Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (394)

Search Parameters:
Keywords = Tafel slope

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2532 KiB  
Article
Efficient Oxygen Evolution Reaction Performance Achieved by Tri-Doping Modification in Prussian Blue Analogs
by Yanhong Ding, Bin Liu, Haiyan Xiang, Fangqi Ren, Tianzi Xu, Jiayi Liu, Haifeng Xu, Hanzhou Ding, Yirong Zhu and Fusheng Liu
Inorganics 2025, 13(8), 258; https://doi.org/10.3390/inorganics13080258 - 2 Aug 2025
Viewed by 191
Abstract
The high cost of hydrogen production is the primary factor limiting the development of the hydrogen energy industry chain. Additionally, due to the inefficiency of hydrogen production by water electrolysis technology, the development of high-performance catalysts is an effective means of producing low-cost [...] Read more.
The high cost of hydrogen production is the primary factor limiting the development of the hydrogen energy industry chain. Additionally, due to the inefficiency of hydrogen production by water electrolysis technology, the development of high-performance catalysts is an effective means of producing low-cost hydrogen. In water electrolysis technology, the electrocatalytic activity of the electrode affects the kinetics of the oxygen evolution reaction (OER) and the hydrogen evolution rate. This study utilizes the liquid phase co-precipitation method to synthesize three types of Prussian blue analog (PBA) electrocatalytic materials: Fe/PBA(Fe4[Fe(CN)6]3), Fe-Mn/PBA((Fe, Mn)3[Fe(CN)6]2·nH2O), and Fe-Mn-Co/PBA((Mn, Co, Fe)3II[FeIII(CN)6]2·nH2O). X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses show that Fe-Mn-Co/PBA has a smaller particle size and higher crystallinity, and its grain boundary defects provide more active sites for electrochemical reactions. The electrochemical test shows that Fe-Mn-Co/PBA exhibits the best electrochemical performance. The overpotential of the oxygen evolution reaction (OER) under 1 M alkaline electrolyte at 10/50 mA·cm−2 is 270/350 mV, with a Tafel slope of 48 mV·dec−1, and stable electrocatalytic activity is maintained at 5 mA·cm−2. All of these are attributed to the synergistic effect of Fe, Mn, and Co metal ions, grain refinement, and the generation of grain boundary defects and internal stresses. Full article
(This article belongs to the Special Issue Novel Catalysts for Photoelectrochemical Energy Conversion)
Show Figures

Figure 1

13 pages, 2008 KiB  
Article
Hierarchical Flaky Spinel Structure with Al and Mn Co-Doping Towards Preferable Oxygen Evolution Performance
by Hengfen Shen, Hao Du, Peng Li and Mei Wang
Materials 2025, 18(15), 3633; https://doi.org/10.3390/ma18153633 - 1 Aug 2025
Viewed by 209
Abstract
As an efficient clean energy technology, water electrolysis for hydrogen production has its efficiency limited by the sluggish oxygen evolution reaction (OER) kinetics, which drives the demand for the development of high-performance anode OER catalysts. This work constructs bimetallic (Al, Mn) co-doped nanoporous [...] Read more.
As an efficient clean energy technology, water electrolysis for hydrogen production has its efficiency limited by the sluggish oxygen evolution reaction (OER) kinetics, which drives the demand for the development of high-performance anode OER catalysts. This work constructs bimetallic (Al, Mn) co-doped nanoporous spinel CoFe2O4 (np-CFO) with a tunable structure and composition as an OER catalyst through a simple two-step dealloying strategy. The as-formed np-CFO (Al and Mn) features a hierarchical flaky configuration; that is, there are a large number of fine nanosheets attached to the surface of a regular micron-sized flake, which not only increases the number of active sites but also enhances mass transport efficiency. Consequently, the optimized catalyst exhibits a low OER overpotential of only 320 mV at a current density of 10 mA cm−2, a minimal Tafel slope of 45.09 mV dec−1, and exceptional durability. Even under industrial conditions (6 M KOH, 60 °C), it only needs 1.83 V to achieve a current density of 500 mA cm−2 and can maintain good stability for approximately 100 h at this high current density. Theoretical simulations indicate that Al and Mn co-doping could indeed optimize the electronic structure of CFO and thus decrease the energy barrier of OER to 1.35 eV. This work offers a practical approach towards synthesizing efficient and stable OER catalysts. Full article
(This article belongs to the Special Issue High-Performance Materials for Energy Conversion)
Show Figures

