Tire and Road Wear Particle-Containing Sediments with High Organic Content Impact Behavior and Survival of Chironomid Larvae (Chironomus riparius)
Abstract
:1. Introduction
1.1. Microplastics (MP)
1.2. Tire and Road Wear Particles (TRWP)
1.3. Test Organism
1.3.1. Adaptations to Pollution and Anoxia
1.3.2. Hemoglobin
1.4. Research Questions
2. Materials and Methods
2.1. Sediment Collection and Preparation
2.2. Estimation of TRWP Content by Particulate Zn Method
2.3. Maintenance of C. riparius
2.4. Experimental Design
2.5. Determination of Mortality and Assessment of Behavior
2.6. Water Analysis
2.7. Data Analysis
3. Results
3.1. Description of Test Sediments
3.2. Estimation of TRWP Content by Particulate Zn Method
3.3. Water Analysis (Experiment 3 and 4)
3.4. Mortality after Exposure to Raw Sediments (Experiments 1 and 2)
3.5. Mortality after Exposure to Aerated and Not Aerated Sediments (Experiments 3 and 4)
3.6. Chimney Construction
4. Discussion
4.1. TRWP Content
4.2. Water Chemistry and Effects on Larvae
4.3. The Role of Oxygen Content
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Belden, J. Chapter 28—Introduction to Ecotoxicology; Pope, C.N., Liu, J., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 381–393. ISBN 978-0-12-813602-7. [Google Scholar]
- Horton, A.A.; Walton, A.; Spurgeon, D.J.; Lahive, E.; Svendsen, C. Microplastics in Freshwater and Terrestrial Environments: Evaluating the Current Understanding to Identify the Knowledge Gaps and Future Research Priorities. Sci. Total Environ. 2017, 586, 127–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnes, D.K.A.; Galgani, F.; Thompson, R.C.; Barlaz, M. Accumulation and Fragmentation of Plastic Debris in Global Environments. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 1985–1998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gigault, J.; Ter Halle, A.; Baudrimont, M.; Pascal, P.-Y.; Gauffre, F.; Phi, T.-L.; El Hadri, H.; Grassl, B.; Reynaud, S. Current Opinion: What Is a Nanoplastic? Environ. Pollut. 2018, 235, 1030–1034. [Google Scholar] [CrossRef]
- Fath, A. Mikroplastik Als Chance. In Mikroplastik; Springer: Berlin/Heidelberg, Germany, 2019; pp. 243–289. [Google Scholar]
- Prata, J.C. Airborne Microplastics: Consequences to Human Health? Environ. Pollut. 2018, 234, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Buchanan, J.B. Pollution by Synthetic Fibres. Mar. Pollut. Bull. 1971, 2, 23. [Google Scholar] [CrossRef]
- Carpenter, E.J.; Smith, K.L. Plastics on the Sargasso Sea Surface. Science 1972, 175, 1240–1241. [Google Scholar] [CrossRef]
- Thompson, R.C.; Olsen, Y.; Mitchell, R.P.; Davis, A.; Rowland, S.J.; John, A.W.G.; McGonigle, D.; Russell, A.E. Lost at Sea: Where Is All the Plastic? Science 2004, 304, 838. [Google Scholar] [CrossRef]
- Allen, S.; Allen, D.; Phoenix, V.R.; Le Roux, G.; Jiménez, P.D.; Simonneau, A.; Binet, S.; Galop, D. Atmospheric Transport and Deposition of Microplastics in a Remote Mountain Catchment. Nat. Geosci. 2019, 12, 339–344. [Google Scholar] [CrossRef] [Green Version]
