Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (253)

Search Parameters:
Keywords = Talaromyces

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3515 KiB  
Article
Biodegradation of Chloroquine by a Fungus from Amazonian Soil, Penicillium guaibinense CBMAI 2758
by Patrícia de Almeida Nóbrega, Samuel Q. Lopes, Lucas S. Sá, Ryan da Silva Ramos, Fabrício H. e Holanda, Inana F. de Araújo, André Luiz M. Porto, Willian G. Birolli and Irlon M. Ferreira
J. Fungi 2025, 11(8), 579; https://doi.org/10.3390/jof11080579 - 4 Aug 2025
Abstract
Concern over the presence of pharmaceutical waste in the environment has prompted research into the management of emerging organic micropollutants (EOMs). In response, sustainable technologies have been applied as alternatives to reduce the effects of these contaminants. This study investigated the capacity of [...] Read more.
Concern over the presence of pharmaceutical waste in the environment has prompted research into the management of emerging organic micropollutants (EOMs). In response, sustainable technologies have been applied as alternatives to reduce the effects of these contaminants. This study investigated the capacity of filamentous fungi isolated from iron mine soil in the Amazon region to biodegrade the drug chloroquine diphosphate. An initial screening assessed the growth of four fungal strains on solid media containing chloroquine diphosphate: Trichoderma pseudoasperelloides CBMAI 2752, Penicillium rolfsii CBMAI 2753, Talaromyces verruculosus CBMAI 2754, and Penicillium sp. cf. guaibinense CBMAI 2758. Among them, Penicillium sp. cf. guaibinense CBMAI 2758 was selected for further testing in liquid media. A Box–Behnken factorial design was applied with three variables, pH (5, 7, and 9), incubation time (5, 10, and 15 days), and chloroquine diphosphate concentration (50, 75, and 100 mg·L−1), totaling 15 experiments. The samples were analyzed by gas chromatography–mass spectrometry (GC-MS). The most effective conditions for chloroquine biodegradation were pH 7, 100 mg·L−1 concentration, and 10 days of incubation. Four metabolites were identified: one resulting from N-deethylation M1 (N4-(7-chloroquinolin-4-yl)-N1-ethylpentane-1,4-diamine), two from carbon–carbon bond cleavage M2 (7-chloro-N-ethylquinolin-4-amine) and M3 (N1,N1-diethylpentane-1,4-diamine), and one from aromatic deamination M4 (N1-ethylbutane-1,4-diamine) by enzymatic reactions. The toxicity analysis showed that the products obtained from the biodegradation of chloroquine were less toxic than the commercial formulation of this compound. These findings highlight the biotechnological potential of Amazonian fungi for drug biodegradation and decontamination. Full article
(This article belongs to the Special Issue Fungal Biotechnology and Application 3.0)
Show Figures

Graphical abstract

15 pages, 610 KiB  
Review
Exploring the Diversity and Distribution of Medico-Veterinary Fungal Diseases in Africa: Harnessing a Multisectoral One Health Strategy for Cost-Effective Prevention and Preparedness
by Ayman Ahmed, Nouh Saad Mohamed and Emmanuel Edwar Siddig
J. Fungi 2025, 11(8), 569; https://doi.org/10.3390/jof11080569 - 30 Jul 2025
Viewed by 314
Abstract
The diversity and distribution of medical and veterinary-relevant fungal diseases in Africa underscore the critical need for a multisectoral One Health strategy to enhance cost-effective preparedness and prevention. This review explores the geographic spread and epidemiology of key medical and veterinary fungi, including [...] Read more.
The diversity and distribution of medical and veterinary-relevant fungal diseases in Africa underscore the critical need for a multisectoral One Health strategy to enhance cost-effective preparedness and prevention. This review explores the geographic spread and epidemiology of key medical and veterinary fungi, including Emergomyces, Blastomyces, Coccidioides, Cryptococcus, Dermatophytes, Histoplasma, Sporothrix, Talaromyces, Paracoccidioides, Aspergillus, and Malassezia. Evidence indicates that many of these infections remain underdiagnosed and underreported, especially in vulnerable immunocompromised populations, due to limited surveillance, diagnostic capacity, and awareness. The increasing prevalence of these diseases, often in tandem with rising HIV rates and environmental changes, highlights the urgent need for coordinated efforts across human, animal, and environmental health sectors. Implementing comprehensive, multisectoral interventions—focused on enhancing diagnostic capabilities, public awareness, surveillance, and cross-sector collaboration—is vital for effective prevention and control of these emerging fungal threats in Africa. Full article
Show Figures

