Update: Immunotherapeutic Strategies in HPV-Associated Head and Neck Squamous Cell Carcinoma
Abstract
:1. Introduction
2. HPV-Associated Oropharyngeal Squamous Cell Carcinoma (OPSCC)
3. Molecular Biology of HPV-Associated Carcinogenesis
4. Immune System Evasion and Tumor Microenvironment in HPV-Associated HNSCC
5. Checkpoint Inhibitor Immunotherapy
6. Therapeutic HPV Vaccines
7. Adoptive Cell Therapies
8. Peptide–HLA-Based Immunotherapeutic Platform
9. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACT | Adoptive cell therapy |
AE | Adverse event |
AJCC | American Joint Committee on Cancer |
APC | Antigen-presenting cell |
CAR | Chimeric antigen receptor |
CPS | Combined positive score |
CTLA-4 | Cytotoxic T-lymphocyte-associated protein 4 |
DC | Dendritic cell |
DLT | Dose-limiting toxicity |
DNA | Deoxyribonucleic acid |
EBV | Ebstein–Barr virus |
EGFR | Epidermal growth factor receptor |
Fc | Fragment crystallizable |
GWAS | Genome-wide association study |
HDAC | Histone deacetylase |
HLA | Human leukocyte antigen |
HNSCC | Head and neck squamous cell carcinoma |
HPV | Human papillomavirus |
IHC | Immunohistochemistry |
IL-2 | Interleukin-2 |
LAG-3 | Lymphocyte activation gene-3 |
LCR | Long control region |
MAGE | Melanoma antigen gene |
MDPI | Multidisciplinary Digital Publishing Institute |
MDSC | Myeloid-derived suppressor cell |
MHC | Major histocompatibility complex |
mRNA | Messenger ribonucleic acid |
NK | Natural killer |
NSCLC | Non-small cell lung cancer |
OPSCC | Oropharyngeal squamous cell carcinoma |
ORR | Objective response rate |
OS | Overall survival |
pCR | Pathologic complete response |
PD-1 | Programmed cell death protein 1 |
PD-L1 | Programmed cell death ligand 1 |
PFS | Progression-free survival |
PRAME | Preferentially expressed antigen in melanoma |
PROTAC | Proteolysis-targeting chimera |
Rb | Retinoblastoma |
RNA | Ribonucleic acid |
RP2D | Recommended phase II dose |
SCC | Squamous cell carcinoma |
shRNA | Short hairpin ribonucleic acid |
siRNA | Small interfering ribonucleic acid |
STAT | Selective targeting and alteration of T-cells |
TAM | Tumor-associated macrophage |
TCR | T-cell receptor |
TGF-β | Transforming growth factor-beta |
TH | T helper |
TIGIT | T-cell immunoreceptor with immunoglobulin and ITIM domain |
TIL | Tumor-infiltrating lymphocyte |
TIM-3 | T-cell immunoglobulin and mucin-domain containing-3 |
TMB | Tumor mutational burden |
VISTA | V-domain immunoglobulin suppressor of T-cell activation |
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Chow, L.Q.M. Head and Neck Cancer. N. Engl. J. Med. 2020, 382, 60–72. [Google Scholar] [CrossRef] [PubMed]
- Argiris, A.; Karamouzis, M.V.; Raben, D.; Ferris, R.L. Head and neck cancer. Lancet 2008, 371, 1695–1709. [Google Scholar] [CrossRef] [PubMed]
- Cohen, N.; Fedewa, S.; Chen, A.Y. Epidemiology and Demographics of the Head and Neck Cancer Population. Oral. Maxillofac. Surg. Clin. N. Am. 2018, 30, 381–395. [Google Scholar] [CrossRef]
- Wei, W.I.; Sham, J.S. Nasopharyngeal carcinoma. Lancet 2005, 365, 2041–2054. [Google Scholar] [CrossRef]
- Miller, K.D.; Nogueira, L.; Mariotto, A.B.; Rowland, J.H.; Yabroff, K.R.; Alfano, C.M.; Jemal, A.; Kramer, J.L.; Siegel, R.L. Cancer treatment and survivorship statistics, 2019. CA Cancer J. Clin. 2019, 69, 363–385. [Google Scholar] [CrossRef]
- Barsouk, A.; Aluru, J.S.; Rawla, P.; Saginala, K.; Barsouk, A. Epidemiology, Risk Factors, and Prevention of Head and Neck Squamous Cell Carcinoma. Med. Sci. 2023, 11, 42. [Google Scholar] [CrossRef]
- Syrjanen, K.; Syrjanen, S.; Lamberg, M.; Pyrhonen, S.; Nuutinen, J. Morphological and immunohistochemical evidence suggesting human papillomavirus (HPV) involvement in oral squamous cell carcinogenesis. Int. J. Oral. Surg. 1983, 12, 418–424. [Google Scholar] [CrossRef]
- Gillison, M.L.; Chaturvedi, A.K.; Anderson, W.F.; Fakhry, C. Epidemiology of Human Papillomavirus-Positive Head and Neck Squamous Cell Carcinoma. J. Clin. Oncol. 2015, 33, 3235–3242. [Google Scholar] [CrossRef]
- Chaturvedi, A.K.; Engels, E.A.; Pfeiffer, R.M.; Hernandez, B.Y.; Xiao, W.; Kim, E.; Jiang, B.; Goodman, M.T.; Sibug-Saber, M.; Cozen, W.; et al. Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J. Clin. Oncol. 2011, 29, 4294–4301. [Google Scholar] [CrossRef]
- Lechner, M.; Masterson, L.; Mermelstein, S.; Liu, J.; Rehman, U.; Chen, M.; O’Mahoney, J.; Holsinger, F.C. Oropharyngeal cancer: Lack of human papillomavirus awareness and economic burden in the United States. Clin. Transl. Med. 2024, 14, e70062. [Google Scholar] [CrossRef] [PubMed]
- de Martel, C.; Georges, D.; Bray, F.; Ferlay, J.; Clifford, G.M. Global burden of cancer attributable to infections in 2018: A worldwide incidence analysis. Lancet Glob. Health 2020, 8, e180–e190. [Google Scholar] [CrossRef] [PubMed]
- de Martel, C.; Ferlay, J.; Franceschi, S.; Vignat, J.; Bray, F.; Forman, D.; Plummer, M. Global burden of cancers attributable to infections in 2008: A review and synthetic analysis. Lancet Oncol. 2012, 13, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Schache, A.G.; Powell, N.G.; Cuschieri, K.S.; Robinson, M.; Leary, S.; Mehanna, H.; Rapozo, D.; Long, A.; Cubie, H.; Junor, E.; et al. HPV-Related Oropharynx Cancer in the United Kingdom: An Evolution in the Understanding of Disease Etiology. Cancer Res. 2016, 76, 6598–6606. [Google Scholar] [CrossRef]
- Abogunrin, S.; Di Tanna, G.L.; Keeping, S.; Carroll, S.; Iheanacho, I. Prevalence of human papillomavirus in head and neck cancers in European populations: A meta-analysis. BMC Cancer 2014, 14, 968. [Google Scholar] [CrossRef]
- Mehanna, H.; Beech, T.; Nicholson, T.; El-Hariry, I.; McConkey, C.; Paleri, V.; Roberts, S. Prevalence of human papillomavirus in oropharyngeal and nonoropharyngeal head and neck cancer—Systematic review and meta-analysis of trends by time and region. Head Neck 2013, 35, 747–755. [Google Scholar] [CrossRef]
- Abate, A.; Munshea, A.; Nibret, E.; Alemayehu, D.H.; Alemu, A.; Abdissa, A.; Mihret, A.; Abebe, M.; Mulu, A. Characterization of human papillomavirus genotypes and their coverage in vaccine delivered to Ethiopian women. Sci. Rep. 2024, 14, 7976. [Google Scholar] [CrossRef]
- Correa, R.M.; Baena, A.; Valls, J.; Colucci, M.C.; Mendoza, L.; Rol, M.; Wiesner, C.; Ferrera, A.; Fellner, M.D.; Gonzalez, J.V.; et al. Distribution of human papillomavirus genotypes by severity of cervical lesions in HPV screened positive women from the ESTAMPA study in Latin America. PLoS ONE 2022, 17, e0272205. [Google Scholar] [CrossRef]
