Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (167)

Search Parameters:
Keywords = TIL therapy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2286 KiB  
Article
PD-1, PD-L1, and PD-L2 Expression as Predictive Markers in Rare Feline Mammary Tumors
by Maria Franco, Fernanda Seixas, Maria dos Anjos Pires, Anabela Alves, Andreia Santos, Carla Marrinhas, Hugo Vilhena, Joana Santos, Pedro Faísca, Patrícia Dias-Pereira, Adelina Gama, Jorge Correia and Fernando Ferreira
Vet. Sci. 2025, 12(8), 731; https://doi.org/10.3390/vetsci12080731 - 3 Aug 2025
Viewed by 219
Abstract
Feline mammary carcinoma (FMC) exhibits aggressive behavior, with limited treatment options. Given the relevance of the PD-1/PD-L1/PD-L2 axis in human breast cancer immunotherapy, this study assessed PD-1 and its ligands in rare FMC histotypes (n = 48) using immunohistochemistry on tumor cells (TCs), [...] Read more.
Feline mammary carcinoma (FMC) exhibits aggressive behavior, with limited treatment options. Given the relevance of the PD-1/PD-L1/PD-L2 axis in human breast cancer immunotherapy, this study assessed PD-1 and its ligands in rare FMC histotypes (n = 48) using immunohistochemistry on tumor cells (TCs), intratumoral lymphocytes (iTILs), and stromal tumor-infiltrating lymphocytes (sTILs). PD-1 was expressed in 13% of TCs, 85% of iTILs, and 94% of sTILs, while PD-L1 was observed in 46% of TCs, 96% of iTILs, and 100% of sTILs. PD-L2 was expressed in 79% of TCs and 100% of both iTILs and sTILs, with PD-L1/PD-L2 co-expression in 42% of TCs. Higher PD-1 IHC scores in TCs were associated with a less aggressive biological behavior; PD-L1 in iTILs was linked to skin ulceration, whereas PD-L2 in TCs was associated with its absence. Our findings highlight the relevance of the PD-1/PD-L1/PD-L2 immune checkpoint in rare FMC subtypes and support further investigation into checkpoint-blockade therapies. Full article
Show Figures

Figure 1

37 pages, 1856 KiB  
Review
Current and Future Directions in Immunotherapy for Gastrointestinal Malignancies
by Catherine R. Lewis, Yazan Samhouri, Christopher Sherry, Neda Dadgar, Moses S. Raj and Patrick L. Wagner
Int. J. Transl. Med. 2025, 5(3), 33; https://doi.org/10.3390/ijtm5030033 - 31 Jul 2025
Viewed by 499
Abstract
Gastrointestinal (GI) malignancies are diverse and particularly challenging in terms of current immunotherapy but hold great opportunity for impact given that they constitute the highest cancer incidence and mortality rates worldwide. Traditional treatment options for solid GI malignancies include surgical intervention, chemotherapy, radiation, [...] Read more.
Gastrointestinal (GI) malignancies are diverse and particularly challenging in terms of current immunotherapy but hold great opportunity for impact given that they constitute the highest cancer incidence and mortality rates worldwide. Traditional treatment options for solid GI malignancies include surgical intervention, chemotherapy, radiation, or a combination of these treatments. Emerging modalities within immunotherapy are anticipated to extend the results with conventional therapy by stimulating the patient’s own intrinsic potential for tumor-specific immunologic rejection. Combination regimens of chemotherapy and tumor-infiltrating lymphocyte (TIL) therapy in advanced colorectal cancer and pancreatic cancer, autologous monocyte therapy in advanced gastric cancer, and CAR-T therapy trained against GI-selective tumor antigens such as carcinoembryonic antigen are currently being studied. Clinical trials are underway to study the combination of various chemotherapeutic agents along with immunotherapy in the management of cholangiocarcinoma, hepatocellular carcinoma, and esophageal cancer. Alternative therapies are needed based on the tumor immune microenvironment, which can lead to a personalized approach to treatment. In this review, we discuss the current status of various modalities of immunotherapy in common GI malignancies, along with their mechanisms of immune activation and cancer suppression. We will also discuss the use of immunotherapy in less common solid GI malignancies and touch on recent advancements and clinical trials. Full article
Show Figures