Figure 1

14 pages, 3346 KiB  
Article
DES-Mediated Mild Synthesis of Synergistically Engineered 3D FeOOH-Co2(OH)3Cl/NF for Enhanced Oxygen Evolution Reaction
by Bingxian Zhu, Yachao Liu, Yue Yan, Hui Wang, Yu Zhang, Ying Xin, Weijuan Xu and Qingshan Zhao
Catalysts 2025, 15(8), 725; https://doi.org/10.3390/catal15080725 - 30 Jul 2025
Viewed by 217
Abstract
Hydrogen energy is a pivotal carrier for achieving carbon neutrality, requiring green and efficient production via water electrolysis. However, the anodic oxygen evolution reaction (OER) involves a sluggish four-electron transfer process, resulting in high overpotentials, while the prohibitive cost and complex preparation of [...] Read more.
Hydrogen energy is a pivotal carrier for achieving carbon neutrality, requiring green and efficient production via water electrolysis. However, the anodic oxygen evolution reaction (OER) involves a sluggish four-electron transfer process, resulting in high overpotentials, while the prohibitive cost and complex preparation of precious metal catalysts impede large-scale commercialization. In this study, we develop a FeCo-based bimetallic deep eutectic solvent (FeCo-DES) as a multifunctional reaction medium for engineering a three-dimensional (3D) coral-like FeOOH-Co2(OH)3Cl/NF composite via a mild one-step impregnation approach (70 °C, ambient pressure). The FeCo-DES simultaneously serves as the solvent, metal source, and redox agent, driving the controlled in situ assembly of FeOOH-Co2(OH)3Cl hybrids on Ni(OH)2/NiOOH-coated nickel foam (NF). This hierarchical architecture induces synergistic enhancement through geometric structural effects combined with multi-component electronic interactions. Consequently, the FeOOH-Co2(OH)3Cl/NF catalyst achieves a remarkably low overpotential of 197 mV at 100 mA cm−2 and a Tafel slope of 65.9 mV dec−1, along with 98% current retention over 24 h chronopotentiometry. This study pioneers a DES-mediated strategy for designing robust composite catalysts, establishing a scalable blueprint for high-performance and low-cost OER systems. Full article
Show Figures

Graphical abstract

13 pages, 3341 KiB  
Article
Regulation of Electrochemical Activity via Controlled Integration of NiS2 over Co3O4 Nanomaterials for Hydrogen Evolution Reaction
by Mrunal Bhosale, Rutuja U. Amate, Pritam J. Morankar and Chan-Wook Jeon
Coatings 2025, 15(8), 887; https://doi.org/10.3390/coatings15080887 - 30 Jul 2025
Viewed by 227
Abstract
Electrochemical water splitting represents a sustainable approach for hydrogen production, yet efficient hydrogen evolution reaction (HER) catalysts operating in alkaline environments remain critically needed. Herein, we report the fabrication of Co3O4–NiS2 nanocomposites synthesized through a facile coprecipitation and [...] Read more.
Electrochemical water splitting represents a sustainable approach for hydrogen production, yet efficient hydrogen evolution reaction (HER) catalysts operating in alkaline environments remain critically needed. Herein, we report the fabrication of Co3O4–NiS2 nanocomposites synthesized through a facile coprecipitation and subsequent thermal treatment method. Detailed characterization via physicochemical techniques confirmed the successful formation of a hybrid Co3O4–NiS2 heterostructure with tunable compositional and morphological characteristics. Among the synthesized catalysts (Co–Ni–1, Co–Ni–2, and Co–Ni–3), the Co–Ni–2 sample demonstrated optimal structural integration, displaying interconnected nanosheet morphologies and balanced elemental distribution. Remarkably, Co–Ni–2 achieved exceptional HER performance in 1 M KOH electrolyte, requiring an ultralow overpotential of only 84 mV at 10 mA cm−2 and exhibiting a favorable Tafel slope of 67.5 mV dec−1. Electrochemical impedance spectroscopy and electrochemical surface area measurements further substantiated the superior electrocatalytic kinetics, rapid charge transport, and abundant active site accessibility in the optimized Co–Ni–2 composite. Additionally, Co–Ni–2 demonstrated outstanding durability with negligible activity decay over 5000 cycles. This study not only highlights the strategic synthesis of Co3O4–NiS2 nanostructures but also provides valuable insights for designing advanced, stable, and efficient non-noble electrocatalysts for sustainable hydrogen generation. Full article
Show Figures