- IARC. Working Group on the Evaluation of Carcinogenic Risks to Humans: Human Papillomaviruses; World Health Organization: Geneva, Switzerland, 2007. [Google Scholar]
- Kreimer, A.R.; Clifford, G.M.; Boyle, P.; Franceschi, S. Human papillomavirus types in head and neck squamous cell carcinomas worldwide: A systematic review. Cancer Epidemiol. Biomarkers Prev. 2005, 14, 467–475. [Google Scholar] [CrossRef]
- Clifford, G.M.; Smith, J.S.; Plummer, M.; Munoz, N.; Franceschi, S. Human papillomavirus types in invasive cervical cancer worldwide: A meta-analysis. Br. J. Cancer 2003, 88, 63–73. [Google Scholar] [CrossRef]
- Nguyen-Tan, P.F.; Zhang, Q.; Ang, K.K.; Weber, R.S.; Rosenthal, D.I.; Soulieres, D.; Kim, H.; Silverman, C.; Raben, A.; Galloway, T.J.; et al. Randomized phase III trial to test accelerated versus standard fractionation in combination with concurrent cisplatin for head and neck carcinomas in the Radiation Therapy Oncology Group 0129 trial: Long-term report of efficacy and toxicity. J. Clin. Oncol. 2014, 32, 3858–3866. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.H.; Xu, W.; Waldron, J.; Siu, L.; Shen, X.; Tong, L.; Ringash, J.; Bayley, A.; Kim, J.; Hope, A.; et al. Refining American Joint Committee on Cancer/Union for International Cancer Control TNM stage and prognostic groups for human papillomavirus-related oropharyngeal carcinomas. J. Clin. Oncol. 2015, 33, 836–845. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.B.; Greene, F.L.; Edge, S.B.; Compton, C.C.; Gershenwald, J.E.; Brookland, R.K.; Meyer, L.; Gress, D.M.; Byrd, D.R.; Winchester, D.P. The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J. Clin. 2017, 67, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Lydiatt, W.M.; Patel, S.G.; O’Sullivan, B.; Brandwein, M.S.; Ridge, J.A.; Migliacci, J.C.; Loomis, A.M.; Shah, J.P. Head and Neck cancers-major changes in the American Joint Committee on cancer eighth edition cancer staging manual. CA Cancer J. Clin. 2017, 67, 122–137. [Google Scholar] [CrossRef]
- Ang, K.K.; Harris, J.; Wheeler, R.; Weber, R.; Rosenthal, D.I.; Nguyen-Tan, P.F.; Westra, W.H.; Chung, C.H.; Jordan, R.C.; Lu, C.; et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N. Engl. J. Med. 2010, 363, 24–35. [Google Scholar] [CrossRef]
- Ang, K.K.; Zhang, Q.; Rosenthal, D.I.; Nguyen-Tan, P.F.; Sherman, E.J.; Weber, R.S.; Galvin, J.M.; Bonner, J.A.; Harris, J.; El-Naggar, A.K.; et al. Randomized phase III trial of concurrent accelerated radiation plus cisplatin with or without cetuximab for stage III to IV head and neck carcinoma: RTOG 0522. J. Clin. Oncol. 2014, 32, 2940–2950. [Google Scholar] [CrossRef]
- Burtness, B.; Harrington, K.J.; Greil, R.; Soulieres, D.; Tahara, M.; de Castro, G., Jr.; Psyrri, A.; Baste, N.; Neupane, P.; Bratland, A.; et al. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): A randomised, open-label, phase 3 study. Lancet 2019, 394, 1915–1928. [Google Scholar] [CrossRef]
- Harrington, K.J.; Burtness, B.; Greil, R.; Soulieres, D.; Tahara, M.; de Castro, G., Jr.; Psyrri, A.; Brana, I.; Baste, N.; Neupane, P.; et al. Pembrolizumab with or Without Chemotherapy in Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma: Updated Results of the Phase III KEYNOTE-048 Study. J. Clin. Oncol. 2023, 41, 790–802. [Google Scholar] [CrossRef]
- Rampias, T.; Sasaki, C.; Psyrri, A. Molecular mechanisms of HPV induced carcinogenesis in head and neck. Oral. Oncol. 2014, 50, 356–363. [Google Scholar] [CrossRef]
- Fehrmann, F.; Laimins, L.A. Human papillomaviruses: Targeting differentiating epithelial cells for malignant transformation. Oncogene 2003, 22, 5201–5207. [Google Scholar] [CrossRef]
- Doorbar, J. The papillomavirus life cycle. J. Clin. Virol. 2005, 32 (Suppl. S1), S7–S15. [Google Scholar] [CrossRef] [PubMed]
- Sherr, C.J.; Roberts, J.M. CDK inhibitors: Positive and negative regulators of G1-phase progression. Genes. Dev. 1999, 13, 1501–1512. [Google Scholar] [CrossRef] [PubMed]
- Hebner, C.M.; Laimins, L.A. Human papillomaviruses: Basic mechanisms of pathogenesis and oncogenicity. Rev. Med. Virol. 2006, 16, 83–97. [Google Scholar] [CrossRef] [PubMed]
- Prigge, E.S.; Arbyn, M.; von Knebel Doeberitz, M.; Reuschenbach, M. Diagnostic accuracy of p16(INK4a) immunohistochemistry in oropharyngeal squamous cell carcinomas: A systematic review and meta-analysis. Int. J. Cancer 2017, 140, 1186–1198. [Google Scholar] [CrossRef]
- Schache, A.G.; Liloglou, T.; Risk, J.M.; Jones, T.M.; Ma, X.J.; Wang, H.; Bui, S.; Luo, Y.; Sloan, P.; Shaw, R.J.; et al. Validation of a novel diagnostic standard in HPV-positive oropharyngeal squamous cell carcinoma. Br. J. Cancer 2013, 108, 1332–1339. [Google Scholar] [CrossRef]
- Wise-Draper, T.M.; Wells, S.I. Papillomavirus E6 and E7 proteins and their cellular targets. Front. Biosci. 2008, 13, 1003–1017. [Google Scholar] [CrossRef]
- Gewin, L.; Myers, H.; Kiyono, T.; Galloway, D.A. Identification of a novel telomerase repressor that interacts with the human papillomavirus type-16 E6/E6-AP complex. Genes Dev. 2004, 18, 2269–2282. [Google Scholar] [CrossRef]
- Katzenellenbogen, R. Telomerase Induction in HPV Infection and Oncogenesis. Viruses 2017, 9, 180. [Google Scholar] [CrossRef]
- Longworth, M.S.; Wilson, R.; Laimins, L.A. HPV31 E7 facilitates replication by activating E2F2 transcription through its interaction with HDACs. EMBO J. 2005, 24, 1821–1830. [Google Scholar] [CrossRef]
- Banerjee, N.S.; Moore, D.W.; Broker, T.R.; Chow, L.T. Vorinostat, a pan-HDAC inhibitor, abrogates productive HPV-18 DNA amplification. Proc. Natl. Acad. Sci. USA 2018, 115, E11138–E11147. [Google Scholar] [CrossRef]
- Titolo, S.; Pelletier, A.; Pulichino, A.M.; Brault, K.; Wardrop, E.; White, P.W.; Cordingley, M.G.; Archambault, J. Identification of domains of the human papillomavirus type 11 E1 helicase involved in oligomerization and binding to the viral origin. J. Virol. 2000, 74, 7349–7361. [Google Scholar] [CrossRef] [PubMed]
- Balaji, H.; Demers, I.; Wuerdemann, N.; Schrijnder, J.; Kremer, B.; Klussmann, J.P.; Huebbers, C.U.; Speel, E.M. Causes and Consequences of HPV Integration in Head and Neck Squamous Cell Carcinomas: State of the Art. Cancers 2021, 13, 4089. [Google Scholar] [CrossRef] [PubMed]
- Koneva, L.A.; Zhang, Y.; Virani, S.; Hall, P.B.; McHugh, J.B.; Chepeha, D.B.; Wolf, G.T.; Carey, T.E.; Rozek, L.S.; Sartor, M.A. HPV Integration in HNSCC Correlates with Survival Outcomes, Immune Response Signatures, and Candidate Drivers. Mol. Cancer Res. 2018, 16, 90–102. [Google Scholar] [CrossRef] [PubMed]