Graphical abstract

19 pages, 3664 KiB  
Article
Feasibility of Manufacturing and Antitumor Activity of TIL for Advanced Endometrial Cancers
by Yongliang Zhang, Kathleen N. Moore, Amir A. Jazaeri, Judy Fang, Ilabahen Patel, Andrew Yuhas, Patrick Innamarato, Nathan Gilbert, Joseph W. Dean, Behzad Damirchi, Joe Yglesias, Rongsu Qi, Michelle R. Simpson-Abelson, Erwin Cammaart, Sean R. R. Hall and Hequn Yin
Int. J. Mol. Sci. 2025, 26(15), 7151; https://doi.org/10.3390/ijms26157151 - 24 Jul 2025
Viewed by 582
Abstract
Lifileucel, a tumor-infiltrating lymphocyte (TIL) cell therapy approved for advanced melanoma, demonstrates promise for treating other solid tumors, including endometrial cancer (EC). The current study evaluates the feasibility of manufacturing TILs from EC tumors using Iovance’s proprietary 22-day Gen2 manufacturing process. Key parameters, [...] Read more.
Lifileucel, a tumor-infiltrating lymphocyte (TIL) cell therapy approved for advanced melanoma, demonstrates promise for treating other solid tumors, including endometrial cancer (EC). The current study evaluates the feasibility of manufacturing TILs from EC tumors using Iovance’s proprietary 22-day Gen2 manufacturing process. Key parameters, including TIL yield, viability, immune phenotype, T-cell receptor clonality, and cytotoxic activity, were assessed. Of the 11 EC tumor samples processed at research scale, 10 (91%) successfully generated >1 × 109 viable TIL cells, with a median yield of 1.1 × 1010 cells and a median viability of 82.8%. Of the four EC tumor samples processed at full scale, all achieved the pre-specified TVC and viability targets. Putative tumor-reactive T-cell clones were maintained throughout the manufacturing process. Functional reactivity was evidenced by the upregulation of 4-1BB in CD8+ T cells, OX40 in CD4+ T cells, and increased production of IFN-γ and TNF-α upon autologous tumor stimulation. Furthermore, antitumor activity was confirmed using an in vitro autologous tumor organoid killing assay. These findings demonstrate the feasibility of ex vivo TIL expansion from EC tumors. This study provides a rationale for the initiation of the phase II clinical trial IOV-END-201 (NCT06481592) to evaluate lifileucel in patients with advanced EC. Full article
(This article belongs to the Special Issue Endometrial Cancer: From Basic Science to Novel Therapeutics)
Show Figures

Figure 1

27 pages, 1103 KiB  
Review
Tumor Microenvironmental Dynamics in Shaping Resistance to Therapeutic Interventions in Melanoma: A Narrative Review
by Laci M. Turner, Hanna Terhaar, Victoria Jiminez, Bailey J. Anderson, Emily Grant and Nabiha Yusuf
Pharmaceuticals 2025, 18(8), 1082; https://doi.org/10.3390/ph18081082 - 22 Jul 2025
Viewed by 448
Abstract
Background/Objectives: This review discusses the resistance mechanisms in the tumor microenvironment (TME) of malignant melanoma that disrupt the efficacy of immune checkpoint inhibitors (ICIs). In this review, we focus on the roles of immune cells, including tumor-infiltrating lymphocytes (TILs), macrophages, dendritic cells, [...] Read more.
Background/Objectives: This review discusses the resistance mechanisms in the tumor microenvironment (TME) of malignant melanoma that disrupt the efficacy of immune checkpoint inhibitors (ICIs). In this review, we focus on the roles of immune cells, including tumor-infiltrating lymphocytes (TILs), macrophages, dendritic cells, and other signaling pathways. We explore the interplay between innate and adaptive immunity in the TME and tumor intrinsic resistance mechanisms, such as β-catenin, which has future implications for the usage of ICIs in patients with therapy-resistant tumors. Methods: A total of 1052 studies were extracted from the PubMed database searching for keywords and phrases that included [melanoma AND immune checkpoint inhibitor resistance]. After a title/abstract and full-text review, 101 studies were identified that fit the inclusion/exclusion criteria. Results: Cancer-associated fibroblasts (CAFs), M2 macrophages, and myeloid-derived suppressor cells (MDSCs) are significant in remodeling the TME to promote melanoma growth. Melanoma resistance to ICIs is complex and involves TME alterations, tumor intrinsic factors, and immune evasion. Key components of resistance include reduced CD8+ T cell infiltration, decreased host immune response, and immunosuppressive cytokines. Conclusions: Predictive biomarkers and specific models are the future of individualized melanoma management and show great promise in their approach to targeted therapy production. Tumor profiling can be utilized to help predict the efficacy of ICIs, and specific biomarkers predicting therapy responses are instrumental in moving towards personalized and more efficacious medicine. As more melanoma resistance emerges, alternative and combinatorial therapy based on knowledge of existing resistance mechanisms will be needed. Full article
(This article belongs to the Special Issue Combating Drug Resistance in Cancer)
Show Figures