- Hou, L.; McMahan, C.D.; McNeish, R.E.; Munno, K.; Rochman, C.M.; Hoellein, T.J. A Fish Tale: A Century of Museum Specimens Reveal Increasing Microplastic Concentrations in Freshwater Fish. Ecol. Appl. 2021, 31, e02320. [Google Scholar] [CrossRef]
- Lim, X. Microplastics are everywhere—but are they harmful. Nature 2021, 593, 22–25. [Google Scholar] [CrossRef]
- Materić, D.; Ludewig, E.; Brunner, D.; Röckmann, T.; Holzinger, R. Nanoplastics Transport to the Remote, High-Altitude Alps. Environ. Pollut. 2021, 288, 117697. [Google Scholar] [CrossRef] [PubMed]
- Obbard, R.W.; Sadri, S.; Wong, Y.Q.; Khitun, A.A.; Baker, I.; Thompson, R.C. Global Warming Releases Microplastic Legacy Frozen in Arctic Sea Ice. Earth’s Futur. 2014, 2, 315–320. [Google Scholar] [CrossRef]
- Pham, C.K.; Ramirez-Llodra, E.; Alt, C.H.S.; Amaro, T.; Bergmann, M.; Canals, M.; Davies, J.; Duineveld, G.; Galgani, F.; Howell, K.L. Marine Litter Distribution and Density in European Seas, from the Shelves to Deep Basins. PLoS ONE 2014, 9, e95839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Cauwenberghe, L.; Vanreusel, A.; Mees, J.; Janssen, C.R. Microplastic Pollution in Deep-Sea Sediments. Environ. Pollut. 2013, 182, 495–499. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, X.; Huang, W.; Li, J.; Wang, C.; Zhang, D.; Zhang, C. Microplastic Pollution in Deep-Sea Sediments and Organisms of the Western Pacific Ocean. Environ. Pollut. 2020, 259, 113948. [Google Scholar] [CrossRef]
- Batel, A.; Linti, F.; Scherer, M.; Erdinger, L.; Braunbeck, T. Transfer of Benzo[a]Pyrene from Microplastics to Artemia Nauplii and Further to Zebrafish via a Trophic Food Web Experiment: CYP1A Induction and Visual Tracking of Persistent Organic Pollutants. Environ. Toxicol. Chem. 2016, 35, 1656–1666. [Google Scholar] [CrossRef] [PubMed]
- Triebskorn, R.; Braunbeck, T.; Grummt, T.; Hanslik, L.; Huppertsberg, S.; Jekel, M.; Knepper, T.P.; Krais, S.; Müller, Y.K.; Pittroff, M.; et al. Relevance of Nano- and Microplastics for Freshwater Ecosystems: A Critical Review. TrAC—Trends Anal. Chem. 2019, 110, 375–392. [Google Scholar] [CrossRef]
- Von Moos, N.; Burkhardt-Holm, P.; Köhler, A. Uptake and Effects of Microplastics on Cells and Tissue of the Blue Mussel Mytilus edulis L. after an Experimental Exposure. Environ. Sci. Technol. 2012, 46, 11327–11335. [Google Scholar] [CrossRef]
- Hirt, N.; Body-Malapel, M. Immunotoxicity and Intestinal Effects of Nano-and Microplastics: A Review of the Literature. Part. Fibre Toxicol. 2020, 17, 57. [Google Scholar] [CrossRef]
- Bertling, J.; Bertling, R.; Hamann, L. Kunststoffe in Der Umwelt: Mikro- Und Makroplastik. Ursachen, Mengen, Umweltschicksale, Wirkungen, Lösungsansätze, Empfehlungen. Kurzfassung Der Konsortialstudie. Fraunhofer Inst. Für Umw. Sicherh. Energ. UMSICHT 2018, 1–56. [Google Scholar] [CrossRef]
- Capolupo, M.; Sørensen, L.; Jayasena, K.D.R.; Booth, A.M.; Fabbri, E. Chemical Composition and Ecotoxicity of Plastic and Car Tire Rubber Leachates to Aquatic Organisms. Water Res. 2020, 169, 115270. [Google Scholar] [CrossRef] [PubMed]