- Locati, L.D.; Serafini, M.S.; Ianno, M.F.; Carenzo, A.; Orlandi, E.; Resteghin, C.; Cavalieri, S.; Bossi, P.; Canevari, S.; Licitra, L.; et al. Mining of Self-Organizing Map Gene-Expression Portraits Reveals Prognostic Stratification of HPV-Positive Head and Neck Squamous Cell Carcinoma. Cancers 2019, 11, 1057. [Google Scholar] [CrossRef]
- Pinatti, L.M.; Sinha, H.N.; Brummel, C.V.; Goudsmit, C.M.; Geddes, T.J.; Wilson, G.D.; Akervall, J.A.; Brenner, C.J.; Walline, H.M.; Carey, T.E. Association of human papillomavirus integration with better patient outcomes in oropharyngeal squamous cell carcinoma. Head Neck 2021, 43, 544–557. [Google Scholar] [CrossRef]
- Chung, C.H.; Guthrie, V.B.; Masica, D.L.; Tokheim, C.; Kang, H.; Richmon, J.; Agrawal, N.; Fakhry, C.; Quon, H.; Subramaniam, R.M.; et al. Genomic alterations in head and neck squamous cell carcinoma determined by cancer gene-targeted sequencing. Ann. Oncol. 2015, 26, 1216–1223. [Google Scholar] [CrossRef]
- Seiwert, T.Y.; Zuo, Z.; Keck, M.K.; Khattri, A.; Pedamallu, C.S.; Stricker, T.; Brown, C.; Pugh, T.J.; Stojanov, P.; Cho, J.; et al. Integrative and comparative genomic analysis of HPV-positive and HPV-negative head and neck squamous cell carcinomas. Clin. Cancer Res. 2015, 21, 632–641. [Google Scholar] [CrossRef]
- Cancer Genome Atlas, N. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 2015, 517, 576–582. [Google Scholar] [CrossRef]
- Doerstling, S.; Winski, D.; Katsoulakis, E.; Agarwal, P.; Poonnen, P.J.; Snowdon, J.L.; Jackson, G.P.; Weeraratne, D.; Kelley, M.J.; Vashistha, V. Mutational profiles of head and neck squamous cell carcinomas based upon human papillomavirus status in the Veterans Affairs National Precision Oncology Program. J. Cancer Res. Clin. Oncol. 2023, 149, 69–77. [Google Scholar] [CrossRef]
- Krensky, A.M. The HLA system, antigen processing and presentation. Kidney Int. Suppl. 1997, 58, S2–S7. [Google Scholar]
- Lesseur, C.; Diergaarde, B.; Olshan, A.F.; Wunsch-Filho, V.; Ness, A.R.; Liu, G.; Lacko, M.; Eluf-Neto, J.; Franceschi, S.; Lagiou, P.; et al. Genome-wide association analyses identify new susceptibility loci for oral cavity and pharyngeal cancer. Nat. Genet. 2016, 48, 1544–1550. [Google Scholar] [CrossRef] [PubMed]
- Georgopoulos, N.T.; Proffitt, J.L.; Blair, G.E. Transcriptional regulation of the major histocompatibility complex (MHC) class I heavy chain, TAP1 and LMP2 genes by the human papillomavirus (HPV) type 6b, 16 and 18 E7 oncoproteins. Oncogene 2000, 19, 4930–4935. [Google Scholar] [CrossRef]
- Ashrafi, G.H.; Haghshenas, M.R.; Marchetti, B.; O’Brien, P.M.; Campo, M.S. E5 protein of human papillomavirus type 16 selectively downregulates surface HLA class I. Int. J. Cancer 2005, 113, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Hemmat, N.; Baghi, H.B. Human papillomavirus E5 protein, the undercover culprit of tumorigenesis. Infect. Agents Cancer 2018, 13, 31. [Google Scholar] [CrossRef] [PubMed]
- Ablasser, A.; Chen, Z.J. cGAS in action: Expanding roles in immunity and inflammation. Science 2019, 363, eaat8657. [Google Scholar] [CrossRef]
- Shamseddine, A.A.; Burman, B.; Lee, N.Y.; Zamarin, D.; Riaz, N. Tumor Immunity and Immunotherapy for HPV-Related Cancers. Cancer Discov. 2021, 11, 1896–1912. [Google Scholar] [CrossRef]
- Lau, L.; Gray, E.E.; Brunette, R.L.; Stetson, D.B. DNA tumor virus oncogenes antagonize the cGAS-STING DNA-sensing pathway. Science 2015, 350, 568–571. [Google Scholar] [CrossRef]
- Shaikh, M.H.; Bortnik, V.; McMillan, N.A.; Idris, A. cGAS-STING responses are dampened in high-risk HPV type 16 positive head and neck squamous cell carcinoma cells. Microb. Pathog. 2019, 132, 162–165. [Google Scholar] [CrossRef]
- Lyford-Pike, S.; Peng, S.; Young, G.D.; Taube, J.M.; Westra, W.H.; Akpeng, B.; Bruno, T.C.; Richmon, J.D.; Wang, H.; Bishop, J.A.; et al. Evidence for a role of the PD-1:PD-L1 pathway in immune resistance of HPV-associated head and neck squamous cell carcinoma. Cancer Res. 2013, 73, 1733–1741. [Google Scholar] [CrossRef]
- Hong, A.M.; Ferguson, P.; Dodds, T.; Jones, D.; Li, M.; Yang, J.; Scolyer, R.A. Significant association of PD-L1 expression with human papillomavirus positivity and its prognostic impact in oropharyngeal cancer. Oral. Oncol. 2019, 92, 33–39. [Google Scholar] [CrossRef]
- Wang, J.; Sun, H.; Zeng, Q.; Guo, X.J.; Wang, H.; Liu, H.H.; Dong, Z.Y. HPV-positive status associated with inflamed immune microenvironment and improved response to anti-PD-1 therapy in head and neck squamous cell carcinoma. Sci. Rep. 2019, 9, 13404. [Google Scholar] [CrossRef] [PubMed]
- Welters, M.J.P.; Ma, W.; Santegoets, S.; Goedemans, R.; Ehsan, I.; Jordanova, E.S.; van Ham, V.J.; van Unen, V.; Koning, F.; van Egmond, S.I.; et al. Intratumoral HPV16-Specific T Cells Constitute a Type I-Oriented Tumor Microenvironment to Improve Survival in HPV16-Driven Oropharyngeal Cancer. Clin. Cancer Res. 2018, 24, 634–647. [Google Scholar] [CrossRef] [PubMed]
- Heusinkveld, M.; Goedemans, R.; Briet, R.J.; Gelderblom, H.; Nortier, J.W.; Gorter, A.; Smit, V.T.; Langeveld, A.P.; Jansen, J.C.; van der Burg, S.H. Systemic and local human papillomavirus 16-specific T-cell immunity in patients with head and neck cancer. Int. J. Cancer 2012, 131, E74–E85. [Google Scholar] [CrossRef] [PubMed]
- Jung, A.C.; Guihard, S.; Krugell, S.; Ledrappier, S.; Brochot, A.; Dalstein, V.; Job, S.; de Reynies, A.; Noel, G.; Wasylyk, B.; et al. CD8-alpha T-cell infiltration in human papillomavirus-related oropharyngeal carcinoma correlates with improved patient prognosis. Int. J. Cancer 2013, 132, E26–E36. [Google Scholar] [CrossRef]
- Nordfors, C.; Grun, N.; Tertipis, N.; Ahrlund-Richter, A.; Haeggblom, L.; Sivars, L.; Du, J.; Nyberg, T.; Marklund, L.; Munck-Wikland, E.; et al. CD8+ and CD4+ tumour infiltrating lymphocytes in relation to human papillomavirus status and clinical outcome in tonsillar and base of tongue squamous cell carcinoma. Eur. J. Cancer 2013, 49, 2522–2530. [Google Scholar] [CrossRef]
- Punt, S.; Dronkers, E.A.; Welters, M.J.; Goedemans, R.; Koljenovic, S.; Bloemena, E.; Snijders, P.J.; Gorter, A.; van der Burg, S.H.; Baatenburg de Jong, R.J.; et al. A beneficial tumor microenvironment in oropharyngeal squamous cell carcinoma is characterized by a high T cell and low IL-17(+) cell frequency. Cancer Immunol. Immunother. 2016, 65, 393–403. [Google Scholar] [CrossRef]
- Hladikova, K.; Koucky, V.; Boucek, J.; Laco, J.; Grega, M.; Hodek, M.; Zabrodsky, M.; Vosmik, M.; Rozkosova, K.; Vosmikova, H.; et al. Tumor-infiltrating B cells affect the progression of oropharyngeal squamous cell carcinoma via cell-to-cell interactions with CD8(+) T cells. J. Immunother. Cancer 2019, 7, 261. [Google Scholar] [CrossRef]
