrical transport properties. In the three Cl-doped, and one In-doped CdTe crystals, detectors from Cl-doped CdTe grown under 15% Te excess showed better response to gammas and alphas, and high µτ for electrons (1.8 × 10−3 cm2/V), as well as for holes (5.1 × 10−4 cm2/V). The full-width half maximum for the Cl-doped CdTe were very large, as the peaks were broadened, especially at high bias. This could be due to hole trapping in a Cl-related A-center (VCd-ClTe), and in Cd- vacancies (VCd), and electron trapping in Te-antisites (TeCd)+. Full article
(This article belongs to the Special Issue Semiconductor Materials and Devices)
Show Figures

Figure 1

18 pages, 4392 KB  
Article
Dielectric, AC Conductivity, and DC Conductivity Behaviours of Sr2CaTeO6 Double Perovskite
by Muhammad Zharfan Halizan and Zakiah Mohamed
Materials 2022, 15(12), 4363; https://doi.org/10.3390/ma15124363 - 20 Jun 2022
Cited by 20 | Viewed by 2736
Abstract
Relatively new double perovskite material, Sr2CaTeO6, has been prepared through conventional solid-state procedures. Structural, dielectric, and optical characteristics of this exquisite solid-state material were analysed in this study. The single-phase monoclinic P21/n structure of this prepared compound [...] Read more.
Relatively new double perovskite material, Sr2CaTeO6, has been prepared through conventional solid-state procedures. Structural, dielectric, and optical characteristics of this exquisite solid-state material were analysed in this study. The single-phase monoclinic P21/n structure of this prepared compound was well correlated with the literature review. Good distribution of grain sizes and shapes was observed in the morphological study of this compound. The discussions on its optical and dielectric properties are included in this manuscript. High dielectric real permittivity, low dielectric loss, and good capacitance over a range of temperatures possessed by this compound, as shown in dielectric and electrical modulus studies, indicated good potential values for capacitor applications. The Ro(RgQg)(RgbQgb) circuit fitted well with the impedance and electrical modulus plot of the compound. Its relatively high electrical DC conductivity in grain at high frequencies and its increasing value with the temperature are typical of a semiconductor behaviour. This behaviour might be attributed to the presence of minor oxygen vacancies within its lattice structure and provides a long-range conduction mechanism. A small difference between activation energy and Ea of DC conductivity indicates that the same charge carriers were involved in both grains and the grain boundaries’ long-range conduction. The electrical AC conductivity of this compound was found to contribute to the dielectric loss in grain structure and can be related to Jonscher’s power law. The presence of polarons in this compound was exhibited by non-overlapping small polaron tunnelling (NSPT) and overlapping large polaron tunnelling (OLPT) conduction mechanisms over a range of temperatures. Wide optical band gap and Eopt in the range of 2.6 eV to 3.6 eV were determined by using an indirect and direct allowed mechanism of electrons transitions. These values supported the efficient semiconducting behaviour of the grain in this material and are suitable for applications in the semiconductor industry. Full article
(This article belongs to the Special Issue Advanced Structures and Properties for Ceramic Materials)
Show Figures

Figure 1

Back to TopTop