Analytical Characterization and Pharmacokinetic Insight of Bioactive Compounds from Champia parvula and Moringa oleifera for Biocontrol of Blue Mold in Apple Fruits
Abstract
1. Introduction
2. Results
2.1. GC/MS Analysis of the Moringa oleifera and Champia parvula Water Extract
2.2. Phenolic Compounds in Champia parvula and Moringa oleifera
2.3. Pharmacokinetic Characteristics of Catechin by (ADMET)
2.4. Solubility and Lipophilicity
2.5. In Vitro Antifungal Activity
2.6. Fungal Pathogenicity and Aggressiveness on Apple Fruit (In Vivo Experiment)
3. Discussion
4. Materials and Methods
4.1. Seaweed Collection
4.2. Plant Material
4.3. Preparation of Extracts
4.4. Gas Chromatography–Mass Spectrometry (GC-MS) Analysis
4.5. HPLC Analysis
4.6. Predicting Drug-Likeness Using Pharmacokinetics
4.7. Fungal Strains Collection and Identification
4.8. In Vitro Antifungal Activity (Disk Diffusion Method)
4.9. Fungal Pathogenicity and Aggressiveness on Apple Fruit (In Vivo Experiment)
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Boyer, J.; Liu, R.H. Apple phytochemicals and their health benefits. Nutr. J. 2004, 3, 5. [Google Scholar] [CrossRef] [PubMed]
- El-Gali, Z.I. Isolation and identification of fungi associated with fruits sold in local Markets. Inter. J. Res. Stud. Biosci. 2016, 4, 61–64. [Google Scholar]
- Saleem, A.; El-Shahir, A.A. Morphological and molecular characterization of some Alternaria species isolated from tomato fruits concerning mycotoxin production and polyketide synthase genes. Plants 2022, 11, 1168. [Google Scholar] [CrossRef]
- El-Shahir, A.A.; Alzamel, N.M.; Abuzaid, A.O.; Loutfy, N.; Alwaleed, E.A. Antifungal Properties of Sargassum cinereum and Padina boergesenii Extracts Against Fungi Associated with Strawberry Fruits Concerning Mycotoxin Production. Plants 2024, 13, 3115. [Google Scholar] [CrossRef]
- Louw, J.P.; Korsten, L. Pathogenic Penicillium spp. on apple and pear. Plant Dis. 2014, 98, 590–598. [Google Scholar] [CrossRef] [PubMed]
- Bartholomew, H.P.; Bradshaw, M.; Jurick, W.M., II; Fonseca, J.M. The good, the bad, and the ugly: Mycotoxin production during postharvest decay and their influence on tritrophic host-pathogen-microbe interactions. Front. Microbiol. 2021, 12, 611881. [Google Scholar] [CrossRef] [PubMed]
- Bartholomew, H.P.; Luciano-Rosario, D.; Bradshaw, M.J.; Gaskins, V.L.; Peng, H.; Fonseca, J.M. Determination of patulin in apple juice. Rom. J. Food Sci. 2023, 1, 65–69. [Google Scholar]
- Brent, K.J.; Hollomon, D. Fungicide Resistance in Crop Pathogens. How Can It Be Managed; FRAC Monograph No. 1, Second, Revised Edition; Fungicide Resistance Action Committee: Brussels, Belgium, 2007. [Google Scholar]
- Balai, L.P.; Ahir, R.R. Evaluation of plant extracts and biocontrol agents against leaf spot disease of brinjal. Indian Phytopathol. 2011, 64, 378–380. [Google Scholar]
- Fuglie, L.J. The Miracle Tree: Moringa oleifera, Natural Nutrition for the Tropics; Church World Service: New York, NY, USA, 1999. [Google Scholar]
- Domenico, M.; Lina, C.; Francesca, B. Sustainable crops for food security: Moringa (Moringa oleifera Lam.). In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Padayachee, B.; Baijnath, H. An overview of the medicinal importance of moringaceae. J. Med. Plants Res. 2012, 6, 5831–5839. [Google Scholar]