- Wood, O.; Woo, J.; Seumois, G.; Savelyeva, N.; McCann, K.J.; Singh, D.; Jones, T.; Peel, L.; Breen, M.S.; Ward, M.; et al. Gene expression analysis of TIL rich HPV-driven head and neck tumors reveals a distinct B-cell signature when compared to HPV independent tumors. Oncotarget 2016, 7, 56781–56797. [Google Scholar] [CrossRef]
- Pretscher, D.; Distel, L.V.; Grabenbauer, G.G.; Wittlinger, M.; Buettner, M.; Niedobitek, G. Distribution of immune cells in head and neck cancer: CD8+ T-cells and CD20+ B-cells in metastatic lymph nodes are associated with favourable outcome in patients with oro- and hypopharyngeal carcinoma. BMC Cancer 2009, 9, 292. [Google Scholar] [CrossRef]
- Ou, D.; Adam, J.; Garberis, I.; Blanchard, P.; Nguyen, F.; Levy, A.; Casiraghi, O.; Gorphe, P.; Breuskin, I.; Janot, F.; et al. Influence of tumor-associated macrophages and HLA class I expression according to HPV status in head and neck cancer patients receiving chemo/bioradiotherapy. Radiother. Oncol. 2019, 130, 89–96. [Google Scholar] [CrossRef]
- Nakamura, K.; Smyth, M.J. Myeloid immunosuppression and immune checkpoints in the tumor microenvironment. Cell Mol. Immunol. 2020, 17, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Lang, S.; Bruderek, K.; Kaspar, C.; Hoing, B.; Kanaan, O.; Dominas, N.; Hussain, T.; Droege, F.; Eyth, C.; Hadaschik, B.; et al. Clinical Relevance and Suppressive Capacity of Human Myeloid-Derived Suppressor Cell Subsets. Clin. Cancer Res. 2018, 24, 4834–4844. [Google Scholar] [CrossRef] [PubMed]
- Ferris, R.L.; Blumenschein, G., Jr.; Fayette, J.; Guigay, J.; Colevas, A.D.; Licitra, L.; Harrington, K.; Kasper, S.; Vokes, E.E.; Even, C.; et al. Nivolumab for Recurrent Squamous-Cell Carcinoma of the Head and Neck. N. Engl. J. Med. 2016, 375, 1856–1867. [Google Scholar] [CrossRef] [PubMed]
- Ferris, R.L.; Blumenschein, G., Jr.; Fayette, J.; Guigay, J.; Colevas, A.D.; Licitra, L.; Harrington, K.J.; Kasper, S.; Vokes, E.E.; Even, C.; et al. Nivolumab vs investigator’s choice in recurrent or metastatic squamous cell carcinoma of the head and neck: 2-year long-term survival update of CheckMate 141 with analyses by tumor PD-L1 expression. Oral. Oncol. 2018, 81, 45–51. [Google Scholar] [CrossRef]
- Zandberg, D.P.; Algazi, A.P.; Jimeno, A.; Good, J.S.; Fayette, J.; Bouganim, N.; Ready, N.E.; Clement, P.M.; Even, C.; Jang, R.W.; et al. Durvalumab for recurrent or metastatic head and neck squamous cell carcinoma: Results from a single-arm, phase II study in patients with >/=25% tumour cell PD-L1 expression who have progressed on platinum-based chemotherapy. Eur. J. Cancer 2019, 107, 142–152. [Google Scholar] [CrossRef]
- Seiwert, T.Y.; Burtness, B.; Mehra, R.; Weiss, J.; Berger, R.; Eder, J.P.; Heath, K.; McClanahan, T.; Lunceford, J.; Gause, C.; et al. Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): An open-label, multicentre, phase 1b trial. Lancet Oncol. 2016, 17, 956–965. [Google Scholar] [CrossRef]
- Mehra, R.; Seiwert, T.Y.; Gupta, S.; Weiss, J.; Gluck, I.; Eder, J.P.; Burtness, B.; Tahara, M.; Keam, B.; Kang, H.; et al. Efficacy and safety of pembrolizumab in recurrent/metastatic head and neck squamous cell carcinoma: Pooled analyses after long-term follow-up in KEYNOTE-012. Br. J. Cancer 2018, 119, 153–159. [Google Scholar] [CrossRef]
- Bauml, J.; Seiwert, T.Y.; Pfister, D.G.; Worden, F.; Liu, S.V.; Gilbert, J.; Saba, N.F.; Weiss, J.; Wirth, L.; Sukari, A.; et al. Pembrolizumab for Platinum- and Cetuximab-Refractory Head and Neck Cancer: Results From a Single-Arm, Phase II Study. J. Clin. Oncol. 2017, 35, 1542–1549. [Google Scholar] [CrossRef]
- Colevas, A.D.; Bahleda, R.; Braiteh, F.; Balmanoukian, A.; Brana, I.; Chau, N.G.; Sarkar, I.; Molinero, L.; Grossman, W.; Kabbinavar, F.; et al. Safety and clinical activity of atezolizumab in head and neck cancer: Results from a phase I trial. Ann. Oncol. 2018, 29, 2247–2253. [Google Scholar] [CrossRef]
- Wang, B.C.; Cao, R.B.; Li, P.D.; Fu, C. The effects and safety of PD-1/PD-L1 inhibitors on head and neck cancer: A systematic review and meta-analysis. Cancer Med. 2019, 8, 5969–5978. [Google Scholar] [CrossRef]
- Ferris, R.L.; Haddad, R.; Even, C.; Tahara, M.; Dvorkin, M.; Ciuleanu, T.E.; Clement, P.M.; Mesia, R.; Kutukova, S.; Zholudeva, L.; et al. Durvalumab with or without tremelimumab in patients with recurrent or metastatic head and neck squamous cell carcinoma: EAGLE, a randomized, open-label phase III study. Ann. Oncol. 2020, 31, 942–950. [Google Scholar] [CrossRef] [PubMed]
- Psyrri, A.; Fayette, J.; Harrington, K.; Gillison, M.; Ahn, M.J.; Takahashi, S.; Weiss, J.; Machiels, J.P.; Baxi, S.; Vasilyev, A.; et al. Durvalumab with or without tremelimumab versus the EXTREME regimen as first-line treatment for recurrent or metastatic squamous cell carcinoma of the head and neck: KESTREL, a randomized, open-label, phase III study. Ann. Oncol. 2023, 34, 262–274. [Google Scholar] [CrossRef] [PubMed]
- Siu, L.L.; Even, C.; Mesia, R.; Remenar, E.; Daste, A.; Delord, J.P.; Krauss, J.; Saba, N.F.; Nabell, L.; Ready, N.E.; et al. Safety and Efficacy of Durvalumab With or Without Tremelimumab in Patients With PD-L1-Low/Negative Recurrent or Metastatic HNSCC: The Phase 2 CONDOR Randomized Clinical Trial. JAMA Oncol. 2019, 5, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Struckmeier, A.K.; Gosau, M.; Smeets, R. Immunotherapeutic strategies beyond the PD-1/PD-L1 pathway in head and neck squamous cell carcinoma—A scoping review on current developments in agents targeting TIM-3, TIGIT, LAG-3, and VISTA. Oral. Oncol. 2025, 161, 107145. [Google Scholar] [CrossRef]
- Zhang, S.; Zheng, M.; Nie, D.; Xu, L.; Tian, H.; Wang, M.; Liu, W.; Feng, Z.; Han, F. Efficacy of cetuximab plus PD-1 inhibitor differs by HPV status in head and neck squamous cell carcinoma: A systematic review and meta-analysis. J. Immunother. Cancer 2022, 10, e005158. [Google Scholar] [CrossRef]
- Mock, A.; Plath, M.; Moratin, J.; Tapken, M.J.; Jager, D.; Krauss, J.; Frohling, S.; Hess, J.; Zaoui, K. EGFR and PI3K Pathway Activities Might Guide Drug Repurposing in HPV-Negative Head and Neck Cancers. Front. Oncol. 2021, 11, 678966. [Google Scholar] [CrossRef]
- Chaturvedi, A.K.; Graubard, B.I.; Broutian, T.; Pickard, R.K.L.; Tong, Z.Y.; Xiao, W.; Kahle, L.; Gillison, M.L. Effect of Prophylactic Human Papillomavirus (HPV) Vaccination on Oral HPV Infections Among Young Adults in the United States. J. Clin. Oncol. 2018, 36, 262–267. [Google Scholar] [CrossRef]