Figure 1

19 pages, 3813 KiB  
Article
An OSMAC Strategy for the Production of Antimicrobial Compounds by the Amazonian Fungi Talaromyces pinophilus CCM-UEA-F0414 and Penicillium paxilli CCM-UEA-F0591
by Cleudiane Pereira de Andrade, Caroline Dutra Lacerda, Raíssa Assímen Valente, Liss Stone de Holanda Rocha, Anne Terezinha Fernandes de Souza, Dorothy Ívila de Melo Pereira, Larissa Kirsch Barbosa, Cleiton Fantin, Sergio Duvoisin Junior and Patrícia Melchionna Albuquerque
Antibiotics 2025, 14(8), 756; https://doi.org/10.3390/antibiotics14080756 - 27 Jul 2025
Viewed by 321
Abstract
Background/Objectives: The emergence of antimicrobial resistance represents a critical global health threat, requiring the discovery of novel bioactive compounds. Fungi from Amazonian biodiversity are promising sources of secondary metabolites with potential antimicrobial activity. This study aimed to investigate the production of antimicrobial compounds [...] Read more.
Background/Objectives: The emergence of antimicrobial resistance represents a critical global health threat, requiring the discovery of novel bioactive compounds. Fungi from Amazonian biodiversity are promising sources of secondary metabolites with potential antimicrobial activity. This study aimed to investigate the production of antimicrobial compounds by two Amazonian fungal strains using the OSMAC (One Strain–Many Compounds) approach. Methods: Two fungal strains, Talaromyces pinophilus CCM-UEA-F0414 and Penicillium paxilli CCM-UEA-F0591, were cultivated under five distinct culture media to modulate secondary metabolite production. Ethyl acetate extracts were prepared and evaluated for antimicrobial activity against Gram-positive and Gram-negative bacteria, as well as pathogenic yeasts. Chemical characterization was performed using thin-layer chromatography (TLC), Fourier Transform Infrared Spectroscopy (FTIR), Ultraviolet–Visible (UV-Vis) spectroscopy, and Ultra-High-Performance Liquid Chromatography with Diode Array Detection (uHPLC-DAD). Results: The extracts exhibited significant antimicrobial activity, with minimum inhibitory concentrations (MICs) ranging from 78 to 5000 µg/mL. Chemical analyses revealed the presence of phenolic compounds, particularly caffeic and chlorogenic acids. Variations in the culture media substantially affected both the metabolite profiles and antimicrobial efficacy of the extracts. Conclusions: The OSMAC strategy effectively enhanced the metabolic diversity of the Amazonian fungal strains, leading to the production of bioactive metabolites with antimicrobial potential. These findings support the importance of optimizing culture conditions to unlock the biosynthetic capacity of Amazonian fungi as promising sources of antimicrobial agents. Full article
Show Figures