Graphical abstract

11 pages, 2972 KiB  
Article
ZnCu Metal–Organic Framework Electrocatalysts for Efficient Ammonia Decomposition to Hydrogen
by Mingguang Ouyang, Geng Chen, Weitao Ning, Xiaoyang Wang, Xiaojiang Mu and Lei Miao
Energies 2025, 18(14), 3871; https://doi.org/10.3390/en18143871 - 21 Jul 2025
Viewed by 335
Abstract
The electrocatalytic decomposition of ammonia represents a promising route for sustainable hydrogen production, yet current systems rely heavily on noble metal catalysts with prohibitive costs and limited durability. A critical challenge lies in developing non-noble electrocatalysts that simultaneously achieve high active site exposure, [...] Read more.
The electrocatalytic decomposition of ammonia represents a promising route for sustainable hydrogen production, yet current systems rely heavily on noble metal catalysts with prohibitive costs and limited durability. A critical challenge lies in developing non-noble electrocatalysts that simultaneously achieve high active site exposure, optimized electronic configurations, and robust structural stability. Addressing these requirements, this study strategically engineered Cu-doped ZIF-8 architectures via in situ growth on nickel foam (NF) substrates through a facile room-temperature hydrothermal synthesis approach. Systematic optimization of the Cu/Zn molar ratio revealed that Cu0.7Zn0.3-ZIF/NF achieved optimal performance, exhibiting a distinctive nanoflower-like architecture that substantially increased accessible active sites. The hybrid catalyst demonstrated superior electrocatalytic performance with a current density of 124 mA cm−2 at 1.6 V vs. RHE and a notably low Tafel slope of 30.94 mV dec−1, outperforming both Zn-ZIF/NF (39.45 mV dec−1) and Cu-ZIF/NF (31.39 mV dec−1). Combined XPS and EDS analyses unveiled a synergistic electronic structure modulation between Zn and Cu, which facilitated charge transfer and enhanced catalytic efficiency. A gas chromatography product analysis identified H2 and N2 as the primary gaseous products, confirming the predominant occurrence of the ammonia oxidation reaction (AOR). This study not only presents a noble metal-free electrocatalyst with exceptional efficiency and durability for ammonia decomposition but also demonstrates the significant potential of MOF-derived materials in sustainable hydrogen production technologies. Full article
(This article belongs to the Special Issue Advanced Energy Conversion Technologies Based on Energy Physics)
Show Figures

