Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = TRWP

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 6802 KiB  
Article
The Effect of Tyre and Road Wear Particles on the Terrestrial Isopod Armadillidium pallasii
by Giorgia Torreggiani, Chiara Manfrin, Anita Giglio, Andrea Dissegna, Cinzia Chiandetti, Paola Giotta, Monia Renzi, Serena Anselmi, Tecla Bentivoglio, Agnieszka Babczyńska, Silvia Battistella, Paolo Edomi and Piero G. Giulianini
Biomolecules 2024, 14(12), 1640; https://doi.org/10.3390/biom14121640 - 20 Dec 2024
Cited by 5 | Viewed by 1273
Abstract
(1) Car tyre microplastic particles (TMPs) significantly contribute to global microplastic pollution, with an estimated annual production of 6 million tonnes. However, the impact of TMPs, particularly tyre and road wear particles (TRWPs), resulting from tyre abrasion on the road on terrestrial organisms, [...] Read more.
(1) Car tyre microplastic particles (TMPs) significantly contribute to global microplastic pollution, with an estimated annual production of 6 million tonnes. However, the impact of TMPs, particularly tyre and road wear particles (TRWPs), resulting from tyre abrasion on the road on terrestrial organisms, is poorly understood. This study investigated the effects of TMPs and TRWPs on the growth, immune response, behaviour, and cognition of the woodlouse Armadillidium pallasii over 30 days; (2) TMPs and TRWPs were mixed together in the first experiment and provided at different concentrations of 1.25%, 2.5%, 5%, and 10% (w/w), and with soil at 5% and 10% (w/w) concentrations in the second experiment. (3) No differences in survival or immune responses were observed in both experiments. However, isopods exposed to TRWPs showed significant weight gain at lower concentrations but no gain at higher levels. Behavioural tests revealed increased vigilance in TRWP-exposed animals. Micro-FTIR analysis showed that the number of TMPs and TRWPs in the isopods correlated with soil concentrations, and particle size decreased during the experiment. (4) The study highlights the physiological and behavioural effects of TRWPs and the role of detritivorous species in the biofragmentation of TMPs and TRWPs, contributing to the biogeochemical plastic cycle. Full article
(This article belongs to the Special Issue Host Molecules and Molecular Mechanisms in Insects and Crustaceans)
Show Figures

Figure 1

14 pages, 5500 KiB  
Article
Laboratory Evaluation of Wear Particle Emissions and Suspended Dust in Tire–Asphalt Concrete Pavement Friction
by Jongsub Lee, Ohsun Kwon, Yujoong Hwang and Gyumin Yeon
Appl. Sci. 2024, 14(14), 6362; https://doi.org/10.3390/app14146362 - 22 Jul 2024
Cited by 2 | Viewed by 1279
Abstract
This study aims to evaluate the tire–road-wear particles (TRWPs) and suspended dust generated based on the nominal maximum aggregate size (NMAS) of the polymer-modified stone mastic asphalt (SMA) mixtures indoors. The SMA mixtures containing styrene butadiene styrene (SBS) polymer and the NMASs of [...] Read more.
This study aims to evaluate the tire–road-wear particles (TRWPs) and suspended dust generated based on the nominal maximum aggregate size (NMAS) of the polymer-modified stone mastic asphalt (SMA) mixtures indoors. The SMA mixtures containing styrene butadiene styrene (SBS) polymer and the NMASs of 19, 13, 10, 8, and 6 mm were used. Dust was generated from the wear of the tires and the pavement inside the indoor chamber by using the laboratory tire–road-wear particle generation and evaluation tester (LTRWP tester) developed by Korea Expressway Corporation (KEC). In this method, a cylindrical asphalt-mixture specimen rotates in the center, and a load is applied using three tires on the sides of the test specimen. During the test, a digital sensor was used to measure the concentration for each particle size. After the test was completed, the dust was collected and weighed. According to the test results, the generated TRWP emissions were reduced by approximately 0.15 g as the NMAS of the SMA mixture decreased by 1 mm. TRWP emissions decreased by 20% when using the 6 mm SMA mixture compared to the 13 mm SMA mixture. For practical application, a predicted equation of TRWP emissions estimation was developed by using the concentration of suspended dust measured by the digital sensor in the LTRWP tester. LTRWP can be used as an indoor test method to evaluate pavement and tire materials to reduce the amount of dust generated from tire and pavement wear. Full article
(This article belongs to the Special Issue Advances in Renewable Asphalt Pavement Materials)
Show Figures