Figure 1

18 pages, 5858 KiB  
Article
Analytical Characterization and Pharmacokinetic Insight of Bioactive Compounds from Champia parvula and Moringa oleifera for Biocontrol of Blue Mold in Apple Fruits
by Eman A. Alwaleed, Mashail N. Alzain, Naglaa Loutfy and Amany A. El-Shahir
Plants 2025, 14(14), 2104; https://doi.org/10.3390/plants14142104 - 8 Jul 2025
Viewed by 395
Abstract
The present study aimed to identify the active chemical compounds, mainly phenolic acids, of Champia parvula and Moringa oleifera, evaluate the pharmacokinetic properties of their primary compounds, and assess a novel method for the biocontrol of blue mold by evaluating the antifungal [...] Read more.
The present study aimed to identify the active chemical compounds, mainly phenolic acids, of Champia parvula and Moringa oleifera, evaluate the pharmacokinetic properties of their primary compounds, and assess a novel method for the biocontrol of blue mold by evaluating the antifungal activity of both extracts. Gas chromatography (GC) and high-performance liquid chromatography (HPLC) were utilized to identify the active chemical compounds, mainly phenolic acids. GC illustrated the presence of long-chain aliphatic fatty acids like eicosanoic acid with the formation of oct-1-en-3-ol compounds attached. Catechin was the main bioactive component among the several bioactive compounds identified by HPLC analysis, exhibiting favorable pharmacokinetic behavior, including good absorption, distribution, and metabolic stability. According to the findings, both extracts had antifungal activity, but C. parvula extract (100 mg/mL) exhibited the strongest in vitro and in vivo antifungal activity, with the highest percentages of inhibition (disk diffusion method) against Penicillium expansum, Penicillium crustosum, and Talaromyces atroroseus, ranging between 62.67 and 100%. C. parvula extract (100 mg/mL) could fully inhibit the pathogenicity and aggressiveness of the five tested strains in apple fruits (in vivo). In conclusion, the extract from C. parvula and M. oleifera shows potential antifungal properties and a high phytochemical content. Full article
(This article belongs to the Special Issue Advanced Research in Plant Analytical Chemistry)
Show Figures

Figure 1

21 pages, 5077 KiB  
Article
Seven New Series and Four New Species in Sections Subinflati and Trachyspermi of Talaromyces (Trichocomaceae, Eurotiales)
by Lu-Yao Peng, Xin-Cun Wang, Yusufjon Gafforov and Wen-Ying Zhuang
J. Fungi 2025, 11(7), 508; https://doi.org/10.3390/jof11070508 - 4 Jul 2025
Viewed by 604
Abstract
Species of Talaromyces C.R. Benj. are valuable biological resources for human beings as competent producers of enzymes, antibiotics, antifungal agents and biopigments, but a comprehensive taxonomic system at the series level has not been fully provided for this genus. In this study, three [...] Read more.
Species of Talaromyces C.R. Benj. are valuable biological resources for human beings as competent producers of enzymes, antibiotics, antifungal agents and biopigments, but a comprehensive taxonomic system at the series level has not been fully provided for this genus. In this study, three new series, Palmarum, Resedani and Subinflati, are proposed in section Subinflati. Section Trachyspermi is also restructured to include five series, in which Diversi, Erythromelles, Miniolutei and Resinarum are newly erected, and Trachyspermi is emended. Additionally, four new species are discovered: T. elephas, T. sinensis and T. xishuangbannaensis isolated from rotten fruit husk in Yunnan Province, China, belonging to the series Erythromelles, Subinflati and Miniolutei, respectively, and T. tianshanicus from soil in Uzbekistan, located in ser. Diversi. Morphological distinctions, including colony characteristics, conidiophore structures, and conidial morphologies, along with phylogenetic analyses based on multi-locus datasets (ITS, BenA, CaM and RPB2), confirm their novelty to science. Detailed descriptions and illustrations of the new species are given. The proposed classification of Talaromyces at the series level provides a refined infrageneric framework and facilitates taxonomic stability and future biodiversity studies. Full article
(This article belongs to the Special Issue Ascomycota: Diversity, Taxonomy and Phylogeny, 3rd Edition)
Show Figures