- Klöckner, P.; Reemtsma, T.; Eisentraut, P.; Braun, U.; Ruhl, A.S.; Wagner, S. Tire and Road Wear Particles in Road Environment—Quantification and Assessment of Particle Dynamics by Zn Determination after Density Separation. Chemosphere 2019, 222, 714–721. [Google Scholar] [CrossRef] [PubMed]
- Rogge, W.F.; Hildemann, L.M.; Mazurek, M.A.; Cass, G.R.; Simoneit, B.R.T. Sources of Fine Organic Aerosol. 3. Road Dust, Tire Debris, and Organometallic Brake Lining Dust: Roads as Sources and Sinks. Environ. Sci. Technol. 1993, 27, 1892–1904. [Google Scholar] [CrossRef]
- Wagner, S.; Hüffer, T.; Klöckner, P.; Wehrhahn, M.; Hofmann, T.; Reemtsma, T. Tire Wear Particles in the Aquatic Environment—A Review on Generation, Analysis, Occurrence, Fate and Effects. Water Res. 2018, 139, 83–100. [Google Scholar] [CrossRef]
- Kreider, M.L.; Panko, J.M.; McAtee, B.L.; Sweet, L.I.; Finley, B.L. Physical and Chemical Characterization of Tire-Related Particles: Comparison of Particles Generated Using Different Methodologies. Sci. Total Environ. 2010, 408, 652–659. [Google Scholar] [CrossRef]
- Rødland, E.S. Ecotoxic potential of road-associated microplastic particles (RAMP). Vann 2019, 3, 166–183. [Google Scholar]
- Baensch-Baltruschat, B.; Kocher, B.; Kochleus, C.; Stock, F.; Reifferscheid, G. Tyre and Road Wear Particles—A Calculation of Generation, Transport and Release to Water and Soil with Special Regard to German Roads. Sci. Total Environ. 2021, 752, 141939. [Google Scholar] [CrossRef]
- Grung, M.; Petersen, K.; Fjeld, E.; Allan, I.; Christensen, J.H.; Malmqvist, L.M.V.; Meland, S.; Ranneklev, S. PAH Related Effects on Fish in Sedimentation Ponds for Road Runoff and Potential Transfer of PAHs from Sediment to Biota. Sci. Total Environ. 2016, 566–567, 1309–1317. [Google Scholar] [CrossRef]
- Tian, Z.; Zhao, H.; Peter, K.T.; Gonzalez, M.; Wetzel, J.; Wu, C.; Hu, X.; Prat, J.; Mudrock, E.; Hettinger, R.; et al. A Ubiquitous Tire Rubber–Derived Chemical Induces Acute Mortality in Coho Salmon. Science 2020, 371, eabd6951. [Google Scholar] [CrossRef]
- Armitage, P.D.; Pinder, L.C.; Cranston, P.S. The Chironomidae: Biology and Ecology of Non-Biting Midges; Springer Science & Business Media: Berlin, Germany, 1995; ISBN 978-0412452604. [Google Scholar]
- Pinder, L.C.V. Biology of Freshwater Chironomidae. Annu. Rev. Entomol. 1986, 31, 1–23. [Google Scholar] [CrossRef]
- Thorat, L.J.; Nath, B.B. Aquatic Silk Proteins in Chironomus: A Review. J. Limnol. 2018, 77, 95–103. [Google Scholar] [CrossRef]
- Naylor, C.; Rodrigues, C. Development of a Test Method for Chironomus riparius Using a Formulated Sediment. Chemosphere 1995, 31, 3291–3303. [Google Scholar] [CrossRef]
- Brackenbury, J. Locomotory Modes in the Larva and Pupa of Chironomus plumosus (Diptera, Chironomidae). J. Insect Physiol. 2000, 46, 1517–1527. [Google Scholar] [CrossRef] [PubMed]
- Stief, P.; Nazarova, L.; De Beer, D. Chimney Construction by Chironomus riparius Larvae in Response to Hypoxia: Microbial Implications for Freshwater Sediments. J. N. Am. Benthol. Soc. 2005, 24, 858–871. [Google Scholar] [CrossRef]