Figure 1

16 pages, 5483 KiB  
Article
Preparation of S-Doped Ni-Mn-Fe Layered Hydroxide for High-Performance of Oxygen Evolution Reaction
by Jiefeng Wang, Shilin Li, Yifan Guo, Jiaqi Ding and Zhi Lu
Coatings 2025, 15(7), 825; https://doi.org/10.3390/coatings15070825 - 15 Jul 2025
Viewed by 321
Abstract
A novel catalyst with a metal sulfide/hydroxide heterostructure was prepared by introducing sulfur ions into NiMnFe layered hydroxide by a simple hydrothermal method, using a series of characterization methods and electrochemical tests to explore the optimal sulfur ion doping amount. The XPS results [...] Read more.
A novel catalyst with a metal sulfide/hydroxide heterostructure was prepared by introducing sulfur ions into NiMnFe layered hydroxide by a simple hydrothermal method, using a series of characterization methods and electrochemical tests to explore the optimal sulfur ion doping amount. The XPS results show that the introduction of sulfur ions leads to a change in metal electron delocalization, which is conducive to the OER procedure. The newly formed metal sulfide can not only improve the conductivity of NiMnFe LDH/NF electrode materials but also enhance the intrinsic catalytic activity of the materials. The electrochemical performance indicated that the S2-NiMnFe LDH/NF catalyst required only 205 mV overpotential to provide a current density of 10 mA−2, and the Tafel slope was only 45.79 mV dec−1. In addition, the large turnover frequency value (1.2614 S−1) reflects the excellent intrinsic activity of the novel catalytic material. Full article
Show Figures

Figure 1

15 pages, 3241 KiB  
Article
Cu@Pt Core–Shell Nanostructures for Ammonia Oxidation: Bridging Electrocatalysis and Electrochemical Sensing
by Bommireddy Naveen and Sang-Wha Lee
Inorganics 2025, 13(7), 241; https://doi.org/10.3390/inorganics13070241 - 11 Jul 2025
Viewed by 395
Abstract
Electro-oxidation of ammonia has emerged as a promising route for sustainable energy conversion and pollutant mitigation. In this study, we report the facile fabrication of dendritic Cu@Pt core–shell nanostructures electrodeposited on pencil graphite, forming an efficient electrocatalyst for the ammonia oxidation reaction (AOR). [...] Read more.
Electro-oxidation of ammonia has emerged as a promising route for sustainable energy conversion and pollutant mitigation. In this study, we report the facile fabrication of dendritic Cu@Pt core–shell nanostructures electrodeposited on pencil graphite, forming an efficient electrocatalyst for the ammonia oxidation reaction (AOR). The designed electrocatalyst exhibited high catalytic activity towards AOR, achieving high current density at very low potentials (−0.3 V vs. Ag/AgCl), with a lower Tafel slope of 16.4 mV/dec. The catalyst also demonstrated high electrochemical stability over 1000 potential cycles with a regeneration efficiency of 78%. In addition to catalysis, Cu@Pt/PGE facilitated very sensitive and selective electrochemical detection of ammonia nitrogen by differential pulse voltammetry, providing an extensive linear range (1 μM to 1 mM) and a low detection limit of 0.78 μM. The dual functionality of Cu@Pt highlights its potential in enhancing ammonia-based fuel cells and monitoring ammonia pollution in aquatic environments, thereby contributing to the development of sustainable energy and environmental technologies. Full article
Show Figures