- Wang, C.; Dickie, J.; Sutavani, R.V.; Pointer, C.; Thomas, G.J.; Savelyeva, N. Targeting Head and Neck Cancer by Vaccination. Front. Immunol. 2018, 9, 830. [Google Scholar] [CrossRef]
- D’Abramo, C.M.; Archambault, J. Small molecule inhibitors of human papillomavirus protein—Protein interactions. Open Virol. J. 2011, 5, 80–95. [Google Scholar] [CrossRef]
- Devaraja, K.; Aggarwal, S.; Singh, M. Therapeutic Vaccination in Head and Neck Squamous Cell Carcinoma-A Review. Vaccines 2023, 11, 634. [Google Scholar] [CrossRef]
- Filippini, D.M.; Broseghini, E.; Liberale, C.; Gallerani, G.; Siepe, G.; Nobili, E.; Ferracin, M.; Molteni, G. Vaccine-Based Immunotherapy for Oropharyngeal and Nasopharyngeal Cancers. J. Clin. Med. 2025, 14, 1170. [Google Scholar] [CrossRef] [PubMed]
- Lopes, A.; Vandermeulen, G.; Preat, V. Cancer DNA vaccines: Current preclinical and clinical developments and future perspectives. J. Exp. Clin. Cancer Res. 2019, 38, 146. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, C.; Cohen, R.B.; Morrow, M.P.; Kraynyak, K.A.; Sylvester, A.J.; Knoblock, D.M.; Bauml, J.M.; Weinstein, G.S.; Lin, A.; Boyer, J.; et al. Immunotherapy Targeting HPV16/18 Generates Potent Immune Responses in HPV-Associated Head and Neck Cancer. Clin. Cancer Res. 2019, 25, 110–124. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, C.; Saba, N.F.; Algazi, A.; Sukari, A.; Seiwert, T.Y.; Haigentz, M.; Porosnicu, M.; Bonomi, M.; Boyer, J.; Esser, M.T.; et al. Safety and Efficacy of MEDI0457 plus Durvalumab in Patients with Human Papillomavirus-Associated Recurrent/Metastatic Head and Neck Squamous Cell Carcinoma. Clin. Cancer Res. 2023, 29, 560–570. [Google Scholar] [CrossRef]
- Chandra, J.; Woo, W.P.; Finlayson, N.; Liu, H.Y.; McGrath, M.; Ladwa, R.; Brauer, M.; Xu, Y.; Hanson, S.; Panizza, B.; et al. A phase 1, single centre, open label, escalating dose study to assess the safety, tolerability and immunogenicity of a therapeutic human papillomavirus (HPV) DNA vaccine (AMV002) for HPV-associated head and neck cancer (HNC). Cancer Immunol. Immunother. 2021, 70, 743–753. [Google Scholar] [CrossRef]
- Ladwa, R.; Chandra, J.; Woo, W.P.; Finlayson, N.; Liu, H.; McGrath, M.; See, A.; Hughes, B.G.; Cooper, C.L.; Jackson, J.E.; et al. A phase Ib study to assess the safety of the human papillomavirus DNA vaccine (AMV002) in combination with durvalumab for HPV-associated oropharyngeal squamous cell carcinoma. Front. Oncol. 2024, 14, 1419258. [Google Scholar] [CrossRef]
- Ottensmeier, C.; King, E.; Crabb, S.; Karydis, I.; Graham, D.M.; Martin, K.; Eberhart, I.; Ewings, S.; Lee, P.; McCann, K.; et al. A phase I/II trial of therapeutic HPV vaccine (BNT113) in patients with HPV16 driven carcinoma. Ann. Oncol. 2024, 35, S680. [Google Scholar] [CrossRef]
- Saba, N.F.; Klinghammer, K.; Castelluci, E.; Colevas, A.D.; Rutkowski, T.; Thurner, D.; Muller-Richter, U.; Maio, M.; Grewal, J.S.; Ottensmeier, C.; et al. Exploratory efficacy and translational results from the safety run in of AHEAD-MERIT, a phase II trial of first line pembrolizumab plus the fixed-antigen cancer vaccine BNT113 in advanced HPV16+ HNSCC. Ann. Oncol. 2024, 35, S627. [Google Scholar] [CrossRef]
- Smalley Rumfield, C.; Pellom, S.T.; Morillon Ii, Y.M.; Schlom, J.; Jochems, C. Immunomodulation to enhance the efficacy of an HPV therapeutic vaccine. J. Immunother. Cancer 2020, 8, e000612. [Google Scholar] [CrossRef]
- Weiss, J.; Kaczmar, J.; Harrington, K.J.; Mehra, R.; Worden, F.; Zinner, R.; Giri, A.; Kang, H.; Najeeb, S.; Panella, T.; et al. VERSATILE-002: Survival with first-line treatment with PDS0101 therapeutic vaccine and pembrolizumab in HPV16-positive recurrent/metastatic head and neck squamous cell carcinoma (HNSCC). Ann. Oncol. 2024, 35, S628. [Google Scholar] [CrossRef]
- PDSB, PDS Biotech Announces Interim 24-Month Survival Rate of 74% in Immune Checkpoint Inhibitor Naïve Head and Neck Cancer Patients Treated with PDS0101 in Combination with KEYTRUDA® (pembrolizumab). 2023. Available online: https://www.globenewswire.com/news-release/2023/10/03/2753452/37149/en/PDS-Biotech-Announces-Interim-24-Month-Survival-Rate-of-74-in-Immune-Checkpoint-Inhibitor-Na%C3%AFve-Head-and-Neck-Cancer-Patients-Treated-with-PDS0101-in-Combination-with-KEYTRUDA-pemb.html (accessed on 14 May 2025).
- Strauss, J.; Floudas, C.S.; Pastor, D.M.; Manu, M.; Lamping, E.; Francis, D.C.; Cordes, L.M.; Marte, J.; Donahue, R.N.; Jochems, C.; et al. Phase II evaluation of the combination of PDS0101, M9241, and bintrafusp alfa in patients with HPV 16+ malignancies. J. Clin. Oncol. 2022, 40, 2518. [Google Scholar] [CrossRef]
- Fallon, J.; Tighe, R.; Kradjian, G.; Guzman, W.; Bernhardt, A.; Neuteboom, B.; Lan, Y.; Sabzevari, H.; Schlom, J.; Greiner, J.W. The immunocytokine NHS-IL12 as a potential cancer therapeutic. Oncotarget 2014, 5, 1869–1884. [Google Scholar] [CrossRef] [PubMed]
- Kenter, G.G.; Welters, M.J.; Valentijn, A.R.; Lowik, M.J.; Berends-van der Meer, D.M.; Vloon, A.P.; Essahsah, F.; Fathers, L.M.; Offringa, R.; Drijfhout, J.W.; et al. Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N. Engl. J. Med. 2009, 361, 1838–1847. [Google Scholar] [CrossRef] [PubMed]
- Massarelli, E.; William, W.; Johnson, F.; Kies, M.; Ferrarotto, R.; Guo, M.; Feng, L.; Lee, J.J.; Tran, H.; Kim, Y.U.; et al. Combining Immune Checkpoint Blockade and Tumor-Specific Vaccine for Patients With Incurable Human Papillomavirus 16-Related Cancer: A Phase 2 Clinical Trial. JAMA Oncol. 2019, 5, 67–73. [Google Scholar] [CrossRef]
- Even, C.; Harrington, K.J.; Massarelli, E.; Hesselink, M.K.; Visscher, S.; Fury, M.G.; Sanders, F.; Laban, S.; Fayette, J.; Oliva, M.; et al. Results of a randomized, double-blind, placebo-controlled, phase 2 study (OpcemISA) of the combination of ISA101b and cemiplimab versus cemiplimab for recurrent/metastatic (R/M) HPV16-positive oropharyngeal cancer (OPC). J. Clin. Oncol. 2024, 42, 6003. [Google Scholar] [CrossRef]
- Yang, A.; Jeang, J.; Cheng, K.; Cheng, T.; Yang, B.; Wu, T.C.; Hung, C.F. Current state in the development of candidate therapeutic HPV vaccines. Expert. Rev. Vaccines 2016, 15, 989–1007. [Google Scholar] [CrossRef]
- Cory, L.; Chu, C. ADXS-HPV: A therapeutic Listeria vaccination targeting cervical cancers expressing the HPV E7 antigen. Hum. Vaccin. Immunother. 2014, 10, 3190–3195. [Google Scholar] [CrossRef]
- Sacco, J.J.; Evans, M.; Harrington, K.J.; Man, S.; Powell, N.; Shaw, R.J.; Jones, T.M. Systemic listeriosis following vaccination with the attenuated Listeria monocytogenes therapeutic vaccine, ADXS11-001. Hum. Vaccin. Immunother. 2016, 12, 1085–1086. [Google Scholar] [CrossRef]