Figure 1

20 pages, 2743 KiB  
Article
Systematic Investigation of Phosphate Decomposition and Soil Fertility Modulation by the Filamentous Fungus Talaromyces nanjingensis
by Xiao-Rui Sun, Pu-Sheng Li, Huan Qiao, Wei-Liang Kong, Ya-Hui Wang and Xiao-Qin Wu
Microorganisms 2025, 13(7), 1574; https://doi.org/10.3390/microorganisms13071574 - 3 Jul 2025
Viewed by 410
Abstract
Phosphate-solubilizing microbes (PSMs) in soil play a crucial role in converting insoluble phosphates into plant-available soluble phosphorus. This paper systematically presents a comprehensive array of qualitative and quantitative techniques to assess the phosphate-decomposing capabilities of microbes. Additionally, it introduces two optimized media, namely [...] Read more.
Phosphate-solubilizing microbes (PSMs) in soil play a crucial role in converting insoluble phosphates into plant-available soluble phosphorus. This paper systematically presents a comprehensive array of qualitative and quantitative techniques to assess the phosphate-decomposing capabilities of microbes. Additionally, it introduces two optimized media, namely improved Monkina medium No. 1 and No. 2, which are particularly suitable for detecting the solubilization abilities of microbes toward insoluble organic phosphates. Talaromyces nanjingensis, a novel fungal species recently isolated from the rhizosphere soil of Pinus massoniana, demonstrates remarkable phosphate-solubilizing abilities. Across multiple temperature gradients (15 °C, 20 °C, 25 °C, 30 °C, and 37 °C), it effectively decomposes both insoluble inorganic and organic phosphates. This is achieved through the secretion of organic acids, including gluconic acid (6.10 g L−1), oxalic acid (0.93 g L−1), and malonic acid (0.17 g L−1), as well as phosphate-solubilizing enzymes. Moreover, under low-, medium-, and high-temperature conditions, T. nanjingensis can decompose insoluble phosphates in three types of soil with varying pH levels, thereby enhancing the overall soil fertility. Genomic analysis of T. nanjingensis has identified approximately 308 genes associated with phosphate decomposition and environmental adaptability, validating its superior capabilities and multi-faceted strategies for phosphate mobilization. These findings underscore the wide applicability of T. nanjingensis in maintaining soil phosphorus homeostasis and optimizing the phosphorus use efficiency, highlighting its promising potential for agricultural and environmental applications. Full article
(This article belongs to the Special Issue Soil Microbial Carbon/Nitrogen/Phosphorus Cycling: 2nd Edition)
Show Figures

Figure 1

23 pages, 1837 KiB  
Review
Talaromyces marneffei Outside Endemic Regions: An Overlooked Mycosis Under a One-Health Lens
by Paulo Afonso, Luís Cardoso, Ana Sofia Soares, Manuela Matos, Hélder Quintas and Ana Cláudia Coelho
Acta Microbiol. Hell. 2025, 70(2), 25; https://doi.org/10.3390/amh70020025 - 16 Jun 2025
Viewed by 975
Abstract
Talaromyces marneffei is a zoonotic dimorphic pathogen endemic to Southeast Asia and reported in 33 countries, with an estimated 17,300 human cases and 4900 deaths annually. We aimed to identify the best available evidence regarding the epidemiological and clinical features and the prevalence [...] Read more.
Talaromyces marneffei is a zoonotic dimorphic pathogen endemic to Southeast Asia and reported in 33 countries, with an estimated 17,300 human cases and 4900 deaths annually. We aimed to identify the best available evidence regarding the epidemiological and clinical features and the prevalence of T. marneffei reported in companion animals, wildlife, and humans in Europe. A systematic literature review was conducted by searching three databases under PRISMA guidelines for “Talaromyces marneffei” or “talaromycosis” in Europe or the equivalent. References from the obtained publications were also checked to identify additional papers that met the inclusion criteria. The search was not limited by language or year. Studies published until 30 April 2025 were included. Due to the limited number of publications on animals, the geographic scope was expanded to a global level. Of the 915 studies identified, 33 were eligible and categorised according to the subject they addressed: talaromycosis in humans (n = 26), talaromycosis in companion animals (n = 4), and talaromycosis in wildlife (n = 3). Talaromycosis has been reported 28 times in 11 different European countries among humans. Additionally, one case of T. marneffei in wildlife has been documented in Europe. There is a potential liaison host between bamboo rats and humans. Talaromycosis is an emerging planetary neglected disease. Confusion with other diseases and potential misdiagnosis leads to delayed diagnosis and unnecessary risk to lives. Immunocompromised and HIV-positive patients should be screened for talaromycosis. The unexplained worldwide reports in atypical species and locations prompt a call to action for a more proactive search for T. marneffei in other domestic and wild animals, as well as in soil, to fully understand its hosts and transmission, which must incorporate the Stockholm Paradigm and Planetary Health perspectives. Full article
Show Figures