Graphical abstract

20 pages, 3742 KiB  
Review
Predictive Biomarkers for Immunotherapy in Endometrial Carcinoma
by Cristina Pizzimenti, Vincenzo Fiorentino, Ludovica Pepe, Mariausilia Franchina, Chiara Ruggeri, Alfredo Ercoli, Giuliana Ciappina, Massimiliano Berretta, Giovanni Tuccari and Antonio Ieni
Cancers 2025, 17(15), 2420; https://doi.org/10.3390/cancers17152420 - 22 Jul 2025
Viewed by 350
Abstract
Endometrial carcinoma (EC) is the most common gynaecological malignancy in developed nations, exhibiting significant molecular heterogeneity that impacts prognosis and treatment response, particularly in advanced or recurrent settings. Traditional classification is increasingly supplemented by molecular subtyping (POLE-ultramutated, MSI-high/dMMR, NSMP, p53-mutated/CNH), which [...] Read more.
Endometrial carcinoma (EC) is the most common gynaecological malignancy in developed nations, exhibiting significant molecular heterogeneity that impacts prognosis and treatment response, particularly in advanced or recurrent settings. Traditional classification is increasingly supplemented by molecular subtyping (POLE-ultramutated, MSI-high/dMMR, NSMP, p53-mutated/CNH), which provides crucial prognostic information and predicts benefit from immunotherapy. This review summarizes the landscape of predictive biomarkers for immune checkpoint inhibitor (ICI) therapy in EC, emphasizing a new therapeutic scenario for advanced and recurrent EC. Mismatch repair deficiency (dMMR) or high microsatellite instability (MSI-H), leading to high tumor mutational burden (TMB) and increased neoantigen production, is the most established predictor, resulting in FDA approvals for pembrolizumab and dostarlimab in this subgroup. POLE mutations also confer hypermutation and high immunogenicity, predicting a favorable ICI response. Other biomarkers, including PD-L1 expression and TMB, show variable correlation with response and require further standardization. The tumor immune microenvironment, including tumor-infiltrating lymphocytes (TILs), also influences treatment outcomes. Clinical trials have demonstrated significant survival benefits for ICIs combined with chemotherapy (e.g., dostarlimab/pembrolizumab + carboplatin/paclitaxel) in first-line settings, especially for dMMR/MSI-H EC, and for ICI combinations with targeted agents (e.g., lenvatinib + pembrolizumab) in previously treated patients. Integrating molecular classification and validated biomarkers is essential for optimizing patient selection and developing personalized immunotherapy strategies for EC. Full article
Show Figures