Figure 1

19 pages, 1666 KiB  
Article
Influence of Vertical Load, Inflation Pressure, and Driving Speed on the Emission of Tire–Road Particulate Matter and Its Size Distribution
by Stefan Schläfle, Meng Zhang, Hans-Joachim Unrau and Frank Gauterin
Atmosphere 2024, 15(4), 502; https://doi.org/10.3390/atmos15040502 - 19 Apr 2024
Cited by 5 | Viewed by 2274
Abstract
As fleet electrification progresses, vehicles are continuously becoming heavier, while the used electric motors, with their high torques, enable longitudinal dynamics to be maintained or even increased. This raises the question of what effect electric vehicles have on the emission of tire–road particulate [...] Read more.
As fleet electrification progresses, vehicles are continuously becoming heavier, while the used electric motors, with their high torques, enable longitudinal dynamics to be maintained or even increased. This raises the question of what effect electric vehicles have on the emission of tire–road particulate matter (PM). To answer this question, investigations were carried out in this study on a tire internal drum test bench with real road surfaces. In addition to the vertical load, the tire inflation pressure and the driving speed were varied. PM emissions were recorded in real time, resulting in emission factors (emission per kilometer driven) for different load conditions. This allows statements to be made about both the effect on the total emission and on the particle size distribution. It was shown that the PM emission increases linearly with the vertical load at constant longitudinal dynamics. If the tire inflation pressure is increased, the emission also increases linearly, and the increases in emission are equally large for both influences. A clear influence of the driving speed on the emission factor could not be determined. With regard to the particle size distribution, the following correlations were found: higher vertical load and higher tire inflation pressure result in a larger mean particle diameter, while a higher driving speed reduces it. Thus, this study contributes to a better understanding of the expected changes in tire-road PM emissions as a result of electrification. Full article
(This article belongs to the Special Issue Traffic Related Emission (2nd Edition))
Show Figures

Figure 1

31 pages, 2008 KiB  
Review
Contribution of Road Vehicle Tyre Wear to Microplastics and Ambient Air Pollution
by Barouch Giechaskiel, Theodoros Grigoratos, Marcel Mathissen, Joris Quik, Peter Tromp, Mats Gustafsson, Vicente Franco and Panagiota Dilara
Sustainability 2024, 16(2), 522; https://doi.org/10.3390/su16020522 - 7 Jan 2024
Cited by 48 | Viewed by 18303
Abstract
Tyre particles are generated by shear forces between the tread and the road or by volatilisation. Tyre abrasion (wear) contributes from one-third to half of microplastics unintentionally released into the environment. The major part ends up in the soil, a considerable amount is [...] Read more.
Tyre particles are generated by shear forces between the tread and the road or by volatilisation. Tyre abrasion (wear) contributes from one-third to half of microplastics unintentionally released into the environment. The major part ends up in the soil, a considerable amount is released into the aquatic environment, and a small percentage becomes airborne. Nevertheless, tyre abrasion contributes to 5–30% of road transport particulate matter (PM) emissions. This corresponds to approximately 5% of total ambient PM emissions. The particle mass size distribution peak at around 20 to 100 μm, with a second peak in the 2–10 μm range. A nucleation mode has been reported in some studies. The absolute abrasion levels depend on the tyre, vehicle, and road characteristics, but also on environmental conditions and driving style. Most tyre particle emission factors in the literature are based on data prior to the year 2000. We aggregated recent studies and found a mean abrasion of 110 mg/km per vehicle or 68 mg/km/t for passenger cars (based on approximately 300 measurements). Based on a limited number of studies, the PM10 emissions were 1.4–2.2 mg/km per tyre. On the other hand, the particle number emissions were in the order of 1010 #/km per tyre. The ratio of PM10 to total abrasion was found to be 2.5% on average. Finally, the ratio of PM2.5 to PM10 was calculated to be around 40%. Various mitigation measures for tyre particle pollution could be envisaged; the most direct is the limitation of the tyre abrasion rate, as proposed by the European Commission for the Euro 7 regulation. Other regulatory initiatives are also discussed. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