Figure 1

14 pages, 3894 KiB  
Article
Self-Supported Tailoring of Nickel Sulfide/CuCo Nanosheets into Hierarchical Heterostructures for Boosting Urea Oxidation Reaction
by Prince J. J. Sagayaraj, Aravind Senthilkumar, Juwon Lee, Eunkyeong Byeon, Hyoung-il Kim, Sulakshana Shenoy and Karthikeyan Sekar
Catalysts 2025, 15(7), 664; https://doi.org/10.3390/catal15070664 - 7 Jul 2025
Viewed by 638
Abstract
Electro-oxidation of urea (UOR) in alkaline medium is one of the most effective alternative ways of producing green hydrogen, as the oxidation potential in UOR is less and thermodynamically more favorable than conventional water oxidation. The development of cost-effective materials in catalyzing UOR [...] Read more.
Electro-oxidation of urea (UOR) in alkaline medium is one of the most effective alternative ways of producing green hydrogen, as the oxidation potential in UOR is less and thermodynamically more favorable than conventional water oxidation. The development of cost-effective materials in catalyzing UOR is recently seeking more attention in the research hotspot. Suitably modifying the Ni-based catalysts towards active site creation and preventing surface passivation is much important in this context, following which we reported the synthesis of Ni3S2 (NS) supported with CuCo (CC) bimetallic (NSCC). A simple hydrothermal route for NS synthesis and the electrodeposition method for CuCo (CC) deposition is adapted in a self-supported manner. The NS and CC catalysts exhibited sheet-like morphology, as confirmed by SEM and TEM analysis. The bimetallic CC deposition prevented the surface passivation of nickel sulfide (NS) over oxygen evolution reaction (OER) and improved the charge-transfer kinetics. The NSCC catalyst catalyzed UOR in an alkaline medium, which required a lower potential of 1.335 V vs. RHE to attain the current density of 10 mAcm−2, with a lower Tafel slope value of 131 mVdec−1. In addition, a two-electrode cell setup is constructed with an operating cell voltage of 1.512 V for delivering 10 mAcm−2 current density. This study illustrates the new strategy of designing heterostructure catalysts for electrocatalytic UOR. Full article
(This article belongs to the Special Issue Homogeneous and Heterogeneous Catalytic Oxidation and Reduction)
Show Figures

Figure 1

12 pages, 7657 KiB  
Article
Cation Vacancies Anchored Transition Metal Dopants Based on a Few-Layer Ti3C2Tx Catalyst for Enhanced Hydrogen Evolution
by Xiangjie Liu, Xiaomin Chen, Chunlan Huang, Sihan Sun, Ding Yuan and Yuhai Dou
Catalysts 2025, 15(7), 663; https://doi.org/10.3390/catal15070663 - 7 Jul 2025
Viewed by 415
Abstract
This study addresses the efficiency and cost challenges of hydrogen evolution reaction (HER) catalysts in the context of carbon neutrality strategies by employing a synergistic approach that combines cation vacancy anchoring and transition metal doping on two-dimensional (2D) MXenes. Using an in situ [...] Read more.
This study addresses the efficiency and cost challenges of hydrogen evolution reaction (HER) catalysts in the context of carbon neutrality strategies by employing a synergistic approach that combines cation vacancy anchoring and transition metal doping on two-dimensional (2D) MXenes. Using an in situ LiF/HCl etching process, the aluminum layers in Ti3AlC2 were precisely removed, resulting in a few-layer Ti3C2Tx MXene with an increased interlayer spacing of 12.3 Å. Doping with the transition metals Fe, Co, Ni, and Cu demonstrated that Fe@Ti3C2 provided the optimal HER performance, characterized by an overpotential (η10) of 81 mV at 10 mA cm−2, a low Tafel slope of 33.03 mV dec−1, and the lowest charge transfer resistance (Rct = 5.6 Ω cm2). Mechanistic investigations revealed that Fe’s 3d6 electrons induce an upward shift in the d-band center of MXene, improving hydrogen adsorption free energy and reducing lattice distortion. This research lays a solid foundation for the design of non-precious metal catalysts using MXenes and highlights future avenues in bimetallic synergy and scalability. Full article
Show Figures