Figure 1

14 pages, 785 KiB  
Review
Advancements in Diagnosing Talaromycosis: Exploring Novel Strategies and Emerging Technologies
by Yihui Wang, Xiaoyue Wang, Liyan Xi and Sha Lu
J. Fungi 2025, 11(6), 434; https://doi.org/10.3390/jof11060434 - 6 Jun 2025
Viewed by 1112
Abstract
Talaromycosis (TM) is an invasive fungal infection caused by Talaromyces marneffei (T. marneffei). It has high morbidity and mortality rates, particularly among immunocompromised people. Globally, approximately 17,300 cases and 4900 deaths are reported annually. TM often has vague clinical signs with [...] Read more.
Talaromycosis (TM) is an invasive fungal infection caused by Talaromyces marneffei (T. marneffei). It has high morbidity and mortality rates, particularly among immunocompromised people. Globally, approximately 17,300 cases and 4900 deaths are reported annually. TM often has vague clinical signs with limited current tests, leading to misdiagnosis, incorrect treatments, or the long-term use of expensive antifungal drugs, which raises healthcare costs and patient risks. Although accurate diagnosis is key for starting the right antifungal therapy and improving outcomes, there are not enough reliable and fast tests. Recent progress with monoclonal antibodies (mAbs) that have high specificity for antigens may boost diagnostic accuracy and cut misdiagnosis rates. This review explores current ways to diagnose TM, including culture, histopathology, and molecular methods such as polymerase chain reaction (PCR) and antigen detection. We also discuss the merits and weaknesses of each method and highlight how mAbs may help diagnose TM. We searched PubMed, Web of Science, and Google Scholar for English-language papers (1990—1 January 2025) using “Talaromycosis” OR “Talaromyces marneffei” plus diagnostic terms (‘diagnosis’, ‘molecular diagnostics’, ‘monoclonal antibody’, ‘lateral flow’, ‘antigen detection’, and ‘fungal diagnosis’). After deduplication and relevance screening, studies with original data or substantive discussion on T. marneffei diagnostics or mAb development were retained to inform this narrative review. Full article
(This article belongs to the Special Issue New Perspectives on Fungal Immunology)
Show Figures

Figure 1

14 pages, 11614 KiB  
Article
Beneficial Soil Fungi Isolated from Tropical Fruit Crop Systems for Enhancing Yield and Growth in Dragon Fruit in Ecuador
by Yoansy Garcia, Danilo Valdez, Daniel Ponce de Leon, Hypatia Urjilez, Jaime Santos-Pinargote and Daniel Mancero-Castillo
Int. J. Plant Biol. 2025, 16(2), 62; https://doi.org/10.3390/ijpb16020062 - 5 Jun 2025
Viewed by 432
Abstract
Rhizospheric fungi are emerging as a critical research component in dragon fruit (Hylocereus spp.) production systems. Introducing beneficial non-native fungi is increasingly common due to their positive effects on plant growth, yield, and pathogen suppression. However, this practice may disrupt soil microbial [...] Read more.
Rhizospheric fungi are emerging as a critical research component in dragon fruit (Hylocereus spp.) production systems. Introducing beneficial non-native fungi is increasingly common due to their positive effects on plant growth, yield, and pathogen suppression. However, this practice may disrupt soil microbial communities, and commercial isolates often show limited adaptation to local conditions. This study aimed to identify native beneficial soil fungi associated with dragon fruit cultivation on the Ecuadorian coast and evaluate their effect on commercial production. Fungal isolates from four dragon fruit plantations were identified using microscopy and genetic sequencing (ITS, EF-1α, and beta-tubulin). The selected fungi were isolates closely related to Talaromyces tumuli, Trichoderma asperellum, and Paecilomyces lagunculariae. All isolates were tested for pathogenicity using detached cladode assays at the laboratory, and non-phytopathogenic monomorphic cultures were further evaluated in the field under a randomized complete block design consisting of T. asperellum, Talaromyces tumuli, a combination of both, and a water control. The combination of T. asperellum and Talaromyces spp. showed a favorable trend in terms of the plants’ vegetative development. However, inoculating Talaromyces tumuli into the commercial plants exhibited a slow response during the first 20 days of the field evaluations. Still, it resulted in a significant increase in the fruit’s diameter and weight, with increases of 88.23% and 67.64%, respectively, compared to those in the control. T. asperellum presented a lower number of fruits per plant, although it showed an increase in fruit diameter and weight. In conclusion, using the native beneficial fungi T. asperellum and T. tumuli contributes positively to the dragon fruit production system. Full article
(This article belongs to the Section Plant–Microorganisms Interactions)
Show Figures