22 pages, 3275 KiB  
Article
Influence of Longitudinal and Lateral Forces on the Emission of Tire–Road Particulate Matter and Its Size Distribution
by Stefan Schläfle, Hans-Joachim Unrau and Frank Gauterin
Atmosphere 2023, 14(12), 1780; https://doi.org/10.3390/atmos14121780 - 1 Dec 2023
Cited by 7 | Viewed by 2707
Abstract
The objective of this study was to experimentally determine the mathematical correlations between the loading of the tire, being longitudinal and lateral forces, and the emission of particulate matter (PM) from the tire–road contact. Existing emission factors (EF, emission per vehicle and distance [...] Read more.
The objective of this study was to experimentally determine the mathematical correlations between the loading of the tire, being longitudinal and lateral forces, and the emission of particulate matter (PM) from the tire–road contact. Existing emission factors (EF, emission per vehicle and distance traveled) are the result of long-term measurements, which means that no conclusion can be drawn about the exact driving condition. To determine meaningful emission factors, extensive driving tests were conducted on an internal drum test bench while measuring PM emissions from the tire–road contact in real-time. This showed that the increases in emission over longitudinal and lateral forces can be approximated with fourth-order functions, with lateral forces leading to significantly higher emissions than longitudinal forces for the summer tire investigated. Using the emission functions obtained, a three-dimensional map was created that assigns an EF to each load condition consisting of different longitudinal and lateral forces for one vertical load. With known driving data, the map can be used for future simulation models to predict the total emission of real driving cycles. Furthermore, the results show that the average particle size increases with increasing horizontal force. The particles collected during the tests were analyzed to determine the proportions of tire and road material. According to the results, the tire contributes only about 20% of the particle mass, while 80% is attributable to the road surface. In terms of volume, these shares are 32% and 68%, respectively. Full article
(This article belongs to the Special Issue Vehicle Exhaust and Non-exhaust Emissions)
Show Figures

Figure 1

11 pages, 1931 KiB  
Article
An Experimental Study on the Component Analysis and Variation in Concentration of Tire and Road Wear Particles Collected from the Roadside
by Taewoo Kang and Hyeokjung Kim
Sustainability 2023, 15(17), 12815; https://doi.org/10.3390/su151712815 - 24 Aug 2023
Cited by 7 | Viewed by 1677
Abstract
Tire and road wear particles (TRWPs) are generated unintentionally while driving vehicles. The generated TRWPs move to various environments by environmental and mechanical action, and they are present in fresh water, river, and ocean and may cause problems to the environment and human [...] Read more.
Tire and road wear particles (TRWPs) are generated unintentionally while driving vehicles. The generated TRWPs move to various environments by environmental and mechanical action, and they are present in fresh water, river, and ocean and may cause problems to the environment and human health. In Korea, the number of registered cars is increasing year by year, so the problem of TRWPs will become serious. In this study, we study the concentrations of TRWPs generated from the roadsides by temperature difference, in order to reduce the generation of TRWPs. Dust samples were collected from roadsides during summer and winter to measure the amount of TRWPs generated on roadsides according to seasonal temperature changes. Dust particles of 75–150 µm size, which corresponds to the TRWP size, were separated from the dust samples using sieves. Additionally, only TRWPs were separated using a solution of dibromomethane and Trans-1,2-dichloroethylene. TRWPs accounted for <2% in the dust collected from roadsides, and their amount increased by approximately 7.6–24.2% in summer more than in winter. Thermogravimetric analysis results confirmed that the tire components and road components and minerals accounted for 30% and 70% in TRWPs regardless of the season, respectively. Full article
Show Figures