- Nweze, N.O.; Nwafor, F.I. Phytochemical, proximate and mineral composition of leaf extracts of Moringa oleifera Lam. from nsukka, South-Eastern Nigeria. IOSR J. Pharm. Biol. Sci. 2014, 9, 99–103. [Google Scholar]
- Moyo, B.; Masika, P.J.; Hugo, A.; Muchenje, V. Nutritional characterization of moringa (Moringa oleifera Lam.) leaves. Afr. J. Biotechnol. 2011, 10, 12925–12933. [Google Scholar]
- Rady, M.M.; Kuşvuran, A.; Alharby, H.F.; Alzahrani, Y.; Kuşvuran, S. Pretreatment with proline or an organic bio-stimulant induces salt tolerance in wheat plants by improving antioxidant redox state and enzymatic activities and reducing the oxidative stress. J. Plant Growth Regul. 2019, 38, 449–462. [Google Scholar] [CrossRef]
- Alwaleed, E.A.; Alotaibi, N.M.; Mansour, A.T.; Alghamdi, M.A.; Abdelgaliel, A.S. Publisher Correction: Assessment of the conceivable inhibitory activity of pathogenic microorganisms extracted from seaweed using phytochemicals, antioxidants, and in-silico molecular dynamic simulation. Sci. Rep. 2024, 14, 27254. [Google Scholar] [CrossRef]
- Brennan, L.; Owende, P. Biofuels from microalgae—A review of technologies for production, processing, and extraction of biofuels and co-products. Renew. Sustain. Energy Rev. 2010, 14, 557–577. [Google Scholar] [CrossRef]
- Vinoth Kumar, R.; Murugesan, S.; Bhuvaneswari, S. Phytochemical analysis of red alga Champia parvula (C. Agardh) collected from Mandapam coast of Tamil Nadu, India. IJAP 2015, 4, 15–20. [Google Scholar]
- Pandian, P.; Selvamuthukumar, S.; Manavalan, R.; Parthasarathy, V. Screening of antibacterial and antifungal activities of red marine algae Acanthaphora spicifera (Rhodophyceae). J. Biomed. Sci. Res. 2011, 3, 444–448. [Google Scholar]
- Kim, K.H.; Yu, D.; Eom, S.H.; Kim, H.; Kim, D.H.; Song, H.S.; Kim, Y.M. Fucofuroeckol-A from edible marine alga Eisenia bicyclis to restore antifungal activity of fluconazole against fluconazole-resistant Candida albicans. J. Appl. Phycol. 2018, 30, 605–609. [Google Scholar] [CrossRef]
- Zhong, B.; Robinson, N.A.; Warner, R.D.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A. Lc-esi-qtof-ms/ms characterization of seaweed phenolics and their antioxidant potential. Mar. Drugs 2020, 18, 331. [Google Scholar] [CrossRef]
- Rodríguez-Pérez, C.; Quirantes-Piné, R.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Optimization of ex-traction method to obtain a phenolic compounds-rich extract from Moringa oleifera Lam leaves. Ind. Crops Prod. 2015, 66, 246–254. [Google Scholar] [CrossRef]
- Prabakaran, M.; Kim, S.H.; Sasireka, A.; Chandrasekaran, M.; Chung, I.M. Polyphenol composition and antimicrobial activity of various solvent extracts from different plant parts of Moringa oleifera. Food Biosci. 2018, 26, 23–29. [Google Scholar] [CrossRef]
- Ullah, I.; Khan, A.L.; Ali, L.; Khan, A.R.; Waqas, M.; Hussain, J.; Lee, I.J.; Shin, J.H. Benzaldehyde as an insecticidal, antimicrobial, and antioxidant compound produced by Photorhabdus temperata M1021. J. Microbiol. 2015, 53, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Sperling, S.; Yarlagadda, P. Benzyl alcohol as a cosmeceutical preservative and its efficacy against different bacterial species. J. Antimicrob. Chemother. 2020.