Figure 1

15 pages, 6223 KiB  
Article
Antifungal Volatile Organic Compounds from Talaromyces purpureogenus CEF642N: Insights from One Strain Many Compounds (OSMAC) Strategy for Controlling Verticillium dahliae in Cotton
by Peng Li, Yalin Zhang, Hongjie Feng, Jinglong Zhou, Lihong Zhao, Heqin Zhu, Feng Wei and Zili Feng
J. Fungi 2025, 11(5), 332; https://doi.org/10.3390/jof11050332 - 22 Apr 2025
Viewed by 603
Abstract
Verticillium wilt is a devastating soil-borne disease that significantly impacts cotton production, necessitating the development the effective biofumigants for its control. In this study, the inhibitory effect of total volatile organic compounds (VOCs) produced by Talaromyces purpureogenus CEF642N against Verticillium dahliae were [...] Read more.
Verticillium wilt is a devastating soil-borne disease that significantly impacts cotton production, necessitating the development the effective biofumigants for its control. In this study, the inhibitory effect of total volatile organic compounds (VOCs) produced by Talaromyces purpureogenus CEF642N against Verticillium dahliae were evaluated using the one strain many compounds (OSMAC) strategy and analyzed through volatile metabolome. CEF642N was found to produce two primary VOCs, 3-octanol and 2-octenal, (E)-, both of which demonstrated significant antifungal activity. Transcriptome analysis of mycelium grown on various solid media revealed notable differences in the expression of genes associated with arachidonic acid metabolism, lipoxygenase (LOX), and lytic enzymes. These findings provide a foundation for future research aimed at identifying key genes involved in the eight-carbon volatile biosynthetic pathway. Full article
Show Figures

Figure 1

12 pages, 2686 KiB  
Article
Genome Mining-Guided Discovery of Two New Depsides from Talaromyces sp. HDN1820200
by Xiao Zhang, Luyang Liu, Jiani Huang, Xingtao Ren, Guojian Zhang, Qian Che, Dehai Li and Tianjiao Zhu
Mar. Drugs 2025, 23(3), 130; https://doi.org/10.3390/md23030130 - 18 Mar 2025
Viewed by 918
Abstract
Depsides and their derivatives are a class of polyketides predominantly found in fungal extracts. Herein, a silent nonreducing polyketide synthase (TalsA)-containing gene cluster, which was identified from the Antarctic sponge-derived fungus Talaromyces sp. HDN1820200, was successfully activated through heterologous expression in Aspergillus nidulans [...] Read more.
Depsides and their derivatives are a class of polyketides predominantly found in fungal extracts. Herein, a silent nonreducing polyketide synthase (TalsA)-containing gene cluster, which was identified from the Antarctic sponge-derived fungus Talaromyces sp. HDN1820200, was successfully activated through heterologous expression in Aspergillus nidulans. This activation led to the production of two novel depsides, talaronic acid A (1) and B (2), alongside three known compounds (35). The further co-expression of TalsA with the decarboxylase (TalsF) demonstrated that it could convert 2 into its decarboxylated derivative 1. The structural elucidation of these compounds was achieved using comprehensive 1D and 2D-NMR spectroscopy, which was complemented by HR-MS analysis. Talaronic acids A and B were firstly reported heterodimers of 3-methylorsellinic acid (3-MOA) and 5-methylorsellinic acid (5-MOA). All isolated compounds (15) were tested for their anti-inflammatory potential. Notably, compounds 1 and 2 exhibited anti-inflammatory activity comparable to that of the positive control. These results further enrich the structural class of depside natural products. Full article
(This article belongs to the Special Issue Marine Microorganisms Bioprospecting)
Show Figures