- Ho, A.L.; Pearson, A.T.; Fu, S.; Posner, M.R.; Adkins, D.; Nabell, L.; Niu, J.; Richardson, D.L.; Leidner, R.S.; Chung, K.; et al. Characterization of tumor specific CD8+ T cell responses in patients with recurrent/metastatic HPV16-positive head and neck cancer receiving HB-200 monotherapy as second or later line treatment in a phase 1 study. J. Immunother. Cancer 2023, 11, 770. [Google Scholar]
- Ho, A.L.; Nabell, L.; Neupane, P.C.; Posner, M.R.; Yilmaz, E.; Niu, J.; Naqash, A.R.; Pearson, A.T.; Wong, S.J.; Nieva, J.J.; et al. HB-200 arenavirus-based immunotherapy plus pembrolizumab as first-line treatment of patients with recurrent/metastatic HPV16-positive head and neck cancer: Updated results. J. Clin. Oncol. 2024, 42, 6005. [Google Scholar] [CrossRef]
- Pellom, S.T.; Smalley Rumfield, C.; Morillon, Y.M., 2nd; Roller, N.; Poppe, L.K.; Brough, D.E.; Sabzevari, H.; Schlom, J.; Jochems, C. Characterization of recombinant gorilla adenovirus HPV therapeutic vaccine PRGN-2009. JCI Insight 2021, 6, e141912. [Google Scholar] [CrossRef] [PubMed]
- Floudas, C.S.; Strauss, J.; Redman, J.M.; Pastor, D.M.; Turkbey, E.B.; Donahue, R.N.; Jochems, C.; McMahon, S.; Lamping, E.; Cordes, L.M.; et al. Phase I evaluation of PRGN-2009 alone and in combination with bintrafusp alfa in patients (pts) with recurrent/metastatic (R/M) HPV-associated cancers (HPV-C). J. Clin. Oncol. 2023, 41, 2628. [Google Scholar] [CrossRef]
- Bhatt, K.H.; Neller, M.A.; Srihari, S.; Crooks, P.; Lekieffre, L.; Aftab, B.T.; Liu, H.; Smith, C.; Kenny, L.; Porceddu, S.; et al. Profiling HPV-16-specific T cell responses reveals broad antigen reactivities in oropharyngeal cancer patients. J. Exp. Med. 2020, 217, e20200389. [Google Scholar] [CrossRef] [PubMed]
- Eberhardt, C.S.; Kissick, H.T.; Patel, M.R.; Cardenas, M.A.; Prokhnevska, N.; Obeng, R.C.; Nasti, T.H.; Griffith, C.C.; Im, S.J.; Wang, X.; et al. Functional HPV-specific PD-1(+) stem-like CD8 T cells in head and neck cancer. Nature 2021, 597, 279–284. [Google Scholar] [CrossRef]
- Krishna, S.; Ulrich, P.; Wilson, E.; Parikh, F.; Narang, P.; Yang, S.; Read, A.K.; Kim-Schulze, S.; Park, J.G.; Posner, M.; et al. Human Papilloma Virus Specific Immunogenicity and Dysfunction of CD8(+) T Cells in Head and Neck Cancer. Cancer Res. 2018, 78, 6159–6170. [Google Scholar] [CrossRef]
- Le Tourneau, C.; Delord, J.P.; Lalanne, A.; Jamet, C.; Spring-Giusti, C.; Tavernaro, A.; Bastien, B.; Brandely-Talbot, M.; Quemeneur, E.; Onoue, K.; et al. Randomized phase I trial of adjuvant individualized TG4050 vaccine in patients with locally advanced resected HPV-negative head and neck squamous cell carcinoma (HNSCC). J. Immunother. Cancer 2024, 12. [Google Scholar]
- Topalian, S.L.; Solomon, D.; Avis, F.P.; Chang, A.E.; Freerksen, D.L.; Linehan, W.M.; Lotze, M.T.; Robertson, C.N.; Seipp, C.A.; Simon, P.; et al. Immunotherapy of patients with advanced cancer using tumor-infiltrating lymphocytes and recombinant interleukin-2: A pilot study. J. Clin. Oncol. 1988, 6, 839–853. [Google Scholar] [CrossRef]
- Morotti, M.; Albukhari, A.; Alsaadi, A.; Artibani, M.; Brenton, J.D.; Curbishley, S.M.; Dong, T.; Dustin, M.L.; Hu, Z.; McGranahan, N.; et al. Promises and challenges of adoptive T-cell therapies for solid tumours. Br. J. Cancer 2021, 124, 1759–1776. [Google Scholar] [CrossRef]
- Canelo-Vilaseca, M.; Sabbah, M.; Di Blasi, R.; Cristinelli, C.; Sureda, A.; Caillat-Zucman, S.; Thieblemont, C. Lymphodepletion chemotherapy in chimeric antigen receptor-engineered T (CAR-T) cell therapy in lymphoma. Bone Marrow Transplant. 2025, 60, 559–567. [Google Scholar] [CrossRef]
- Albarran, V.; San Roman, M.; Pozas, J.; Chamorro, J.; Rosero, D.I.; Guerrero, P.; Calvo, J.C.; Gonzalez, C.; Garcia de Quevedo, C.; Perez de Aguado, P.; et al. Adoptive T cell therapy for solid tumors: Current landscape and future challenges. Front. Immunol. 2024, 15, 1352805. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, G.; Wan, X. Challenges and new technologies in adoptive cell therapy. J. Hematol. Oncol. 2023, 16, 97. [Google Scholar] [CrossRef] [PubMed]
- Doran, S.L.; Stevanovic, S.; Adhikary, S.; Gartner, J.J.; Jia, L.; Kwong, M.L.M.; Faquin, W.C.; Hewitt, S.M.; Sherry, R.M.; Yang, J.C.; et al. T-Cell Receptor Gene Therapy for Human Papillomavirus-Associated Epithelial Cancers: A First-in-Human, Phase I/II Study. J. Clin. Oncol. 2019, 37, 2759–2768. [Google Scholar] [CrossRef] [PubMed]
- Nagarsheth, N.B.; Norberg, S.M.; Sinkoe, A.L.; Adhikary, S.; Meyer, T.J.; Lack, J.B.; Warner, A.C.; Schweitzer, C.; Doran, S.L.; Korrapati, S.; et al. TCR-engineered T cells targeting E7 for patients with metastatic HPV-associated epithelial cancers. Nat. Med. 2021, 27, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Jin, B.Y.; Campbell, T.E.; Draper, L.M.; Stevanovic, S.; Weissbrich, B.; Yu, Z.; Restifo, N.P.; Rosenberg, S.A.; Trimble, C.L.; Hinrichs, C.S. Engineered T cells targeting E7 mediate regression of human papillomavirus cancers in a murine model. JCI Insight 2018, 3, e99488. [Google Scholar] [CrossRef]
- Jimeno, A.; Papa, S.; Haigentz, M.; Rodriguez-Moreno, J.; Schardt, J.; Fardis, M.; Finckenstein, G.; Fiaz, R.; Chen, G.; Cacovean, A.; et al. Safety and efficacy of tumor infiltrating lymphocytes (TIL, LN-145) in combination with pembrolizumab for advanced, recurrent or metastatic HNSCC. J. Immunother. Cancer 2020, 8, A378. [Google Scholar]
- Biologics, T. Turnstone Biologics Corp. Reports Positive Initial Data from Phase 1 Trial of TIDAL-01 in Metastatic Colorectal Cancer; Biospace: West Des Moines, IA, USA, 2024. [Google Scholar]
- Pikor, L.A.; Bernard, A.; Brassard, N.; Fritzsche, A.; Kluew, A.; Jilesen, Z.K.; Nikota, J.; Bareja, R.; Laing, C.; Stojdl, D.F.; et al. TIDAL-01: A selected TIL process that enriches for neoantigen reactive TIL in solid tumors. Cancer Res. 2023, 83, 4049. [Google Scholar] [CrossRef]
- Biologics, T. Turnstone Biologics Announces Plans to Explore Strategic Alternatives; Turnstone Biologics Corp.: La Jolla, CA, USA, 2025. [Google Scholar]
- Seidel, R.D.; Merazga, Z.; Thapa, D.R.; Soriano, J.; Spaulding, E.; Vakkasoglu, A.S.; Ruthardt, P.; Bautista, W.; Quayle, S.N.; Kiener, P.A.; et al. Peptide-HLA-based immunotherapeutics platforms for direct modulation of antigen-specific T cells. Sci. Rep. 2021, 11, 19220. [Google Scholar] [CrossRef]
- Quayle, S.N.; Girgis, N.; Thapa, D.R.; Merazga, Z.; Kemp, M.M.; Histed, A.; Zhao, F.; Moreta, M.; Ruthardt, P.; Hulot, S.; et al. CUE-101, a Novel E7-pHLA-IL2-Fc Fusion Protein, Enhances Tumor Antigen-Specific T-Cell Activation for the Treatment of HPV16-Driven Malignancies. Clin. Cancer Res. 2020, 26, 1953–1964. [Google Scholar] [CrossRef]