Figure 1

31 pages, 2698 KiB  
Review
Tumor Microenvironment in Melanoma—Characteristic and Clinical Implications
by Hubert Sikorski, Michał Aleksander Żmijewski and Anna Piotrowska
Int. J. Mol. Sci. 2025, 26(14), 6778; https://doi.org/10.3390/ijms26146778 - 15 Jul 2025
Viewed by 848
Abstract
Cutaneous melanoma is an aggressive cancer with an increasing incidence worldwide, highlighting the need for research into its pathogenesis. The tumor microenvironment (TME) plays a critical role in melanoma progression and consists of cellular components and an extracellular matrix (ECM) rich in cytokines [...] Read more.
Cutaneous melanoma is an aggressive cancer with an increasing incidence worldwide, highlighting the need for research into its pathogenesis. The tumor microenvironment (TME) plays a critical role in melanoma progression and consists of cellular components and an extracellular matrix (ECM) rich in cytokines and signaling molecules. The most abundant stromal cells within the TME are cancer-associated fibroblasts (CAFs), which remodel the ECM and modulate immune responses. Among immune cells, tumor-associated macrophages (TAMs) predominate, and their polarization toward the M2 phenotype supports tumor progression. Tumor-infiltrating lymphocytes (TILs) have diverse functions, including cytotoxic T-cells, helper T-cells that modulate immune response, B-cells forming tertiary lymphoid structures (TLS), and regulatory T-cells with immunosuppressive properties. Dendritic cells (DCs) also play a complex role in the TME. A notable subpopulation are mature regulatory dendritic cells (mregDCs), which contribute to immune evasion. All of these TME components may drive tumorigenesis. Advancements in melanoma treatment—including immunotherapy and targeted therapies—have significantly improved outcomes in advanced-stage disease. In parallel, emerging approaches targeting the tumor microenvironment and gut microbiome, as well as personalized strategies such as neoantigen vaccines and cell-based therapies, are under active investigation and may further enhance therapeutic efficacy in the near future. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapies for Melanoma)
Show Figures

Figure 1

15 pages, 259 KiB  
Review
Predictive Factors of Response to Neoadjuvant Chemotherapy (NACT) and Immune Checkpoint Inhibitors in Early-Stage Triple-Negative Breast Cancer Patients (TNBC)
by Khashayar Yazdanpanah Ardakani, Francesca Fulvia Pepe, Serena Capici, Thoma Dario Clementi and Marina Elena Cazzaniga
Curr. Oncol. 2025, 32(7), 387; https://doi.org/10.3390/curroncol32070387 - 4 Jul 2025
Viewed by 610
Abstract
Triple-negative breast cancer (TNBC) is a heterogenous group of breast tumors. This type of breast tumor is relatively difficult to manage, due to the lack of expression of Hormone Receptors (HR) and human epidermal growth factor receptor (HER2). Efforts have been made to [...] Read more.
Triple-negative breast cancer (TNBC) is a heterogenous group of breast tumors. This type of breast tumor is relatively difficult to manage, due to the lack of expression of Hormone Receptors (HR) and human epidermal growth factor receptor (HER2). Efforts have been made to understand the factors involved in determining how a triple-negative breast tumor responds to therapy. The standard of treatment in most cases today is a combined modality of immune checkpoint inhibitors (ICIs) and chemotherapy with agents such as anti-mitotic (taxanes) or DNA-damaging agents (alkylating agents, cyclophosphamides, platin salts). In this study, we investigated the predictive and prognostic factors for TNBC, in the neoadjuvant setting; understanding each patient’s response before treatment initiation is crucial to guiding the subsequent approach and finally improving patient outcomes. We focused on tumor-infiltrating lymphocytes at the site of the primary tumor (TILs), circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), the mutational status of protein 53 (p53), and Ki-67, investigating the potential roles of these factors in predicting responses to anti-cancer agents. Full article
(This article belongs to the Special Issue Advances in Immunotherapy for Breast Cancer)
10 pages, 717 KiB  
Communication
Expression Profiles of Co-Inhibitory Receptors in Non-Urothelial Bladder Cancer: Preclinical Evidence for the Next Generation of Immune Checkpoint Inhibitors
by Severin Rodler, Stephan T. Ledderose, Raphaela Waidelich, Jakob Kohler, Andrea Sendelhofert, Jozefina Casuscelli, Gerald Schulz, Christian G. Stief and Lennert Eismann
Cancers 2025, 17(13), 2210; https://doi.org/10.3390/cancers17132210 - 1 Jul 2025
Viewed by 373
Abstract
Immune checkpoint inhibition is a cornerstone of bladder cancer therapy, but its efficacy in non-urothelial subtypes of bladder cancer is limited, and the prognosis remains poor. Therefore, we investigated the potential of the immune checkpoint molecules TIM-3, TIGIT, and LAG-3 in squamous-cell carcinoma [...] Read more.
Immune checkpoint inhibition is a cornerstone of bladder cancer therapy, but its efficacy in non-urothelial subtypes of bladder cancer is limited, and the prognosis remains poor. Therefore, we investigated the potential of the immune checkpoint molecules TIM-3, TIGIT, and LAG-3 in squamous-cell carcinoma (SCC) and adenocarcinoma (ADENO) of the urinary bladder. Tumor-infiltrating lymphocytes (TILs) showed a high expression of TIM-3 and TIGIT in both SCC and ADENO, while LAG-3-positive TILs were absent in ADENO and present in 46% of SCC. Quantitative analysis revealed age-independent expression of TIM-3 in SCC (r = −0.001, p = 0.997) and ADENO (r = 0.135, p = 0.549), with increasing age correlating with higher expression of TIGIT (r = 0.157, p = 0.242) and LAG-3 (0.106, p = 0.436) in the SCC cohort and of TIGIT (r = 0.276, p = 0.214) in the ADENO cohort. Male patients showed increased TIGIT scores in ADENO (p < 0.01). Of note, a high infiltration of TIM-3-TILs (p = 0.048) correlated with worse progression-free survival in SCC. These results highlight the differential expression of co-inhibitory receptors in non-urothelial bladder cancer subtypes and provide preclinical evidence for new therapeutic targets. Biomarker testing prior to clinical trials is essential for identifying the most suitable patients for targeted immunotherapy. Full article
(This article belongs to the Special Issue New Insights into Urologic Oncology)
Show Figures