Graphical abstract

20 pages, 4449 KiB  
Article
Boosting Dual Hydrogen Electrocatalysis with Pt/NiMo Catalysts: Tuning the Ni/Mo Ratio and Minimizing Pt Usage
by Luis Fernando Cabanillas-Esparza, Edgar Alonso Reynoso-Soto, Balter Trujillo-Navarrete, Brenda Alcántar-Vázquez, Carolina Silva-Carrillo and Rosa María Félix-Navarro
Catalysts 2025, 15(7), 633; https://doi.org/10.3390/catal15070633 - 28 Jun 2025
Viewed by 538
Abstract
The development of efficient platinum group metal-free (PGM-free) catalysts for the hydrogen evolution reaction (HER) and the hydrogen oxidation reaction (HOR) is essential for advancing hydrogen-based energy technologies. In this study, NixMo100−x composites supported on Carbon Ketjenblack EC-300J (CK) were [...] Read more.
The development of efficient platinum group metal-free (PGM-free) catalysts for the hydrogen evolution reaction (HER) and the hydrogen oxidation reaction (HOR) is essential for advancing hydrogen-based energy technologies. In this study, NixMo100−x composites supported on Carbon Ketjenblack EC-300J (CK) were synthesized via thermal reduction under a controlled Ar/H2 (95:5) atmosphere to investigate the effect of the Ni/Mo molar ratio on electrocatalytic performance. Structural and morphological analyses by XRD and TEM confirmed the formation of the NiMo alloys and carbide phases with controlled particle size distributions (~18 nm), while BET measurements revealed specific surface areas up to 124.69 m2 g−1 for the Pt-loaded samples. Notably, the 3% Pt/Ni90Mo10-CK catalyst exhibited outstanding bifunctional activity in a half-cell configuration, achieving an overpotential of 65.2 mV and a Tafel slope of 41.6 mV dec−1 for the HER, and a Tafel slope of 32.9 mV dec−1 with an exchange current density of 1.03 mA cm−2 for the HOR. These results demonstrate that compositional tuning and minimal Pt incorporation synergistically enhance the catalytic efficiency, providing a promising platform for next-generation hydrogen electrocatalysts. Full article
(This article belongs to the Special Issue Electrocatalytic Hydrogen and Oxygen Evolution Reaction)
Show Figures

Graphical abstract

14 pages, 2965 KiB  
Article
Interface-Engineered RuP2/Mn2P2O7 Heterojunction on N/P Co-Doped Carbon for High-Performance Alkaline Hydrogen Evolution
by Wenjie Wu, Wenxuan Guo, Zeyang Liu, Chenxi Zhang, Aobing Li, Caihua Su and Chunxia Wang
Materials 2025, 18(13), 3065; https://doi.org/10.3390/ma18133065 - 27 Jun 2025
Cited by 1 | Viewed by 357
Abstract
Developing efficient and durable electrocatalysts for the alkaline hydrogen evolution reaction (HER) is crucial for sustainable hydrogen production. Herein, we report a novel RuP2/Mn2P2O7 heterojunction anchored on a three-dimensional nitrogen and phosphorus co-doped porous carbon (RuP [...] Read more.
Developing efficient and durable electrocatalysts for the alkaline hydrogen evolution reaction (HER) is crucial for sustainable hydrogen production. Herein, we report a novel RuP2/Mn2P2O7 heterojunction anchored on a three-dimensional nitrogen and phosphorus co-doped porous carbon (RuP2/Mn2P2O7/NPC) framework as a high-performance HER catalyst, synthesized via a controlled pyrolysis–phosphidation strategy. The heterostructure achieves uniform dispersion of ultrafine RuP2/Mn2P2O7 heterojunctions with well-defined interfaces. Furthermore, phosphorus doping restructures the electronic configuration of Mn and Ru species at the RuP2/Mn2P2O7 heterointerface, enabling enhanced catalytic activity through the accelerated electron transfer and kinetics of the HER. This RuP2/Mn2P2O7/NPC catalyst exhibits exceptional HER activity with 1 M KOH, requiring only 69 mV of overpotential to deliver 10 mA·cm−2 and displaying a small Tafel slope of 69 mV·dec−1, rivaling commercial 20% Pt/C. Stability tests reveal negligible activity loss over 48 h, underscoring the robustness of the heterostructure. The RuP2/Mn2P2O7 heterojunction demonstrates markedly reduced overpotentials for the electrochemical HER process, highlighting its enhanced catalytic efficiency and improved cost-effectiveness compared to the conventional catalytic systems. This work establishes a strategy for designing a transition metal phosphide heterostructure through interfacial electronic modulation, offering broad implications for energy conversion technologies. Full article
Show Figures