Figure 1

14 pages, 7631 KiB  
Article
Tire Wear Monitoring Approach for Hotspot Identification in Road Deposited Sediments from a Metropolitan City in Germany
by Daniel Venghaus, Johannes Wolfgang Neupert and Matthias Barjenbruch
Sustainability 2023, 15(15), 12029; https://doi.org/10.3390/su151512029 - 5 Aug 2023
Cited by 5 | Viewed by 2134
Abstract
Plastic in the environment poses an increasing challenge. Microplastics, which include tire wear, enter the aquatic environment via different pathways, and increasing vehicle traffic leads to increased tire wear. This paper describes an approach for how inner-city tire wear hotspots can systematically be [...] Read more.
Plastic in the environment poses an increasing challenge. Microplastics, which include tire wear, enter the aquatic environment via different pathways, and increasing vehicle traffic leads to increased tire wear. This paper describes an approach for how inner-city tire wear hotspots can systematically be identified by sampling road-deposited sediments (RDS) by sweeping. Within the investigations herein described, six inner-city monitoring sites were sampled. The total masses of solids as well as the amount of styrene-butadiene rubber (SBR) representing Tire and Road Wear Particles (TRWP) were determined. It was shown that the sites differ significantly from each other with regard to SBR parts. The amount of SBR in the curve was on average eight times higher than in the slope, and in the area of the traffic lights, it was on average three times higher than in the slope. The RDS mass results also differ but with a factor of 2 for the curve and of 1.5 for the traffic light. The investigations and the corresponding results in this paper are unique, and the monitoring approach can be used in the future to derive and optimize sustainable measures in order to reduce the discharge of TRWP into the environment by road runoff. Full article
Show Figures

Figure 1

22 pages, 718 KiB  
Article
Influence of Load Condition, Tire Type, and Ambient Temperature on the Emission of Tire–Road Particulate Matter
by Stefan Schläfle, Hans-Joachim Unrau and Frank Gauterin
Atmosphere 2023, 14(7), 1095; https://doi.org/10.3390/atmos14071095 - 30 Jun 2023
Cited by 21 | Viewed by 4004
Abstract
This study focuses on particulate matter emissions from tire–road contact and their investigation using an internal drum test bench. The test bench is equipped with real-road surfaces and has been upgraded to enable real-time measurements of particulate matter. It was found that the [...] Read more.
This study focuses on particulate matter emissions from tire–road contact and their investigation using an internal drum test bench. The test bench is equipped with real-road surfaces and has been upgraded to enable real-time measurements of particulate matter. It was found that the road surface changes during the tests due to constant rolling over, influencing the level of emissions significantly. To account for this effect, the micro roughness was characterized before, during, and after the tests. Specific emission values consisting of particle mass and number were determined with summer, all-season, and winter tires for different road conditions, as well as specific longitudinal and lateral forces. It turned out that emissions increase disproportionately with load for both force directions. The winter tire led to the highest emissions across all loads, and the summer tire led to the lowest ones. While lateral forces caused emissions many times higher than longitudinal forces for the summer tire, forces in both directions led to comparable emissions for the all-season and winter tires. Regarding the ambient temperature, a lower one seems to be favorable for summer tires and a higher one seems to be favorable for winter tires. Lastly, particle size distributions during different load conditions show a dependence on load, such that larger particles are emitted with increasing load. Full article
(This article belongs to the Special Issue Vehicle Exhaust and Non-exhaust Emissions)
Show Figures