Figure 1

24 pages, 18981 KiB  
Article
Ectopic ULBP2 Is Associated with Decreased NKG2D Expression in CD8+ T Cells Under T Cell-Modulatory Conditions in a Murine Tumor Model
by Yasuhiko Teruya, Kosuke Yamaguchi, Kohei Yamane, Naomi Miyake, Yuji Nakayama, Takafumi Nonaka, Hiroki Chikumi and Akira Yamasaki
Cells 2025, 14(12), 893; https://doi.org/10.3390/cells14120893 - 13 Jun 2025
Viewed by 608
Abstract
UL16-binding protein 2 (ULBP2), a ligand for the activating receptor NKG2D, plays a dual role in tumor immunity, promoting immune activation or suppression, depending on the context. To investigate its impact on CD4+CD25+ T cell-targeted immunotherapies, we used a syngeneic [...] Read more.
UL16-binding protein 2 (ULBP2), a ligand for the activating receptor NKG2D, plays a dual role in tumor immunity, promoting immune activation or suppression, depending on the context. To investigate its impact on CD4+CD25+ T cell-targeted immunotherapies, we used a syngeneic CT26 colon cancer model engineered to express ULBP2 and compared tumor growth and tumor-infiltrating lymphocyte (TIL) profiles in control and ULBP2-expressing tumors treated with anti-CD4, anti-CD25, or anti-CTLA-4 antibodies. Tumor growth was uniformly assessed on day 21 post-transplantation, and TIL analysis was performed in groups with evaluable residual tumors. Anti-CD4 antibody significantly suppressed tumor growth in mock-transfected tumors, while no significant suppression was observed in ULBP2-expressing tumors. Anti-CD25 antibody had limited efficacy in mock tumors and tended to promote tumor growth in ULBP2-expressing tumors. Following these treatments, ULBP2 expression was associated with reduced NKG2D expression in CD8+ effector memory T cells, particularly PD-1high subsets. In contrast, anti-CTLA-4 antibody treatment induced marked tumor regression irrespective of ULBP2 expression. These findings suggest that ULBP2–NKG2D signaling may contribute to altered CD8+ T cell phenotypes under T cell-modulatory conditions, potentially impacting the outcome of CD4+CD25+ T cell-targeted therapies and providing insights for optimizing immunotherapeutic strategies. Full article
(This article belongs to the Section Cellular Immunology)
Show Figures