- Azevedo-Pereira, H.M.V.S.; Soares, A.M.V.M. Effects of Mercury on Growth, Emergence, and Behavior of Chironomus riparius Meigen (Diptera: Chironomidae). Arch. Environ. Contam. Toxicol. 2010, 59, 216–224. [Google Scholar] [CrossRef]
- Azevedo-Pereira, H.M.V.S.; Lemos, M.F.L.; Soares, A.M.V.M. Effects of Imidacloprid Exposure on Chironomus riparius Meigen Larvae: Linking Acetylcholinesterase Activity to Behaviour. Ecotoxicol. Environ. Saf. 2011, 74, 1210–1215. [Google Scholar] [CrossRef]
- Osmulski, P.A.; Leyko, W. Paper: Structure, Function and Physiological Role of Chironomus Haemoglobin. Comp. Biochem. Physiol. B Biochem. 1986, 85, 701–722. [Google Scholar] [CrossRef]
- Weber, R.E.; Vinogradov, S.N. Nonvertebrate Hemoglobins: Functions and Molecular Adaptations. Physiol. Rev. 2001, 81, 569–628. [Google Scholar] [CrossRef] [Green Version]
- Jekel, M.; Anger, P.; Bannick, C.G.; Barthel, A.-K.; Braun, U.; Braunbeck, T.; Dittmar, S.; Eisentraut, P.; Elsner, M.; Gnirß, R. Mikroplastik Im Wasserkreislauf; Universitätsverlag der TU Berlin: Berlin, Germany, 2020; ISBN 3798331634. [Google Scholar]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Wentworth, C.K. A Scale of Grade and Class Terms for Clastic Sediments. J. Geol. 1922, 30, 377–392. [Google Scholar] [CrossRef]
- Panko, J.M.; Chu, J.; Kreider, M.L.; Unice, K.M. Measurement of Airborne Concentrations of Tire and Road Wear Particles in Urban and Rural Areas of France, Japan, and the United States. Atmos. Environ. 2013, 72, 192–199. [Google Scholar] [CrossRef]
- Unice, K.M.; Weeber, M.P.; Abramson, M.M.; Reid, R.C.D.; van Gils, J.A.G.; Markus, A.A.; Vethaak, A.D.; Panko, J.M. Characterizing Export of Land-Based Microplastics to the Estuary-Part I: Application of Integrated Geospatial Microplastic Transport Models to Assess Tire and Road Wear Particles in the Seine Watershed. Sci. Total Environ. 2019, 646, 1639–1649. [Google Scholar] [CrossRef] [PubMed]
- Unice, K.M.; Kreider, M.L.; Panko, J.M. Comparison of Tire and Road Wear Particle Concentrations in Sediment for Watersheds in France, Japan, and the United States by Quantitative Pyrolysis GC/MS Analysis. Environ. Sci. Technol. 2013, 47, 8138–8147. [Google Scholar] [CrossRef] [PubMed]
- Schwedt, G.; Schnepel, F.M. Practical Course in Analytical Chemistry with a View to Environmental Applications. Analytisch-Chemisches Umweltpraktikum. Anleitungen zur Untersuchung von Luft, Wasser und Boden, 1st ed.; Thieme: Stuttgart, Germany, 1981; p. 141. [Google Scholar]
- TrinkwV Verordnung Über Die Qualität von Wasser Für Den Menschlichen Gebrauch (Trinkwasserverordnung—TrinkwV). Available online: http://www.gesetze-im-internet.de/trinkwv_2001/BJNR095910001.html#BJNR095910001BJNG000201310 (accessed on 12 December 2022).
- BAST Manuelle Straßenverkehrszählung. Ergebnisse Auf Bundesautobahnen. 2015. Available online: https://www.bast.de/DE/Statistik/Verkehrsdaten/2015/Autobahnen-2015.pdf?__blob=publicationFile&v=4 (accessed on 12 December 2022).