Figure 1

15 pages, 4770 KiB  
Article
Tire and Road Wear Particle-Containing Sediments with High Organic Content Impact Behavior and Survival of Chironomid Larvae (Chironomus riparius)
by Tatjana Tull, Stefanie Krais, Katharina Peschke, Steffen Weyrauch, Rita Triebskorn and Heinz-R. Köhler
Environments 2023, 10(2), 23; https://doi.org/10.3390/environments10020023 - 29 Jan 2023
Cited by 3 | Viewed by 4034
Abstract
Tire and road wear particles (TRWP), which contribute significantly to microplastic emission, are receiving more attention, but details about particle composition, translocation from source to sink, and particularly the possible effects on ecosystems are largely unknown. We examined the influence of native TRWP-containing [...] Read more.
Tire and road wear particles (TRWP), which contribute significantly to microplastic emission, are receiving more attention, but details about particle composition, translocation from source to sink, and particularly the possible effects on ecosystems are largely unknown. We examined the influence of native TRWP-containing sediments from two settling ponds on the mortality and behavior of the aquatic larvae of Chironomus riparius. Both sediments, whether pure or mixed with different proportions of quartz sand and suspended in water, led to increased mortalities with increasing concentrations and were shown to be oxygen consuming. Artificial aeration significantly reduced larval mortality in both sediments. Chironomid larvae show high tolerance to anoxic and polluted environments due to physiological and behavioral adaptations, such as the construction of vertical sediment tubes (chimneys), in which they create oxic compartments. A significant correlation was found between the proportion of contaminated sediment and the number of chimneys: the more contaminated sediment, the fewer chimneys were constructed. The number of chimneys per surviving larva decreased with an increased proportion of contaminated sediment in parallel to increased larval mortality. We hypothesize that contents of these sediments negatively impact the larvae’s ability to survive at low oxygen concentrations due to impairments of essential behavioral and physiological processes. Full article
Show Figures

Figure 1

16 pages, 3076 KiB  
Concept Paper
Characteristics of Real-World Non-Exhaust Particulates from Vehicles
by Sunhee Mun, Hwansoo Chong, Jongtae Lee and Yunsung Lim
Energies 2023, 16(1), 177; https://doi.org/10.3390/en16010177 - 23 Dec 2022
Cited by 13 | Viewed by 2195
Abstract
The need to regulate the non-exhaust particulate matter (PM) emissions from vehicles has been discussed worldwide due to the bad environmental impact and the toxicity to the human body. In-depth studies have been precisely conducted on the analysis of the non-exhaust particulate matters, [...] Read more.
The need to regulate the non-exhaust particulate matter (PM) emissions from vehicles has been discussed worldwide due to the bad environmental impact and the toxicity to the human body. In-depth studies have been precisely conducted on the analysis of the non-exhaust particulate matters, in particular, the amount of tire, brake and road wear particles and their proportion in the atmosphere. In this study, the influence of tire and road wear particles (TRWP) on PM in the atmosphere was investigated with tire and PM samples. The PM samples suspended in the atmosphere were collected with a high-volume sampler equipped with a quartz filter. Additionally, polycyclic aromatic hydrocarbons (PAHs) and metal components in tire rubber were analyzed as markers by pyrolysis–gas chromatography/mass spectrometry (pyrolysis–GC/MS), GC/MS, and inductively coupled plasma/mass spectrometry (ICP/MS). More vinylcyclohexene was detected than dipentene in the markers measured in the samples of tires equipped with vehicles driving on the road, while more dipentene was measured in total suspended particles (TSP) samples. Among the PAHs in tire samples, pyrene exhibited the highest concentration. Benzo(b)fluoranthene showed the highest concentration in the TSP samples. Among the metals, the highest concentration was zinc in all tire samples and calcium in TSP samples. Full article
(This article belongs to the Special Issue The Road to Lower Emissions - Vehicle Sector)
Show Figures

Figure 1

14 pages, 5319 KiB  
Article
Methodology for Virtual Prediction of Vehicle-Related Particle Emissions and Their Influence on Ambient PM10 in an Urban Environment
by Toni Feißel, Florian Büchner, Miles Kunze, Jonas Rost, Valentin Ivanov, Klaus Augsburg, David Hesse and Sebastian Gramstat
Atmosphere 2022, 13(11), 1924; https://doi.org/10.3390/atmos13111924 - 18 Nov 2022
Cited by 5 | Viewed by 3461
Abstract
As a result of rising environmental awareness, vehicle-related emissions such as particulate matter are subject to increasing criticism. The air pollution in urban areas is especially linked to health risks. The connection between vehicle-related particle emissions and ambient air quality is highly complex. [...] Read more.
As a result of rising environmental awareness, vehicle-related emissions such as particulate matter are subject to increasing criticism. The air pollution in urban areas is especially linked to health risks. The connection between vehicle-related particle emissions and ambient air quality is highly complex. Therefore, a methodology is presented to evaluate the influence of different vehicle-related sources such as exhaust particles, brake wear and tire and road wear particles (TRWP) on ambient particulate matter (PM). In a first step, particle measurements were conducted based on field trials with an instrumented vehicle to determine the main influence parameters for each emission source. Afterwards, a simplified approach for a qualitative prediction of vehicle-related particle emissions is derived. In a next step, a virtual inner-city scenario is set up. This includes a vehicle simulation environment for predicting the local emission hot spots as well as a computational fluid dynamics model (CFD) to account for particle dispersion in the environment. This methodology allows for the investigation of emissions pathways from the point of generation up to the point of their emission potential. Full article
(This article belongs to the Special Issue Non-exhaust particle emissions from vehicles)
Show Figures