Figure 1

21 pages, 312 KiB  
Review
Update: Immunotherapeutic Strategies in HPV-Associated Head and Neck Squamous Cell Carcinoma
by Fangdi Sun and A. Dimitrios Colevas
Viruses 2025, 17(5), 712; https://doi.org/10.3390/v17050712 - 16 May 2025
Viewed by 970
Abstract
The incidence of human papillomavirus (HPV)-associated oropharyngeal squamous cell carcinoma (OPSCC) has increased substantially over the past three decades, and since 2017, it has been recognized in the AJCC staging system as distinct from its HPV-negative counterpart. The underlying mechanisms of HPV-associated carcinogenesis, [...] Read more.
The incidence of human papillomavirus (HPV)-associated oropharyngeal squamous cell carcinoma (OPSCC) has increased substantially over the past three decades, and since 2017, it has been recognized in the AJCC staging system as distinct from its HPV-negative counterpart. The underlying mechanisms of HPV-associated carcinogenesis, tumor microenvironment, and host immune response represent opportunities for therapeutic development. While anti-PD-1 immunotherapy is now part of standard treatment for recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) in general, there are no established immunotherapeutic strategies specifically for HPV-related HNSCC. In this context, multiple emerging approaches are being actively studied—among these are therapeutic vaccines with or without anti-PD-(L)1 adjuvants, peptide–HLA-based immunotherapeutic platforms, and adoptive cell therapies including tumor-infiltrating lymphocytes (TILs), T-cell receptor (TCR) therapy, and chimeric antigen receptor (CAR) T-cell therapy. Beyond further maturation of these novel immunotherapeutic strategies, additional work is needed to delineate the optimal disease state of application (localized versus recurrent/metastatic), as well as in the development of small molecule inhibitors targeting HPV-specific mechanisms of viral oncogenesis. Full article
(This article belongs to the Special Issue Advancements in Immunotherapy for Human Papillomavirus)
20 pages, 1791 KiB  
Review
Clinical and Fundamental Research Progressions on Tumor-Infiltrating Lymphocytes Therapy in Cancer
by Jiandong Hu, Mengli Jin, Weihong Feng, Barbara Nassif-Rausseo, Alexandre Reuben, Chunhua Ma, Gregory Lizee and Fenge Li
Vaccines 2025, 13(5), 521; https://doi.org/10.3390/vaccines13050521 - 14 May 2025
Viewed by 935
Abstract
Malignant tumors represent a significant threat to human health. Among the various therapeutic strategies available, cancer immunotherapy—encompassing adoptive cell transfer (ACT) and immune checkpoint blockade therapy—has emerged as a particularly promising approach following surgical resection, radiotherapy, chemotherapy, and molecular targeted therapies. This form [...] Read more.
Malignant tumors represent a significant threat to human health. Among the various therapeutic strategies available, cancer immunotherapy—encompassing adoptive cell transfer (ACT) and immune checkpoint blockade therapy—has emerged as a particularly promising approach following surgical resection, radiotherapy, chemotherapy, and molecular targeted therapies. This form of treatment elicits substantial antigen-specific immune responses, enhances or restores anti-tumor immunity, thereby facilitating the control and destruction of tumor cells, and yielding durable responses across a range of cancers, which can lead to the eradication of tumor lesions and the prevention of recurrence. Tumor-infiltrating lymphocytes (TILs), a subset of ACT, are characterized by their heterogeneity and are found within tumor tissues, where they play a crucial role in mediating host antigen-specific immune responses against tumors. This review aims to explore recent advancements in the understanding of TILs biology, their prognostic implications, and their predictive value in therapeutic contexts. Full article
Show Figures