- BAST Manuelle Straßenverkehrszählung. Ergebnisse Auf Bundesstraßen. 2015. Available online: https://www.bast.de/BASt_2017/DE/Statistik/Verkehrsdaten/2015/Bundestrassen-2015.pdf;jsessionid=58777818A695749F2DFC9262BB9C7235.live11294?__blob=publicationFile&v=8 (accessed on 12 December 2022).
- Charlton, M.N. Hypolimnion Oxygen Consumption in Lakes: Discussion of Productivity and Morphometry Effects. Can. J. Fish. Aquat. Sci. 1980, 37, 1531–1539. [Google Scholar] [CrossRef]
- OECD. Human Acceleration of the Nitrogen Cycle: Managing Risks and Uncertainty; OECD Publishing: Paris, France, 2018; ISBN 9789264307421. [Google Scholar]
- Wagner, C.R.; Fitzgerald, S.A.; Sherrell, R.D.; Harned, D.A.; Staub, E.L.; Pointer, B.H.; Wehmeyer, L.L. Characterization of Stormwater Runoff from Bridges in North Carolina and the Effects of Bridge Runoff on Selected Receiving Streams. Sci. Investig. Rep. 2011, 110, 2011–5180. [Google Scholar]
- Adachi, K.; Tainosho, Y. Characterization of Heavy Metal Particles Embedded in Tire Dust. Environ. Int. 2004, 30, 1009–1017. [Google Scholar] [CrossRef]
- Arambourou, H.; Llorente, L.; Moreno-Ocio, I.; Herrero, Ó.; Barata, C.; Fuertes, I.; Delorme, N.; Méndez-Fernández, L.; Planelló, R. Exposure to Heavy Metal-Contaminated Sediments Disrupts Gene Expression, Lipid Profile, and Life History Traits in the Midge Chironomus riparius. Water Res. 2020, 168, 115165. [Google Scholar] [CrossRef]
- Kim, W.-S.; Park, K.; Kwak, I.-S. Stress Evaluation to Heavy Metal Exposure Using Molecular Marker in Chironomus riparius. Korean J. Ecol. Environ. 2020, 53, 165–172. [Google Scholar] [CrossRef]
- Weber, R.E. Functions of Invertebrate Hemoglobins with Special Reference to Adaptations to Environmental Hypoxia. Integr. Comp. Biol. 1980, 20, 79–101. [Google Scholar] [CrossRef]
Description | Treatment | Description | Treatment |
---|---|---|---|
Experiment_1 | (HS; n = 10) → +100 mL H2O | Experiment_2 | (B27; n = 10) → +100 mL H2O |
Control | 0 g HSraw/10 g sand | Control | 0 g B27raw/10 g sand |
1 g HSraw | 1 g HSraw/9 g sand | 1 g B27raw | 1 g B27raw/9 g sand |
2 g HSraw | 2 g HSraw/8 g sand | 2 g B27raw | 2 g B27raw/8 g sand |
5 g HSraw | 5 g HSraw/5 g sand | 5 g B27raw | 5 g B27raw/5 g sand |
10 g HSraw | 10 g HSraw/0 g sand | 10 g B27raw | 10 g B27raw/0 g sand |
Experiment_3 | (HS + O2; n = 10)→ +100 mL H2O | Experiment_4 | (B27 + O2; n = 10)→ +100 mL H2O |
Control | 10 g sand | Control | 10 g sand |
10 g HSraw | 10 g HSraw | 10 g B27raw | 10 g B27raw |
ControlO2 | 10 g sand + continuous aer. | ControlO2 | 10 g sand + continuous aer. |
10 g HSO2 | 10 g HSraw + continuous aer. | 10 g B27O2 | 10 g B27raw + continuous aer. |
Conductivity [µS] | pH | Temperature [°C] | Oxygen [%] | |||