Figure 1

13 pages, 2159 KiB  
Communication
NiCo(OH)2/NiCo2O4 as a Heterogeneous Catalyst for the Electrooxidation of 5-Hydroxymethylfurfural
by Wen Li, Di Yin, Wanxin Liu, Yi Li and Yijin Wu
Inorganics 2025, 13(7), 211; https://doi.org/10.3390/inorganics13070211 - 24 Jun 2025
Viewed by 442
Abstract
The electrochemical oxidation of biomass-derived 5-hydroxymethylfurfural (HMF) coupled with water electrolysis for green hydrogen production is a promising strategy to address energy crises and environmental pollution. Despite the suitable adsorption energy for HMF due to their partially filled d-band electronic structures, Ni- or [...] Read more.
The electrochemical oxidation of biomass-derived 5-hydroxymethylfurfural (HMF) coupled with water electrolysis for green hydrogen production is a promising strategy to address energy crises and environmental pollution. Despite the suitable adsorption energy for HMF due to their partially filled d-band electronic structures, Ni- or Co-based oxides/hydroxides still face challenges in insufficient activity and stability. In this study, a porous heterogeneous nickel cobalt oxide/hydroxide growth on nickel foam (NF), which is defined as NF@NiCo-H/O, was developed via immersion in concentrated alkali solution. Compared with the single-component NiCo oxides, the NF@NiCo-H/O catalyst exhibits a lower application potential of only 1.317 V, 1.395 V, and 1.443 V to achieve current densities of 20, 50, and 100 mA cm−2, respectively, in an alkaline solution containing HMF. Additionally, it demonstrates rapid reaction kinetics with a Tafel slope of 27.6 mV dec−1 and excellent cycling stability. Importantly, the presence of more high-valent Ni3+-O species on the catalyst surface contributes to its exceptional selectivity for 2,5-furandicarboxylic acid (86.7%), Faradaic efficiency (93.1%), and conversion rate (94.4%). This catalyst provides some theoretical guidance for the development of biomass electrooxidation catalysts for sustainable energy and chemical production. Full article
Show Figures

Graphical abstract

17 pages, 3918 KiB  
Article
One-Step Synthesis of Polymeric Carbon Nitride Films for Photoelectrochemical Applications
by Alberto Gasparotto, Davide Barreca, Chiara Maccato, Ermanno Pierobon and Gian Andrea Rizzi
Nanomaterials 2025, 15(13), 960; https://doi.org/10.3390/nano15130960 - 21 Jun 2025
Viewed by 465
Abstract
Over the last decade, polymeric carbon nitrides (PCNs) have received exponentially growing attention as metal-free photocatalytic platforms for green energy generation and environmental remediation. Although PCNs can be easily synthesized from abundant precursors in a powdered form, progress in the field of photoelectrochemical [...] Read more.
Over the last decade, polymeric carbon nitrides (PCNs) have received exponentially growing attention as metal-free photocatalytic platforms for green energy generation and environmental remediation. Although PCNs can be easily synthesized from abundant precursors in a powdered form, progress in the field of photoelectrochemical applications requires effective methods for the fabrication of PCN films endowed with suitable mechanical stability and modular chemico-physical properties. In this context, as a proof-of-concept, we report herein on a simple and versatile chemical vapor infiltration (CVI) strategy for one-step PCN growth on porous Ni foam substrates, starting from melamine as a precursor compound. Interestingly, tailoring the reaction temperature enabled to control the condensation degree of PCN films from melem/melon hybrids to melon-like materials, whereas the use of different precursor amounts directly affected the mass and morphology of the obtained deposits. Altogether, such features had a remarkable influence on PCN electrochemical performances towards the oxygen evolution reaction (OER), yielding, for the best performing systems, Tafel slopes as low as ≈65 mV/dec and photocurrent density values of ≈1 mA/cm2 at 1.6 V vs. the reversible hydrogen electrode (RHE). Full article
Show Figures