- Barel, A.O.; Paye, M.; Maibach, H.I. (Eds.) Handbook of Cosmetic Science and Technology; Informa Healthcare: London, UK, 2009. [Google Scholar]
- Ojha, S. Antimicrobial and bioactive potential of long-chain alcohols in controlling bacterial infections. Microb. Pathog. 2021, 36, 122–134. [Google Scholar]
- Halla, N. Antimicrobial activity of phenoxyethanol against bacteria and fungi. J. Appl. Microbiol. 2018, 43, 23–34. [Google Scholar]
- Rivera-Yanez, N. Antimicrobial and anti-inflammatory effects of anethole: Pharmacological studies. J. Ethnopharmacol. 2016, 55, 234–245. [Google Scholar]
- Martins, G.A.; Juliano, L.B. Antifungal activity of essential oils of tea tree, oregano, thyme, and cinnamon, and their components. Braz. J. Food Technol. 2024, 27, e2023071. [Google Scholar] [CrossRef]
- Pandey, M.; Tirkey, A.; Tiwari, A.; Pandey, S.K.; Khan, M.L. Microbial interaction of biochar and its application in soil, water and air. In Microbes and Microbial Biotechnology for Green Remediation; Malik, J.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 185–203. [Google Scholar]
- Morovati, R.; Abbasi, F.; Samaei, M.R.; Hamid, M.; Ali, R.L. Modelling of n-Hexadecane bioremediation from soil by slurry bioreactors using artificial neural network method. Sci. Rep. 2022, 12. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Park, M.H.; Choi, Y.J.; Chung, K.W.; Park, C.H.; Jang, E.J.; An, H.J.; Yu, B.P.; Chung, H.Y. Molecular study of dietary heptadecane for the anti-inflammatory modulation of NF-kB in the aged kidney. PLoS ONE 2013, 8, e59316. [Google Scholar] [CrossRef]
- Heukelbach, J.; Feldmeier, H. Scabies. Lancet 2006, 367, 1767–1774. [Google Scholar] [CrossRef]
- Rapp, A. Biological properties of sesquiterpenoids in essential oils. Nat. Prod. Co. 2016, 11, 1025–1028. [Google Scholar]
- Vanhoorne, M.; Leusen, I. Occupational health risks of carbon disulfide exposure. J. Occup. Med. 2001, 51, 319–327. [Google Scholar]
- El-Masri, H.A.; Foureman, G.L. Toxicokinetics and Toxicodynamics of 2-Substituted Furans in Mammalian Models. Environ. Health Perspect. 2010, 118, 631–636. [Google Scholar]
- Sciarrone, D.; Costa, R.; Grasso, E. Chemical Composition and Antimicrobial Activity of Essential Oils from Medicinal and Aromatic Plants Cultivated in Algeria. J. Food Saf. 2011, 25, 1–12. [Google Scholar]
- Zahou, X.; Yu, J.; Sun, T.; Wang, Y.; Yao, Z.; Gao, L. Landscapes, highlights and trending topics of ferroptosis research in the liver: A bibliometric analysis. Toxicol. Ind. Health 2025, 41, 386–397. [Google Scholar] [CrossRef]
- de Oliveira, T.M.; de Carvalho, R.B.; da Costa, I.H.; de Oliveira, G.A.; de Souza, A.A.; de Lima, S.G.; de Freitas, R.M. Evalua-tion of p-cymene, a natural antioxidant. Pharm Biol. 2015, 53, 423–428. [Google Scholar] [CrossRef]
- Salehi, B.; Upadhyay, S.; Erdogan, O.I.; Kumar, J.A.; Jayaweera, S.L.; Dias, D.A.; Sharopov, F.; Taheri, Y.; Martins, N.; Baghalpour, N. The Therapeutic Potential of Essential Oils: Focus on Terpenes and Terpene Alcohols. Molecules 2019, 24, 1204. [Google Scholar]