Figure 1

17 pages, 544 KiB  
Review
Harnessing Tumor-Infiltrating Lymphocytes in Triple-Negative Breast Cancer: Opportunities and Barriers to Clinical Integration
by Cara Coleman, Tharakeswari Selvakumar, Aswani Thurlapati, Kevin Graf, Sushma Pavuluri, Shikhar Mehrotra, Ozgur Sahin and Abirami Sivapiragasam
Int. J. Mol. Sci. 2025, 26(9), 4292; https://doi.org/10.3390/ijms26094292 - 1 May 2025
Viewed by 968
Abstract
Triple-negative breast cancer (TNBC) continues to present a therapeutic challenge due to the fact that by definition, these cancer cells lack the expression of targetable receptors. Current treatment options include cytotoxic chemotherapy, antibody–drug conjugates (ADC), and the PD-1 checkpoint inhibitor, pembrolizumab. Due to [...] Read more.
Triple-negative breast cancer (TNBC) continues to present a therapeutic challenge due to the fact that by definition, these cancer cells lack the expression of targetable receptors. Current treatment options include cytotoxic chemotherapy, antibody–drug conjugates (ADC), and the PD-1 checkpoint inhibitor, pembrolizumab. Due to high rates of recurrence, current guidelines for early-stage TNBC recommend either multi-agent chemotherapy or chemo–immunotherapy in all patients other than those with node-negative tumors < 0.5 cm. This approach can lead to significant long-term effects for TNBC survivors, driving a growing interest in de-escalating therapy where appropriate. Tumor infiltrating lymphocytes (TILs) represent a promising prognostic and predictive biomarker for TNBC. These diverse immune cells are present in the tumor microenvironment and within the tumor itself, and multiple retrospective studies have demonstrated that a higher number of TILs in early-stage TNBC portends a favorable prognosis. Research has also explored the potential of TIL scores to predict the response to immunotherapy. However, several barriers to the widespread use of TILs in clinical practice remain, including logistical and technical challenges with the scoring of TILs and lack of prospective trials to validate the trends seen in retrospective studies. This review will present the current understanding of the role of TILs in TNBC and discuss the future directions of TIL research. Full article
(This article belongs to the Special Issue Advances and Mechanisms in Breast Cancer)
Show Figures

Figure 1

15 pages, 3448 KiB  
Article
Breast Cancer Stem Cells and Immunogenicity Profile in High-Risk Early Triple-Negative Breast Cancer: A Pilot Study
by Ariadna Roqué-Lloveras, Ferran Pérez-Bueno, Xavier Pozo-Ariza, Emma Polonio-Alcalá, Sira Ausellé-Bosch, Glòria Oliveras, Gemma Viñas and Teresa Puig
Int. J. Mol. Sci. 2025, 26(9), 3960; https://doi.org/10.3390/ijms26093960 - 22 Apr 2025
Viewed by 882
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype requiring further knowledge of biomarkers to improve targeted therapy. A major resistance mechanism involves breast cancer stem cells (BCSCs) evading the immune system. Neoadjuvant or adjuvant chemotherapy may alter BCSCs and the patients’ immune response. [...] Read more.
Triple-negative breast cancer (TNBC) is an aggressive subtype requiring further knowledge of biomarkers to improve targeted therapy. A major resistance mechanism involves breast cancer stem cells (BCSCs) evading the immune system. Neoadjuvant or adjuvant chemotherapy may alter BCSCs and the patients’ immune response. We conducted a retrospective study including 29 early-stage TNBC patients resistant to chemotherapy diagnosed at the Catalan Institute of Oncology (Girona, Spain) in 2010–2019. We obtained 44 paired tumor samples (pre- and post-chemotherapy) from the Tumor Biobank, assessing BCSC biomarkers (CD44, CD24, and ALDH1), PD-L1, and percentages of stromal tumor-infiltrating lymphocytes (TILs). Clinicopathological characteristics were also collected. At baseline, 68% of tumors had high CD44 expression, 55% showed low CD24 expression, 9% had high ALDH1 expression, 91% were PD-L1-negative (<1%), and 64% had a low percentage of stromal TILs. PD-L1 expression significantly increased post-chemotherapy, with 50% of initially negative tumors becoming PD-L1 positive (≥1%) (p = 0.006). No significant changes were observed in BCSC markers or TILs. No association was found between baseline BCSCs and increased PD-L1 expression post-chemotherapy. At a median follow-up of 58.9 months, 48.3% of patients were alive, with non-significant favorable trends in time to progression, disease-free survival, and overall survival in the PD-L1 positivization cohort post-chemotherapy. In conclusion, high-risk early-stage TNBC tumors increased PD-L1 expression after chemotherapy, potentially affecting clinical outcomes. BCSCs remained stable and independent of the tumor immunogenicity post-chemotherapy. Further studies are needed to explore the relationship between BCSCs and the immunogenicity profile, for development of new combined therapeutic strategies. Full article
Show Figures