Figure 1

17 pages, 5874 KiB  
Article
Comparison of Methods for Sampling Particulate Emissions from Tires under Different Test Environments
by David Hesse, Toni Feißel, Miles Kunze, Eric Bachmann, Thomas Bachmann and Sebastian Gramstat
Atmosphere 2022, 13(8), 1262; https://doi.org/10.3390/atmos13081262 - 9 Aug 2022
Cited by 18 | Viewed by 3993
Abstract
Traffic-related emissions are strongly criticised by the public because they contribute to climate change and are classified as hazardous to health. Combustion engine emissions have been regulated by limit values for almost three decades. There is currently no legal limit for non-exhaust emissions, [...] Read more.
Traffic-related emissions are strongly criticised by the public because they contribute to climate change and are classified as hazardous to health. Combustion engine emissions have been regulated by limit values for almost three decades. There is currently no legal limit for non-exhaust emissions, which include tire wear particle emissions and resuspension. As a result, the percentage of total vehicle emissions has risen continuously. Some of the particles emitted can be assigned to the size classes of particulate matter (≤10 µm) and are therefore of particular relevance to human health. The literature describes a wide range of concepts for sampling and measuring tire wear particle emissions. Because of the limited number of studies, the mechanisms involved in on-road tests and their influence on the particle formation process, particle transport and the measuring ability can only be described incompletely. The aim of this study is to compare test bench and on-road tests and to assess the influence of selected parameters. The first part describes the processes of particle injection and particle distribution. Based on this, novel concepts for sampling and measurement in the laboratory and in the field are presented. The functionality and the mechanisms acting in each test environment are evaluated on the basis of selected test scenarios. For example, emissions from external sources, the condition of the road surface and the influence of the driver are identified as influencing factors. These analyzes are used to illustrate the complexity and limited reproducibility of on-road measurements, which must be taken into account for future regulations. Full article
(This article belongs to the Special Issue Non-exhaust particle emissions from vehicles)
Show Figures

Figure 1

17 pages, 7758 KiB  
Article
Analysis of TRWP Particle Distribution in Urban and Suburban Landscapes, Connecting Real Road Measurements with Particle Distribution Simulation
by Miles Kunze, Toni Feißel, Valentin Ivanov, Thomas Bachmann, David Hesse and Sebastian Gramstat
Atmosphere 2022, 13(8), 1204; https://doi.org/10.3390/atmos13081204 - 30 Jul 2022
Cited by 8 | Viewed by 3060
Abstract
This article deals with methods and measurements related to environmental pollution and analysis of particle distribution in urban and suburban landscapes. Therefore, an already-invented sampling method for tyre road wear particles (TRWP) was used to capture online emission factors from the road. The [...] Read more.
This article deals with methods and measurements related to environmental pollution and analysis of particle distribution in urban and suburban landscapes. Therefore, an already-invented sampling method for tyre road wear particles (TRWP) was used to capture online emission factors from the road. The collected particles were analysed according to their size distribution, for use as an input for particle distribution simulations. The simulation model was a main traffic intersection, because of the high vehicle dynamic related to the high density of start–stop manoeuvres. To compare the simulation results (particle mass (PM) and particle number (PN)) with real-world emissions, measuring points were defined and analysed over a measuring time of 8 h during the day. Afterwards, the collected particles were analysed in terms of particle shape, appearance and chemical composition, to identify the distribution and their place of origin. As a result of the investigation, the appearance of the particles showed a good correlation to the vehicle dynamics, even though there were a lot of background influences, e.g., resuspension of dust. Air humidity also showed a great influence on the recorded particle measurements. In areas of high vehicle dynamics, such as heavy braking or accelerating, more tyre and brake particles could be found. Full article
(This article belongs to the Special Issue Non-exhaust particle emissions from vehicles)
Show Figures