---|---|---|---|---|---|---|
Experiment_3: | Control | 499.8 ± 6.3 | 7.2 ± 0.4 | 19.9 ± 0.3 | 98 ± 0% | |
10 g HSraw | 1085.4 ± 22.3 | 7.3 ± 0.1 | 19.8 ± 0.2 | 16 ± 3% | ||
ControlO2 | 511 ± 14.0 | 8.2 ± 0.2 | 18.8 ± 0.3 | 99 ± 0% | ||
10 g HSO2 | 1106.7 ± 23.8 | 7.7 ± 0.1 | 18.9 ± 0.2 | 87 ± 7% | ||
NP | 484 | 6.5 | 19 | 18% | ||
Experiment_4: | Control | 499.5 ± 1.9 | 6.6 ± 0.5 | 18.9 ± 0.6 | 90 ± 1% | |
10 g B27raw | 2873 ± 59.6 | 7.6 ± 0.1 | 17.9 ± 0.6 | 2 ± 1% | ||
ControlO2 | 566.5 ± 34.7 | 7.7 ± 0.2 | 17.3 ± 0.5 | 92 ± 1% | ||
10 g B27O2 | 2224.7 ± 163.3 | 8.3 ± 0.1 | 17.2 ± 0.3 | 1 ± 0% | ||
NP | 542 | 7.9 | 19.2 | 12% | ||
Nitrate [mg/L NO3−N] | Nitrite [mg/L NO2−N] | Ammonium [mg/L NH4−N] | Phosphate [mg/L PO4−P] | Chloride [mg/L Cl−] | ||
Experiment_3: | Control | 1.2 | 0.011 | 0.24 | 0.12 | 18 |
10 g HSraw | 4.2 | 0.381 | >2.3 | 0.44 | 104 | |
ControlO2 | 1.2 | 0.025 | <0.04 | 0.05 | 19 | |
10 g HSO2 | 3.1 | 0.028 | 2.3 | 0.15 | 101 | |
NP | 1.3 | 0.055 | 0.56 | 0.39 | 21 | |
Experiment_4: | Control | 1.8 | 0.009 | 0.36 | 0.06 | 20 |
10 g B27raw | 2 | 0.213 | 0.9 | 1.5 | 200 | |
ControlO2 | 2.5 | 0.056 | 0.14 | 0.19 | 25 | |
10 g B27O2 | 3.6 | 0.382 | 1.39 | 1.5 | 200 | |
NP | 0.3 | 0.215 | 0.26 | 27 | ||
Aluminum [mg/L] | Zinc [mg/L] | Lead [mg/L] | Chromium [mg/L] | |||
Metals: | Control | 0.02 | - | - | 0.0009 | |
10 g HSraw | 0.61 | 1.56 | 0.024 | 0.025 | ||
10 g B27raw | 1.00 | 0.70 | 0.01 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tull, T.; Krais, S.; Peschke, K.; Weyrauch, S.; Triebskorn, R.; Köhler, H.-R. Tire and Road Wear Particle-Containing Sediments with High Organic Content Impact Behavior and Survival of Chironomid Larvae (Chironomus riparius). Environments 2023, 10, 23. https://doi.org/10.3390/environments10020023
Tull T, Krais S, Peschke K, Weyrauch S, Triebskorn R, Köhler H-R. Tire and Road Wear Particle-Containing Sediments with High Organic Content Impact Behavior and Survival of Chironomid Larvae (Chironomus riparius). Environments. 2023; 10(2):23. https://doi.org/10.3390/environments10020023
Chicago/Turabian StyleTull, Tatjana, Stefanie Krais, Katharina Peschke, Steffen Weyrauch, Rita Triebskorn, and Heinz-R. Köhler. 2023. "Tire and Road Wear Particle-Containing Sediments with High Organic Content Impact Behavior and Survival of Chironomid Larvae (Chironomus riparius)" Environments 10, no. 2: 23. https://doi.org/10.3390/environments10020023
APA StyleTull, T., Krais, S., Peschke, K., Weyrauch, S., Triebskorn, R., & Köhler, H. -R. (2023). Tire and Road Wear Particle-Containing Sediments with High Organic Content Impact Behavior and Survival of Chironomid Larvae (Chironomus riparius). Environments, 10(2), 23. https://doi.org/10.3390/environments10020023