- Aw Yong, P.Y.; Islam, F.; Harith, H.H.; Israf, D.A.; Tan, J.W.; Tham, C.L. The potential use of honey as a remedy for allergic diseases: A mini review. Front. Pharmacol. 2021, 11, 599080. [Google Scholar] [CrossRef]
- Kiran, R.; Joseph, J. Influence of lipophilic functional groups on cellular membrane permeability. J. Appl. Chem. 2018, 15, 237–245. [Google Scholar]
- Frezza, C.; Nicolosi, R.M.; Brasili, E.; Mura, F.; De Vita, D. Occurrence and Biological Activities of Seco-Iridoids from Jasminum L. Chem. Biodivers. 2024, 21, e202400254. [Google Scholar] [CrossRef]
- Davis, J.M.; Stuckey, J.M. Antimicrobial activity of essential oils and their components: A review. Phytother. Res. 2013, 27, 1131–1141. [Google Scholar]
- Cavanagh, H.M.A.; Wilkinson, J.M. Biological activities of lavender essential oil. Phytother. Res. 2002, 16, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Listenberger, L.L.; Han, X.; Lewis, S.E.; Cases, S.; Farese, R.V., Jr.; Ory, D.S.; Schaffer, J.E. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc. Natl. Acad. Sci. USA 2003, 100, 3077–3082. [Google Scholar] [CrossRef] [PubMed]
- Patriarca, A. Fungi and mycotoxin problems in the apple industry. Curr. Opin. Food Sci. 2019, 29, 42–47. [Google Scholar] [CrossRef]
- Mohamed, A.A.A.; Youssef, N.H.; El-Shahir, A.A. In vitro antioxidant and antifungal activities of different solvent extracts of leaf peel and gel of Aloe succotrina and their bio-control of leaf spot disease of Phaseolus vulgaris seedlings. S. Afr. J. Bot. 2022, 147, 1112–1123. [Google Scholar] [CrossRef]
- Parham, S.; Kharazi, A.Z.; Bakhsheshi-Rad, H.R.; Nur, H.; Ismail, A.F.; Sharif, S.; RamaKrishna, S.; Berto, F. Antioxidant, antimicrobial and antiviral properties of herbal materials. Antioxidants 2020, 9, 1309. [Google Scholar] [CrossRef] [PubMed]
- Farghl, A.A.M.; El-Sheekh, M.M.; El-Shahir, A.A. Seaweed extracts as biological control of aflatoxins produced by Aspergillus parasiticus and Aspergillus flavus. Egypt. J. Biol. Pest Control 2023, 33, 50. [Google Scholar] [CrossRef]
- Swain, D.L.; Singh, D.E.; Horton, D.E.; Mankin, J.S.; Ballard, T.C.; Diffenbaugh, N.S. Remote linkages to anomalous winter atmospheric ridging over the northeastern Pacific. J. Geophys. Res. Atmos. 2017, 122, 12194–12209. [Google Scholar] [CrossRef]
- Starzyńska-Janiszewska, A.; Stodolak, B.; Fernández-Fernández, C.; Mickowska, B.; Verardo, V.; Gómez-Caravaca, A.M. Phenolic Profile, Antioxidant Activity and Amino Acid Composition of Moringa Leaves Fermented with Edible Fungal Strains. Foods 2022, 11, 3762. [Google Scholar] [CrossRef]
- Shabnoor, I.; Muhammad, A.S.; Azhar, R.; Shahid, S.; Ghulam, M.S.; Muhammad, I.; Uzma, S.; Ifat, A.; Reem, H.A.; Norah, A.A.; et al. Therapeutic role of nutraceuticals in mitochondrial disorders. In The Role of Phytonutrients in Metabolic Disorders; Academic Press: Cambridge, MA, USA, 2022; pp. 313–358. [Google Scholar]
- Ely, R.; Supriya, T.; Naik, C.G. Antimicrobial activity of marine organisms collected off the coast of East India. J. Exp. Mar. Biol. Ecol. 2004, 309, 121–127. [Google Scholar] [CrossRef]