- Colevas, A.D.; Chung, C.H.; Adkins, D.; Rodriguez, C.P.; Park, J.C.; Gibson, M.K.; Sukari, A.; Worden, F.P.; Johnson, F.M.; Saba, N.F.; et al. A phase 1 dose-escalation and expansion study of CUE-101, given as monotherapy and in combination with pembrolizumab, in patients with recurrent/metastatic HPV16+ head and neck squamous cell cancer (R/M HNSCC). J. Clin. Oncol. 2024, 42, 6004. [Google Scholar] [CrossRef]
- Harbison, R.A.; Kubik, M.; Konnick, E.Q.; Zhang, Q.; Lee, S.G.; Park, H.; Zhang, J.; Carlson, C.S.; Chen, C.; Schwartz, S.M.; et al. The mutational landscape of recurrent versus nonrecurrent human papillomavirus-related oropharyngeal cancer. JCI Insight 2018, 3, e99327. [Google Scholar] [CrossRef]
- Gleber-Netto, F.O.; Rao, X.; Guo, T.; Xi, Y.; Gao, M.; Shen, L.; Erikson, K.; Kalu, N.N.; Ren, S.; Xu, G.; et al. Variations in HPV function are associated with survival in squamous cell carcinoma. JCI Insight 2019, 4, e124762. [Google Scholar] [CrossRef] [PubMed]
- Ahrlund-Richter, A.; Holzhauser, S.; Dalianis, T.; Nasman, A.; Mints, M. Whole-Exome Sequencing of HPV Positive Tonsillar and Base of Tongue Squamous Cell Carcinomas Reveals a Global Mutational Pattern along with Relapse-Specific Somatic Variants. Cancers 2021, 14, 77. [Google Scholar] [CrossRef] [PubMed]
- Lechner, M.; Liu, J.; Masterson, L.; Fenton, T.R. HPV-associated oropharyngeal cancer: Epidemiology, molecular biology and clinical management. Nat. Rev. Clin. Oncol. 2022, 19, 306–327. [Google Scholar] [CrossRef] [PubMed]
- Bertagnin, C.; Messa, L.; Pavan, M.; Celegato, M.; Sturlese, M.; Mercorelli, B.; Moro, S.; Loregian, A. A small molecule targeting the interaction between human papillomavirus E7 oncoprotein and cellular phosphatase PTPN14 exerts antitumoral activity in cervical cancer cells. Cancer Lett. 2023, 571, 216331. [Google Scholar] [CrossRef]
- Celegato, M.; Messa, L.; Bertagnin, C.; Mercorelli, B.; Loregian, A. Targeted Disruption of E6/p53 Binding Exerts Broad Activity and Synergism with Paclitaxel and Topotecan against HPV-Transformed Cancer Cells. Cancers 2021, 14, 193. [Google Scholar] [CrossRef]
- Bekes, M.; Langley, D.R.; Crews, C.M. PROTAC targeted protein degraders: The past is prologue. Nat. Rev. Drug Discov. 2022, 21, 181–200. [Google Scholar] [CrossRef]
- Mukerjee, N.; Maitra, S.; Gorai, S.; Ghosh, A.; Alexiou, A.; Thorat, N.D. Revolutionizing Human papillomavirus (HPV)-related cancer therapies: Unveiling the promise of Proteolysis Targeting Chimeras (PROTACs) and Proteolysis Targeting Antibodies (PROTABs) in cancer nano-vaccines. J. Med. Virol. 2023, 95, e29135. [Google Scholar] [CrossRef]
- Nishida, H.; Matsumoto, Y.; Kawana, K.; Christie, R.J.; Naito, M.; Kim, B.S.; Toh, K.; Min, H.S.; Yi, Y.; Matsumoto, Y.; et al. Systemic delivery of siRNA by actively targeted polyion complex micelles for silencing the E6 and E7 human papillomavirus oncogenes. J. Control. Release 2016, 231, 29–37. [Google Scholar] [CrossRef]
- Sato, N.; Saga, Y.; Uchibori, R.; Tsukahara, T.; Urabe, M.; Kume, A.; Fujiwara, H.; Suzuki, M.; Ozawa, K.; Mizukami, H. Eradication of cervical cancer in vivo by an AAV vector that encodes shRNA targeting human papillomavirus type 16 E6/E7. Int. J. Oncol. 2018, 52, 687–696. [Google Scholar]
- Zhou, J.; Li, B.; Peng, C.; Wang, F.; Fu, Z.; Zhou, C.; Hong, D.; Ye, F.; Lu, W.; Xie, X. Inhibition of cervical cancer cell growth in vitro and in vivo by lentiviral-vector mediated shRNA targeting the common promoter of HPV16 E6 and E7 oncogenes. Antiviral Res. 2013, 98, 305–313. [Google Scholar] [CrossRef]
- Hong, D.; Lu, W.; Ye, F.; Hu, Y.; Xie, X. Gene silencing of HPV16 E6/E7 induced by promoter-targeting siRNA in SiHa cells. Br. J. Cancer 2009, 101, 1798–1804. [Google Scholar] [CrossRef] [PubMed]
- Jubair, L.; Fallaha, S.; McMillan, N.A.J. Systemic Delivery of CRISPR/Cas9 Targeting HPV Oncogenes Is Effective at Eliminating Established Tumors. Mol. Ther. 2019, 27, 2091–2099. [Google Scholar] [CrossRef] [PubMed]
- Zhen, S.; Qiang, R.; Lu, J.; Tuo, X.; Yang, X.; Li, X. CRISPR/Cas9-HPV-liposome enhances antitumor immunity and treatment of HPV infection-associated cervical cancer. J. Med. Virol. 2023, 95, e28144. [Google Scholar] [CrossRef] [PubMed]
- Faucher, A.M.; White, P.W.; Brochu, C.; Grand-Maitre, C.; Rancourt, J.; Fazal, G. Discovery of small-molecule inhibitors of the ATPase activity of human papillomavirus E1 helicase. J. Med. Chem. 2004, 47, 18–21. [Google Scholar] [CrossRef]
NCT Number | Design | Population | Treatment | Vaccine Target | Primary Outcome | Status * |
---|---|---|---|---|---|---|
DNA-based vaccines | ||||||
NCT06016920 | Phase I/II, multi-center, non-randomized, n = 51 | Previously untreated recurrent/metastatic HPV-16-positive HNSCC with PD-L1 CPS ≥ 1 | VB10.16 with pembrolizumab | HPV-16 E6/E7 | Phase I: DLT, AEs Phase II: ORR, immune response | Recruiting |
RNA-based vaccines | ||||||
NCT04534205 (AHEAD-MERIT) | Phase II/III, multi-center, randomized, n = 350 | Previously untreated recurrent/metastatic HPV-16-positive HNSCC with PD-L1 CPS ≥ 1 | BNT113 with pembrolizumab vs. pembrolizumab monotherapy | HPV-16 E6/E7 | Part A: AEs Part B: OS, PFS | Recruiting |
Peptide-based vaccines | ||||||
NCT04260126 (VERSATILE-002) | Phase II, multi-center, multi-cohort, non-randomized, n = 95 | Recurrent/metastatic HPV-16-positive HNSCC, PD-L1 CPS ≥ 1 if checkpoint inhibitor-naïve, any PD-L1 CPS if checkpoint inhibitor-experienced | PDS0101 with pembrolizumab | HPV-16 E6/E7 | ORR | Active, not recruiting |
NCT06790966 (VERSATILE-003) | Phase III, multi-center, randomized, n = 351 | Previously untreated recurrent/metastatic HPV-16-positive HNSCC with PD-L1 CPS ≥ 1 | PDS0101 with pembrolizumab vs. pembrolizumab monotherapy | HPV-16 E6/E7 | OS | Recruiting |
NCT05232851 | Phase I/II, single-center, multi-arm, non-randomized, n = 24 | Locally advanced OPSCC with high-risk HPV-specific testing and at least one risk factor | PDS0101 alone or with pembrolizumab | HPV-16 E6/E7 | Pathologic and HPV cell-free tumor DNA response | Recruiting |
NCT03669718 (OpcemISA) | Phase II, multi-center, randomized, n = 198 | Recurrent/metastatic HPV-16-positive OPSCC with PD-L1 CPS ≥ 1, anti-PD-1 therapy-naïve, first- or second-line setting | ISA101b with cemiplimab vs. cemiplimab monotherapy | HPV-16 E6/E7 | ORR, AEs | Active, not recruiting |
NCT04398524 | Phase II, multi-center, single-arm, n = 65 | Recurrent/metastatic HPV-16-positive OPSCC with progression on prior anti-PD-1 therapy | ISA101b with cemiplimab | HPV-16 E6/E7 | ORR | Active, not recruiting |