Graphical abstract

22 pages, 1907 KiB  
Article
Lipid Production in Cultivable Filamentous Fungi Isolated from Antarctic Soils: A Comprehensive Study
by Victor Gallardo, Jéssica Costa, Marcela Sepúlveda, Yasna Cayún, Christian Santander, Excequel Ponce, Juliana Bittencourt, César Arriagada, Javiera Soto, Romina Pedreschi, Vania Aparecida Vicente, Pablo Cornejo and Cledir Santos
Microorganisms 2025, 13(3), 504; https://doi.org/10.3390/microorganisms13030504 - 25 Feb 2025
Viewed by 898
Abstract
Antarctic soil represents an important reservoir of filamentous fungi (FF) species with the ability to produce novel bioactive lipids. However, the lipid extraction method is still a bottleneck. The objective of the present work was to isolate and identify cultivable FF from Antarctic [...] Read more.
Antarctic soil represents an important reservoir of filamentous fungi (FF) species with the ability to produce novel bioactive lipids. However, the lipid extraction method is still a bottleneck. The objective of the present work was to isolate and identify cultivable FF from Antarctic soils, to assess the most effective methods for fatty acid (FA) extraction, and to characterise the obtained lipids. A total of 18 fungal strains belonging to the Botrytis, Cladosporium, Cylindrobasidium, Mortierella, Penicillium, Pseudogymnoascus, and Talaromyces genera and the Melanommataceae family were isolated and identified. The Folch, Bligh and Dyer, and Lewis extraction methods were assessed, and methyl esters of FA (FAMEs) were obtained. The Lewis method was the best in recovering FAMEs from fungal biomass. A total of 17 FAs were identified, and their chemical compositions varied depending on fungal species and strain. Oleic, linoleic, stearic, and palmitic acids were predominant for all fungal strains in the three assessed methods. Among the analysed strains, Cylindrobasidium eucalypti, Penicillium miczynskii, P. virgatum, and Pseudogymnoascus pannorum produced high amounts of FA. This suggests that the soils of Antarctica Bay, as well as harbouring known oleaginous fungi, are also an important source of oleaginous filamentous fungi that remain poorly analysed. Full article
Show Figures

Figure 1

15 pages, 2972 KiB  
Article
Soil Fungal Diversity and Community Structure of Russula griseocarnosa from Different Sites
by Zhen Li, Ruoxi Liang and Fei Yu
Microorganisms 2025, 13(3), 490; https://doi.org/10.3390/microorganisms13030490 - 22 Feb 2025
Cited by 1 | Viewed by 874
Abstract
Russula griseocarnosa is an important ectomycorrhizal edible fungus whose economic and nutritional value are both high. To better understand which abiotic and biotic factors affect the growth of R. griseocarnosa, this study examined the mycosphere soil of R. griseocarnosa growing in five [...] Read more.
Russula griseocarnosa is an important ectomycorrhizal edible fungus whose economic and nutritional value are both high. To better understand which abiotic and biotic factors affect the growth of R. griseocarnosa, this study examined the mycosphere soil of R. griseocarnosa growing in five sites. The soil fungal communities of R. griseocarnosa from five sites of Fujian, Guangxi, and Yunnan Provinces were sequenced by Illumina MiSeq technology, and their community structure comprehensively analyzed in combination with a suite of soil physicochemical properties. The results revealed significantly greater levels of available potassium (AK), available nitrogen (AN), and available phosphorus (AP) in mycosphere soil than bulk soil, and that R. griseocarnosa prefers acidic soil, with Penicillium, Trichoderma, Talaromyces, Mortierella, Tolypocladium, Chloridium, Oidiodendron, and Umbelopsis being the main dominant fungal taxa. Different geographical sites had different indicator fungal genera, and the similarity of fungal communities in the mycosphere decreased with increasing geographical distance among them. Soil pH was the major abiotic factor influencing the structure of the mycosphere fungal communities. Management strategies such as nitrogen, potassium, phosphorus mixed fertilizer, and fungal fertilizer can promote the conservation and sustainable utilization of R. griseocarnosa. Full article
(This article belongs to the Special Issue Soil Microbial Communities and Ecosystem Functions, 2nd Edition)
Show Figures