- Radhika, D.; Veerabahu, C.; Priya, R. Antibacterial activity of some selected seaweeds from the Gulf of Mannar Coast, South India. Asian J. Pharm. Clin. Res. 2012, 5, 89–90. [Google Scholar]
- Mohamed, S.S.; Saber, A.A. Antifungal potential of the bioactive constituents in extracts of the mostly untapped brown seaweed Hormophysa cuneiformis from The Egyptian Coastal Waters. Saudi J. Biol. Sci. 2019, 59, 2501–2505. [Google Scholar] [CrossRef]
- Alwaleed, E.A. Biochemical composition and nutraceutical perspectives Red Sea seaweeds. Am. J. Appl. Sci. 2019, 16, 346–354. [Google Scholar] [CrossRef]
- El-Sheekh, M.M.; Mousa, S.H.H.; Farghl, A.A.M. Antibacterial efficacy and phytochemical characterization of some marine brown algal extracts from the Red Sea, Egypt. Rom. Biotechnol. Lett. 2020, 25, 1160–1169. [Google Scholar] [CrossRef]
- Lotfi, A.; Kottb, M.; Elsayed, A.; Shafik, H. Antifungal Activity of Some Mediterranean Seaweed Against Macrophomina phaseolina and Fusarium oxysporum in vitro. Alfarama J. Basic. Appl. Sci. 2020, 2, 81–96. [Google Scholar] [CrossRef]
- El-Shahir, A.A.; El-Wakil, D.A.; Abdel Latef, A.A.H.; Youssef, N.H. Bioactive Compounds and Antifungal Activity of Leaves and Fruits Methanolic Extracts of Ziziphus spina-christi L. Plants 2022, 11, 746. [Google Scholar] [CrossRef] [PubMed]
- Harvey, W.H. Nereis boreali-americana; or, contributions towards a history of the marine algae of the atlantic and pacific coasts of North America. Part II. Rhodospermeae. In Smithsonian Contributions to Knowledge; Smithsonian Institution: Washington, DC, USA, 1853; p. XIII-XXXVI. [Google Scholar]
- Kim, K.H.; Tsao, R.; Yang, R.; Cui, S.W. Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions. Food Chem. 2006, 95, 466–473. [Google Scholar] [CrossRef]
- El-Sherbiny, G.M.; Alluqmani, A.J.; Elsehemy, I.A.; Kalaba, M.H. Antibacterial, antioxidant, cytotoxicity, and phytochemical screening of Moringa oleifera leaves. Sci. Rep. 2024, 14, 30485. [Google Scholar] [CrossRef]
- Domsch, K.; Gams, W.; Anderson, T.H. Compendium of Soil Fungi, 2nd ed.; IHW-Verlag: Eching, Germany, 2007; p. 672. [Google Scholar]
- Saleem, A.; El-Shahir, A.A. Molecular detection and mycotoxins of Penicillium species isolated from decayed apple fruits collected from Qena, Egypt. BMC Plant Biol. 2025; in press. [Google Scholar]
RT (min) | Compound | Mol. Weight | Peak Area (%) | Biological Activities |
---|---|---|---|---|
6.954 | Benzaldehyde (C6H5CHO) | 106.12 | 3.28 | Antimicrobial, Antitumor, Anti-inflammatory, and Antioxidant Activity [24]. |
8.911 | Benzyl alcohol (C6H5CH2OH) | 108.14 | 5.63 | Local Anesthetic Effect, and Antimicrobial and Antiparasitic Activity [25]. |
9.844 | Ethyl octyl ether (C10H22O) | 158.28 | 1.06 | Use in Fragrance and Cosmetic Applications [26]. |
12.671 | 1-Nonanol (C9H20O) | 144.25 | 2.09 | Antimicrobial Activity and Insecticidal and Repellent Properties [27]. |
14.101 | β-Hydroxyethyl phenyl ether (C6H5OC2H4OH) | 138.16 | 12.19 | Antimicrobial Activity and Antioxidant Effects [28]. |
15.887 | Anethole (C10H12O) | 148.20 | 6.12 | Antimicrobial, Antioxidant, Anti-inflammatory, and Anticancer Activity [29]. |