Viral vector-based vaccines | ||||||
NCT04180215 | Phase I/II, multi-center, multi-cohort, non-randomized, n = 200 | Recurrent/metastatic HPV-16-positive HNSCC eligible to receive pembrolizumab as standard of care | HB-201 alone or HB-201 and HB-202 combination, with standard-of-care regimen including pembrolizumab | HPV-16 E6/E7 | Phase I: DLT, RP2D Phase II: ORR | Active, not recruiting |
NCT05108870 | Phase I/II, single-center, randomized, n = 98 | Locally advanced HPV-16-positive OPSCC, cT3-T4 (any N), or cN1-N3 | Neoadjuvant HB-201 alone vs. HB-201 and HB-202 combination, both with carboplatin and paclitaxel chemotherapy prior to definitive therapy | HPV-16 E6/E7 | Phase I: DLT, AEs Phase II: Deep response rates | Recruiting |
NCT04432597 | Phase I/II, single-center, multi-arm, non-randomized, n = 70 | Locally advanced or metastatic HPV-associated cancer (Phase I); stage II–III p16-postive OPSCC (phase II) | PRGN-2009 alone or with bintrafusp alfa (M7824) | HPV-16 and HPV-18 E6/E7 | Phase I: RP2D, safety Phase II: Increase in CD3+ tumor-infiltrating T-cells | Active, not recruiting |
NCT05996523 | Phase II, single-center, single-arm, n = 29 | Stage I-II p16-positive OPSCC planned for definitive surgery or chemoradiation | PRGN-2009 with pembrolizumab prior to definitive therapy | HPV-16 and HPV-18 E6/E7 | Increase in CD3+ tumor-infiltrating T-cells | Recruiting |
NCT06223568 | Phase II, single-center, multi-arm, randomized, n = 70 | Resectable stage I-II OPSCC, HPV-associated with any high-risk serotype | Neoadjuvant cisplatin and docetaxel chemotherapy alone or with PRGN-2009 prior to surgery | HPV-16 and HPV-18 E6/E7 | pCR rate | Recruiting |
NCT06319963 | Phase I/II, multi-center, multi-cohort, non-randomized, n = 72 | Arm A: Recurrent/metastatic HPV-associated OPSCC or cervical cancer Arm B: Untreated, locally advanced HPV-associated OPSCC (cT1-2N2-3, cT3-4N0-3) or cervical cancer (Stage IB-IVA) | Lenti-HPV-07 | HPV-16 and HPV-18 E6/E7 | AEs, optimal biological dose | Recruiting |
NCT Number | Design | Population | Treatment | Primary Outcome | Status * |
---|---|---|---|---|---|
Genetically modified TCR therapies (all with HPV- and HLA-specific enrollment criteria) | |||||
NCT05639972 | Phase I/II, single-center, single-arm, feasibility, n = 15 | Locoregionally advanced HPV-16-positive cancer and HLA-A*02:01 allele | E7 TCR T-cells | Feasibility of administration | Recruiting |
NCT05686226 | Phase II, single-center, single-arm, n = 20 | Recurrent/metastatic HPV-16-positive cancer and HLA-A*02:01 allele | E7 TCR T-cells | ORR | Recruiting |
NCT05973487 | Phase I, multi-center, non-randomized, multi-cohort, n = 840 | Unresectable/metastatic solids tumors; HPV-16-positive with HLA-A*02:01 allele in cohort C; includes additional combination cohorts with a second target antigen | E7 TCR T-cells as monotherapy and in combination with other TCRs targeting MAGE-A1, MAGE-A4, MAGE-C2, PRAME | Safety, RP2D | Recruiting |
NCT02858310 | Phase I/II, multi-center, single-arm, n = 180 | Recurrent/metastatic HPV-16-positive cancers with HLA-A*02:01 allele | E7 TCR T-cells | Phase I: Safety Phase II: ORR | Recruiting |
NCT05787535 | Phase I, single-center, single-arm, n = 17 | Recurrent/metastatic HPV-18-positive solid tumors and HLA-DRB1*09:01 allele | HRYZ-T101 TCR T-cells | DLT, AEs | Recruiting |
NCT05952947 | Phase I, multi-center, single-arm, n = 32 | Recurrent/metastatic HPV-18-positive solid tumors and HLA-DRB1*09:01 allele | HRYZ-T101 TCR T-cells | DLT, AEs | Recruiting |
CAR-T or CAR-NK cell therapies | |||||
NCT06096038 | Phase I/II, single-center, single-arm, n = 33 | Recurrent/metastatic HNSCC | Autologous CAR-T against CSPG4 | AEs | Recruiting |
NCT04119024 | Phase I, multi-center, single-arm, n = 18 | Solid tumors expressing IL13Ralpha2 | Autologous CAR-T against IL13Ralpha2 | DLT, AEs | Recruiting |
NCT05239143 | Phase I, multi-center, multi-cohort, non-randomized, n = 180 | Advanced/metastatic epithelial-derived cancers | Allogeneic CAR-T against MUC1-C | DLT, AEs, ORR | Active, not recruiting |
NCT06682793 (DENALI-1) | Phase I/II, multi-center, single-arm, n = 240 | Unresectable/metastatic solid tumors expressing EGFR and with loss of HLA-A*02 expression; requires germline HLA-A*02 heterozygosity | Allogeneic logic-gated TmodTM CAR-T (A2B395) | Phase I: DLT, AEs, RP2D Phase II: ORR | Not yet recruiting |
NCT06383507 | Phase I, single-center, single-arm, n = 18 | Relapsed/refractory CD70 positive solid tumors | Allogeneic CAR-T against CD70 | AEs | Recruiting |
NCT04847466 | Phase II, single-center, single-arm, n = 55 | Recurrent/metastatic gastric or head and neck cancer with prior chemotherapy and anti-PD-1 therapy | Allogeneic CAR-NK cells against PD-L1, combined with pembrolizumab | ORR | Recruiting |
TIL therapies | |||||
NCT03645928 (IOV-COM-202) | Phase II, multi-center, multi-cohort, non-randomized, n = 245 | Advanced melanoma, HNSCC, and NSCLC; recurrent/metastatic HNSCC in cohort 2A without prior checkpoint inhibitors | Autologous TIL (LN-145, lifileucel) combined with pembrolizumab | ORR, grade ≥ 3 AEs | Recruiting |
NCT05902520 | Phase I, single-center, multi-arm, randomized, n = 18 | Unresectable/metastatic solid tumors | Autologous double-positive (CD39+, CD103+) CD8+ TIL (AGX148) with or without siRNA PD-1 modulation | AEs | Recruiting |
NCT06236425 | Phase I, single-center, multi-arm, non-randomized, n = 15 | Recurrent/metastatic HNSCC with previous progression on pembrolizumab or pembrolizumab/platinum chemotherapy | Autologous TIL leveraging single-cell sorting of patient-specific neoepitope-reactive T-cells (TBio-4101), combined with pembrolizumab | AEs | Recruiting |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, F.; Colevas, A.D. Update: Immunotherapeutic Strategies in HPV-Associated Head and Neck Squamous Cell Carcinoma. Viruses 2025, 17, 712. https://doi.org/10.3390/v17050712
Sun F, Colevas AD. Update: Immunotherapeutic Strategies in HPV-Associated Head and Neck Squamous Cell Carcinoma. Viruses. 2025; 17(5):712. https://doi.org/10.3390/v17050712
Chicago/Turabian StyleSun, Fangdi, and A. Dimitrios Colevas. 2025. "Update: Immunotherapeutic Strategies in HPV-Associated Head and Neck Squamous Cell Carcinoma" Viruses 17, no. 5: 712. https://doi.org/10.3390/v17050712
APA StyleSun, F., & Colevas, A. D. (2025). Update: Immunotherapeutic Strategies in HPV-Associated Head and Neck Squamous Cell Carcinoma. Viruses, 17(5), 712. https://doi.org/10.3390/v17050712