Graphical abstract

13 pages, 2643 KiB  
Article
Rich Oxygen Vacancies Induced by Surface Self-Reconstruction in Sandwich-like Hierarchical Structured Electrocatalyst for Boosting Oxygen Evolution Reaction
by Xiaoguang San, Wanmeng Wu, Xueying Li, Lei Zhang, Jian Qi and Dan Meng
Molecules 2025, 30(12), 2632; https://doi.org/10.3390/molecules30122632 - 17 Jun 2025
Viewed by 369
Abstract
The oxygen evolution reaction (OER) is pivotal in hydrogen production via water electrolysis, yet its sluggish kinetics, stemming from the four-electron transfer process, remain a major obstacle, with overpotential reduction being critical for enhancing efficiency. This work addresses this challenge by developing a [...] Read more.
The oxygen evolution reaction (OER) is pivotal in hydrogen production via water electrolysis, yet its sluggish kinetics, stemming from the four-electron transfer process, remain a major obstacle, with overpotential reduction being critical for enhancing efficiency. This work addresses this challenge by developing a novel approach to stabilize and activate non-precious metal catalysts for OER. Specifically, we synthesized a three-dimensional flake NiFe-LDH/ZIF-L composite catalyst on a flexible nickel foam (NF) substrate through a room temperature soaking and hydrothermal method, leveraging the mesoporous structure of ZIF-L to increase the specific surface area and optimizing electron transfer pathways via interfacial regulation. Continuous linear sweep voltammetry (LSV) scanning induced structural self-reconstruction, forming highly active NiOOH species enriched with oxygen vacancies, which significantly boosted catalytic performance. Experimental results demonstrate an overpotential of only 221 mV at 10 mA cm−2 and a Tafel slope of 56.3 mV dec−1, alongside remarkable stability, attributed to the catalyst’s hierarchical nanostructure that accelerates mass diffusion and charge transfer. The innovation lies in the synergistic effect of the mesoporous ZIF-L structure and interfacial regulation, which collectively enhance the catalyst’s activity and durability, offering a promising strategy for advancing large-scale water electrolysis hydrogen production technology. Full article
Show Figures

Graphical abstract

13 pages, 6452 KiB  
Article
Facile Synthesis of Non-Noble CuFeCo/C Catalysts with High Stability for ORR in PEMFC
by Ruixia Chu, Hongtao Zhang, Fangyuan Qiu, Wenjun Fu, Wanyou Huang, Runze Li, Zhenyu Li, Xiaoyue Jin and Yan Wang
Materials 2025, 18(12), 2826; https://doi.org/10.3390/ma18122826 - 16 Jun 2025
Viewed by 339
Abstract
Proton exchange membrane fuel cells (PEMFCs) have been widely studied as an efficient and environmentally friendly energy conversion technology in recent years. However, the high cost, easy poisoning and complex synthesis methods of noble metal catalysts have hindered their commercialization. Therefore, in this [...] Read more.
Proton exchange membrane fuel cells (PEMFCs) have been widely studied as an efficient and environmentally friendly energy conversion technology in recent years. However, the high cost, easy poisoning and complex synthesis methods of noble metal catalysts have hindered their commercialization. Therefore, in this paper, a non-noble metal composite catalyst CuFeCo/C for the oxygen reduction reaction (ORR) was prepared by using a facile liquid-phase reduction method. The ORR kinetic performance of CuFeCo/C was evaluated by cyclic voltammetry (CV), linear sweep voltammetry (LSV) and rotating ring-disk electrode (RRDE) tests. The results show that the oxygen reduction peak of CuFeCo/C appears at about 0.64 V, the half-wave potential is about 0.73 V, the limiting current density is about −16.51 A·m−2, and the Tafel slope is about −0.08. The 10,800 s chronoamperometry test shows that the catalyst has a very good long-term cycle stability. This indicates that the CuFeCo/C composite catalyst has strong stability, good conductivity and ORR catalytic activity under alkaline conditions, which can promote the large-scale commercial application of PEMFCs. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Graphical abstract

Back to TopTop