21.689 | Isospathulenol (C15H24O) | 220.35 | 7.21 | Anti-inflammatory Activity, Antimicrobial Properties and Cytotoxic and Anticancer Activity [30]. |
22.993 | Limonen-6-ol, pivalate (C15H24O2) | 236.35 | 2.46 | Antimicrobial Activity and Potential Cytotoxic Effects [31]. |
23.628 | Hexadecane (C16H34) | 226.44 | 3.29 | Limited Antimicrobial Effect [32]. |
25.877 | Heptadecane (C17H36) | 240.5 | 4.4 | Antimicrobial Carrier Properties [33]. |
27.453 | Benzyl Benzoate (C14H12O2) | 212.24 | 16.71 | Antimicrobial Activity and Scabicide and Pediculicide [34]. |
28.99 | Hexahydrofarnesyl acetone (C18H36O) | 268.5 | 1.69 | Antimicrobial Activity and Potential Use in Aromatherapy and Fragrance [35]. |
RT (min): Retention time | Mol. Weight: Molecular weight |
RT (min) | Phenolic Compound | Mol. Weight | Peak Area (%) | Biological Activities |
---|---|---|---|---|
1.696 | Carbon disulfide (CS2) | 76.15 | 6.84 | Neurotoxicity [36]. |
2.480 | 2-Ethylfuran (C6H8o) | 96.13 | 1.09 | Hepatotoxicity and Neurotoxicity [37]. |
4.523 | (E)-2-Hexenal (C6H10O) | 98.14 | 9.09 | Antimicrobial, Antifungal Activity, and Insecticidal Properties [38]. |
6.949 | Benzaldehyde (C6H5CHO) | 106.12 | 8.77 | Antimicrobial, Antitumor, Anti-inflammatory, and Antioxidant Activity [24]. |
7.778 | Psi.-Cumene (C9H12) | 120.19 | 1.21 | Neurotoxicity, Hepatotoxicity, and Nephrotoxicity [39]. |
8.602 | 1,1′-Oxydi-2-propanol (C6H14O3) | 134.17 | 4.61 | Anti-mosquito Activity [38]. |
8.700 | Limonene (C10H16) | 136.23 | 8.87 | Antimicrobial, Antioxidant, and Anti-inflammatory Activity [40]. |
9.890 | 2,6-Dimethyl-7-octen-2-ol (C10H20O) | 156.26 | 3.14 | Anti-inflammatory Activity, Antimicrobial Properties, and Cytotoxic Activity [41]. |
10.771 | Nonanal (C9H18O) | 236.35 | 4.37 | Antimicrobial Activity and Anti-inflammatory Effects [42]. |
12.51 | 1,1-Dimethoxy-2,2,5-trimethylhex-4-ene (C11H22O2) | 186.29 | 1.82 | Antimicrobial Activity and Antioxidant Potential [43]. |
14.113 | β-Hydroxyethyl phenyl ether. (C6H5OC2H4OH) | 138.16 | 3.23 | Antimicrobial Carrier Properties [33]. |
15.881 | Anethole (C10H12O) | 148.20 | 4.25 | Antimicrobial Activity [34]. |
18.873 | Jasmone (C11H16O) | 164.24 | 1.2 | Antioxidant Compound [44]. |
22.198 | Dihydroactinidiolide (C11H16O2) | 180.24 | 1.98 | Antimicrobial Activity, Antioxidant Activity, and Potential Neuroprotective Effects. [45]. |
27.319 | Ambrox (C16H28O) | 236.39 | 2.52 | Antimicrobial Activity [46]. |
31.084 | Palmitic acid (C32H64O2) | 480.8 | 1.21 | Metabolic Health, and Cardiovascular Disease [47]. |
RT (min): Retention time | Mol. Weight: Molecular weight |
Physicochemical Properties | Pharmacokinetics | ||
---|---|---|---|
Formula | C15H14O6 | GI absorption | --- |
Molecular weight | 290.27 g/mol | BBB permeant | -- |
Num. heavy atoms | 21 | P-gp substrate | -- |
Num. arom. heavy atoms | 12 | CYP1A2 inhibitor | + |
Fraction Csp3 | 0.20 | CYP2D6 inhibitor | +++ |
Num. rotatable bonds | 1 | CYP3A4 inhibitor | -- |
Num. H-bond acceptors | 6 | Carcinogenicity (Three-class) | Non-required |