Figure 1

18 pages, 307 KiB  
Review
Immunotherapy in Breast Cancer: Beyond Immune Checkpoint Inhibitors
by Yeonjoo Choi, Jiayi Tan, David Lin, Jin Sun Lee and Yuan Yuan
Int. J. Mol. Sci. 2025, 26(8), 3920; https://doi.org/10.3390/ijms26083920 - 21 Apr 2025
Viewed by 1335
Abstract
The systemic treatment of breast cancer has evolved remarkably over the past decades. With the introduction of immune checkpoint inhibitors (ICIs), clinical outcomes for solid tumor malignancies have significantly improved. However, in breast cancer, the indication for ICIs is currently limited to triple-negative [...] Read more.
The systemic treatment of breast cancer has evolved remarkably over the past decades. With the introduction of immune checkpoint inhibitors (ICIs), clinical outcomes for solid tumor malignancies have significantly improved. However, in breast cancer, the indication for ICIs is currently limited to triple-negative breast cancer (TNBC) only. In high-risk luminal B hormone receptor-positive (HR+) breast cancer (BC) and HER2-positive (HER2+) BC, modest efficacy of ICI and chemotherapy combinations were identified in the neoadjuvant setting. To address the unmet need, several novel immunotherapy strategies are being tested in ongoing clinical trials as summarized in the current review: bispecific antibodies, chimeric antigen receptor T-cell therapy (CAR-T), T-cell receptors (TCRs), tumor-infiltrating lymphocytes (TILs), tumor vaccines, and oncolytic virus therapy. Full article
(This article belongs to the Special Issue Breast Cancers: From Molecular Basis to Therapy)
Show Figures

Graphical abstract

12 pages, 1002 KiB  
Review
Optimizing Immunotherapy: The Synergy of Immune Checkpoint Inhibitors with Artificial Intelligence in Melanoma Treatment
by Mohammad Saleem, Abigail E. Watson, Aisha Anwaar, Ahmad Omar Jasser and Nabiha Yusuf
Biomolecules 2025, 15(4), 589; https://doi.org/10.3390/biom15040589 - 16 Apr 2025
Viewed by 1153
Abstract
Immune checkpoint inhibitors (ICIs) have transformed melanoma treatment; however, predicting patient responses remains a significant challenge. This study reviews the potential of artificial intelligence (AI) to optimize ICI therapy in melanoma by integrating various diagnostic tools. Through a comprehensive literature review, we analyzed [...] Read more.
Immune checkpoint inhibitors (ICIs) have transformed melanoma treatment; however, predicting patient responses remains a significant challenge. This study reviews the potential of artificial intelligence (AI) to optimize ICI therapy in melanoma by integrating various diagnostic tools. Through a comprehensive literature review, we analyzed studies on AI applications in melanoma immunotherapy, focusing on predictive modeling, biomarker identification, and treatment response prediction. Key findings highlight the efficacy of AI in improving ICI outcomes. Machine learning models successfully identified prognostic cytokine signatures linked to nivolumab clearance. The combination of AI with RNAseq analysis had the potential for the development of personalized treatment with ICIs. A machine learning-based approach was able to assess the risk-benefit ratio for the prediction of immune-related adverse events (irAEs) using the electronic health record (EHR) data. Deep learning algorithms demonstrated high accuracy in tumor microenvironment analysis, including tumor region identification and lymphocyte detection. AI-assisted quantification of tumor-infiltrating lymphocytes (TILs) proved prognostically valuable in primary melanoma and predictive of anti-PD-1 therapy response in metastatic cases. Integrating multiple diagnostic modalities, such as CT imaging and laboratory data, modestly enhanced predictive performance for 1-year survival in advanced cancers treated with immunotherapy. These findings underscore the potential of AI-driven approaches to refine biomarker identification, treatment prediction, and patient stratification in melanoma immunotherapy. While promising, clinical validation and implementation challenges remain. Full article
(This article belongs to the Special Issue Cancer Immunotherapy and the PD-1/PD-L1 Checkpoint Pathway)
Show Figures

Figure 1

Back to TopTop