Figure 1

13 pages, 19790 KiB  
Brief Report
Fungal Community Dynamics in Cyperus rotundus: Implications for Rhizophora mangle in a Mangrove Ecosystem
by Diego Portalanza, Arianna Acosta-Mejillones, Johnny Alcívar, Teddy Colorado, Jeancarlo Guaita, Lesly Montero, Liliana Villao-Uzho and Efren Santos-Ordóñez
Int. J. Plant Biol. 2025, 16(1), 23; https://doi.org/10.3390/ijpb16010023 - 19 Feb 2025
Cited by 1 | Viewed by 816
Abstract
Mangrove ecosystems are globally significant for their biodiversity and ecosystem services but face persistent threats from invasive species and anthropogenic disturbances. This study investigates the interactions between Cyperus rotundus, a widespread invasive weed, and fungal communities in the mangrove-adjacent wetlands of Isla [...] Read more.
Mangrove ecosystems are globally significant for their biodiversity and ecosystem services but face persistent threats from invasive species and anthropogenic disturbances. This study investigates the interactions between Cyperus rotundus, a widespread invasive weed, and fungal communities in the mangrove-adjacent wetlands of Isla Santay, Ecuador. Using metagenomic sequencing of the ITS region, we analyzed fungal diversity in samples from an anthropogenically pressured area and a non-impacted site. Results revealed significant differences in microbial assemblages: the rhizosphere sample from the disturbed area exhibited lower fungal richness and was dominated by Magnaporthaceae (9%) and Aureobasidium melanogenum (5%), both associated with stress-tolerant traits. In contrast, the rhizosphere sample from the non-impacted site showed higher species diversity, with Cladosporium dominicanum (62%) and Talaromyces (11%) as dominant endophytic taxa. Principal Coordinates Analysis (PCoA) and co-occurrence networks highlighted distinct fungal partitioning between the two sample tissues, indicating that C. rotundus mediates microbial composition in response to environmental gradients. These findings underscore the role of microbial communities in the plant’s invasive success and suggest that leveraging beneficial fungi could enhance ecosystem resilience and support wetland restoration. By integrating molecular approaches with ecological insights, this work contributes to a deeper understanding of microbial dynamics in coastal wetlands and informs targeted management strategies to preserve mangrove habitats. Full article
(This article belongs to the Section Plant Ecology and Biodiversity)
Show Figures

Figure 1

15 pages, 5695 KiB  
Article
Microbial Community Composition of Explosive-Contaminated Soils: A Metataxonomic Analysis
by Francisco J. Flores, Esteban Mena, Silvana Granda and Jéssica Duchicela
Microorganisms 2025, 13(2), 453; https://doi.org/10.3390/microorganisms13020453 - 19 Feb 2025
Viewed by 900
Abstract
Munition disposal practices have significant effects on microbial composition and overall soil health. Explosive soil contamination can disrupt microbial communities, leading to microbial abundance and richness changes. This study investigates the microbial diversity of soils and roots from sites with a history of [...] Read more.
Munition disposal practices have significant effects on microbial composition and overall soil health. Explosive soil contamination can disrupt microbial communities, leading to microbial abundance and richness changes. This study investigates the microbial diversity of soils and roots from sites with a history of ammunition disposal, aiming to identify organisms that may play a role in bioremediation. Soil and root samples were collected from two types of ammunition disposal (through open burning and open detonation) and unpolluted sites in Machachi, Ecuador, over two years (2022 and 2023). High-throughput sequencing of the 16S rRNA gene (for bacteria) and the ITS region (for fungi and plants) was conducted to obtain taxonomic profiles. There were significant variations in the composition of bacteria, fungi, and plant communities between polluted and unpolluted sites. Bacterial genera such as Pseudarthrobacter, Pseudomonas, and Rhizobium were more abundant in roots, while Candidatus Udaeobacter dominated unpolluted soils. Fungal classes Dothideomycetes and Sordariomycetes were prevalent across most samples, while Leotiomycetes and Agaricomycetes were also highly abundant in unpolluted samples. Plant-associated reads showed a higher abundance of Poa and Trifolium in root samples, particularly at contaminated sites, and Alchemilla, Vaccinium, and Hypericum were abundant in unpolluted sites. Alpha diversity analysis indicated that bacterial diversity was significantly higher in unpolluted root and soil samples, whereas fungal diversity was not significantly different among sites. Redundancy analysis of beta diversity showed that site, year, and sample type significantly influenced microbial community structure, with the site being the most influential factor. Differentially abundant microbial taxa, including bacteria such as Pseudarthrobacter and fungi such as Paraleptosphaeria and Talaromyces, may contribute to natural attenuation processes in explosive-contaminated soils. This research highlights the potential of certain microbial taxa to restore environments contaminated by explosives. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

Back to TopTop