Num. H-bond donors | 5 | AMES Toxicity | Non-AMES toxic |
Molar Refractivity | 74.33 | Log Kp (skin permeation) | --- |
TPSA | 110.38 Å2 | ||
Water solubility | Lipophilicity | ||
Log S (ESOL) | −2.22 | Log Po/w (iLOGP) | 1.36 |
Solubility | 1.74 × 10 mg/mL; 5.98 × 10−3 mol/L | Log Po/w (XLOGP3) | 0.36 |
Class | Soluble | Log Po/w (WLOGP) | 1.22 |
Log S (Ali) | −2.24 | Log Po/w (MLOGP) | 0.24 |
Solubility | 1.66 × 10 mg/mL; 5.72 × 10−3 mol/L | Log Po/w (SILICOS-IT) | 0.98 |
Class | Soluble | Consensus Log Po/w | 0.83 |
Log S (SILICOS-IT) | −2.14 | Druglikeness | |
Solubility | 2.09 × 10 mg/mL; 7.19 × 10−3 mol/L | Lipinski | Yes |
Medicinal Chemistry | Ghose | Yes | |
PAINS | 1 alert: catechol_A | Veber | Yes |
Brenk | 1 alert: catechol | Egan | Yes |
Leadlikeness | Yes | Muegge | Yes |
Synthetic accessibility | 3.50 | Bioavailability Score | 0.55 |
Fungi | Control | Moringa oleifera | Champia parvula |
---|---|---|---|
AP1 | |||
AP2 | |||
AP3 | |||
AP4 | |||
AP5 |
Fungi | Moringa oleifera | Champia parvula |
---|---|---|
AP1 | 61.73 | 100.00 |
AP2 | 44.57 | 96.93 |
AP3 | 36.00 | 62.67 |
AP4 | 71.69 | 83.01 |
AP5 | 57.37 | 64.70 |
Fungi/ Treatments | Extract | Pathogenicity % 1 | Aggressiveness 2 | Images |
---|---|---|---|---|
Negative control 3 | No extract | 100 | 2.2 | |
Positive control 4 AP1 | No extract | 100 | 1.2 | |
Positive control 4 AP2 | No extract | 100 | 1.3 | |
Positive control 4 AP3 | No extract | 100 | 1.5 | |
Positive control 4 AP4 | No extract | 100 | 2 | |
Positive control 4 AP5 | No extract | 100 | 3.7 | |
AP1 | M. oleifera | 0 | 0 | |
AP2 | M. oleifera | 0 | 0 | |
AP3 | M. oleifera | 0 | 0 | |
AP4 | M. oleifera | 0 | 0 | |
AP5 | M. oleifera | 20 | 0.3 | |
AP1 | C. parvula | 0 | 0 | |
AP2 | C. parvula | 0 | 0 | |
AP3 | C. parvula | 0 | 0 | |
AP4 | C. parvula | 0 | 0 | |
AP5 | C. parvula | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alwaleed, E.A.; Alzain, M.N.; Loutfy, N.; El-Shahir, A.A. Analytical Characterization and Pharmacokinetic Insight of Bioactive Compounds from Champia parvula and Moringa oleifera for Biocontrol of Blue Mold in Apple Fruits. Plants 2025, 14, 2104. https://doi.org/10.3390/plants14142104
Alwaleed EA, Alzain MN, Loutfy N, El-Shahir AA. Analytical Characterization and Pharmacokinetic Insight of Bioactive Compounds from Champia parvula and Moringa oleifera for Biocontrol of Blue Mold in Apple Fruits. Plants. 2025; 14(14):2104. https://doi.org/10.3390/plants14142104
Chicago/Turabian StyleAlwaleed, Eman A., Mashail N. Alzain, Naglaa Loutfy, and Amany A. El-Shahir. 2025. "Analytical Characterization and Pharmacokinetic Insight of Bioactive Compounds from Champia parvula and Moringa oleifera for Biocontrol of Blue Mold in Apple Fruits" Plants 14, no. 14: 2104. https://doi.org/10.3390/plants14142104
APA StyleAlwaleed, E. A., Alzain, M. N., Loutfy, N., & El-Shahir, A. A. (2025). Analytical Characterization and Pharmacokinetic Insight of Bioactive Compounds from Champia parvula and Moringa oleifera for Biocontrol of Blue Mold in Apple Fruits. Plants, 14(14), 2104. https://doi.org/10.3390/plants14142104