Figure 1

14 pages, 6695 KiB  
Article
Preparation and Characterization of Model Tire–Road Wear Particles
by Chae Eun Son and Sung-Seen Choi
Polymers 2022, 14(8), 1512; https://doi.org/10.3390/polym14081512 - 8 Apr 2022
Cited by 13 | Viewed by 3464
Abstract
Tire tread wear particles (TWPs) are one of major sources of microplastics in the environment. Tire–road wear particles (TRWPs) are mainly composed of TWPs and mineral particles (MPs), and many have long shapes. In the present work, a preparation method of model TRWPs [...] Read more.
Tire tread wear particles (TWPs) are one of major sources of microplastics in the environment. Tire–road wear particles (TRWPs) are mainly composed of TWPs and mineral particles (MPs), and many have long shapes. In the present work, a preparation method of model TRWPs similar to those found in the environment was developed. The model TRWPs were made of TWPs of 212–500 μm and MPs of 20–38 μm. Model TWPs were prepared using a model tire tread compound and indoor abrasion tester while model MPs were prepared by crushing granite rock. The TWPs and MPs were mixed and compressed using a stainless steel roller. The TWPs were treated with chloroform to make them stickier. Many MPs in the model TRWP were deeply stuck into the TWPs. The proper weight ratio of MP and TWP was MP:TWP = 10:1, and the double step pressing procedure was good for the preparation of model TRWPs. The model TRWPs were characterized using scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The model TRWPs had long shapes and the MP content was about 10%. The model TRWPs made of TWPs and asphalt pavement wear particles showed plate-type particles deeply stuck into the TWP. Characteristics of model TRWPs can be controlled by employing various kinds and sizes of TWPs and MPs. The well-defined model TRWPs can be used as the reference TRWPs for tracing the pollutants. Full article
Show Figures

Figure 1

14 pages, 3796 KiB  
Article
Classification and Characterization of Tire-Road Wear Particles in Road Dust by Density
by Uiyeong Jung and Sung-Seen Choi
Polymers 2022, 14(5), 1005; https://doi.org/10.3390/polym14051005 - 2 Mar 2022
Cited by 48 | Viewed by 5072
Abstract
Tire treads are abraded by friction with the road surface, producing tire tread wear particles (TWPs). TWPs combined with other particles on the road such as road wear particles (RWPs) and mineral particles (MPs), forming tire-road wear particles (TRWPs). Dust on an asphalt [...] Read more.
Tire treads are abraded by friction with the road surface, producing tire tread wear particles (TWPs). TWPs combined with other particles on the road such as road wear particles (RWPs) and mineral particles (MPs), forming tire-road wear particles (TRWPs). Dust on an asphalt pavement road is composed of various components such as TRWPs, asphalt pavement wear particles (APWPs), MPs, plant-related particles (PRPs), and so on. TRWPs have been considered as one of major contaminants produced by driving and their properties are important for study on real abrasion behaviors of tire treads during driving as well as environmental contamination. Densities of the TRWPs are totally dependent on the amount of the other components deposited in the TWPs. In this study, a classification method of TRWPs in the road dust was developed using density separation and the classified TRWPs were characterized using image analysis and pyrolytic technique. Chloroform was used to remove APWPs from mixture of TRWPs and APWPs. TRWPs were found in the density range of 1.20–1.70 g/cm3. By decreasing the particle size of the road dust, the TRWP content in the road dust increased and its density slightly tended to increase. Aspect ratios of the TRWPs varied and there were many TRWPs with low aspect ratio below 2.0. The aspect ratio range was 1.2–5.2. Rubber compositions of the TRWPs were found to be mainly NR/SBR biblend or NR/BR/SBR triblend. Full article
Show Figures

Graphical abstract

Back to TopTop