Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (161)

Search Parameters:
Keywords = TFC membranes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3055 KiB  
Article
High-Performance Thin Film Composite Nanofiltration (NF) Membrane Constructed on Modified Polyvinylidene Fluoride (PVDF) Substrate
by Junliang Dong, Qianzhi Sun, Xiaolin Feng and Ruijun Zhang
Membranes 2025, 15(7), 216; https://doi.org/10.3390/membranes15070216 - 20 Jul 2025
Viewed by 385
Abstract
The inherent hydrophobic nature of PVDF material renders it challenging to establish a stable aqueous hydration layer, thereby limiting its suitability as a substrate for the preparation of nanofiltration (NF) membranes. In this study, we developed a novel modification approach that effectively enhances [...] Read more.
The inherent hydrophobic nature of PVDF material renders it challenging to establish a stable aqueous hydration layer, thereby limiting its suitability as a substrate for the preparation of nanofiltration (NF) membranes. In this study, we developed a novel modification approach that effectively enhances the hydrophilicity of PVDF substrates through the incorporation of sulfonic acid-doped polyaniline (SPANI) and hyperbranched polyester (HPE) into the PVDF casting solution, followed by cross-linking with trimesoyl chloride (TMC). The introduction of SPANI and HPE, which contain reactive polar amino and hydroxyl groups, improved the hydrophilicity of the substrate, while the subsequent cross-linking with TMC effectively anchored these components within the substrate through the covalent linking between TMC and the reactive sites. Additionally, the hydrolysis of TMC yielded non-reactive carboxyl groups, which further enhanced the hydrophilicity of the substrate. As a result, the modified PVDF substrate exhibited improved hydrophilicity, facilitating the construction of an intact polyamide layer. In addition, the fabricated TFC NF membrane demonstrated excellent performance in the advanced treatment of tap water, achieving a total dissolved solid removal rate of 57.9% and a total organic carbon removal rate of 85.3%. This work provides a facile and effective route to modify PVDF substrates for NF membrane fabrication. Full article
Show Figures

Figure 1

15 pages, 1475 KiB  
Article
Comparative Metabolite Profiling of Antarctic and Korean Mosses: Insights into Adaptation Mechanisms of Antarctic Moss Species
by Marufa Naznin, Raisul Awal Mahmood, Md Badrul Alam, Kil Ho Shin, Kyungwon Min, Sang-Han Lee, Hyoungseok Lee and Sunghwan Kim
Plants 2025, 14(14), 2148; https://doi.org/10.3390/plants14142148 - 11 Jul 2025
Viewed by 521
Abstract
This study investigates the relationship between secondary metabolites and stress tolerance in moss species, with a specific emphasis on comparing Antarctic and Korean mosses. Analyses of total phenolic content (TPC) and total flavonoid content (TFC) revealed that Antarctic mosses contain these compounds at [...] Read more.
This study investigates the relationship between secondary metabolites and stress tolerance in moss species, with a specific emphasis on comparing Antarctic and Korean mosses. Analyses of total phenolic content (TPC) and total flavonoid content (TFC) revealed that Antarctic mosses contain these compounds at significantly higher levels compared to the Korean mosses. These findings are consistent with greater antioxidant activities observed in Antarctic mosses through DPPH and ABTS•+ radical scavenging assays. In this study, a total of 620 metabolites were identified from the moss samples. The results showed that Antarctic mosses exhibited a high number and diversity of compounds including terpenoids, flavonoids, lipids, and other classes. Additionally, Antarctic mosses had fewer lipids with carbon chain lengths below 18 and a higher content of unsaturated lipids, indicating adaptations to maintain membrane fluidity under cold stress. The phylogenetic relationships suggested a correlation between metabolite profiles and genetic adaptations between these species. This research highlights the complex biochemical strategies that mosses, particularly those in Antarctic regions, employ to adapt the environmental stressors. The high abundance of secondary metabolites in Antarctic mosses not only serves as a defense mechanism against oxidative stress but also suggests their potential applications in various biotechnological aspects. This study reveals new avenues for exploring the ecological roles and potential uses of these resilient plant species. Full article
Show Figures

Figure 1

31 pages, 8799 KiB  
Article
Correlation Between Conditions of Polyaniline Interlayer Formation and the Structure and Performance of Thin-Film Composite Membranes for Nanofiltration Prepared via Interfacial Polymerization
by Katsiaryna S. Burts, Tatiana V. Plisko, Anastasia V. Penkova, Bingbing Yuan, Sergey S. Ermakov and Alexandr V. Bildyukevich
Polymers 2025, 17(9), 1199; https://doi.org/10.3390/polym17091199 - 28 Apr 2025
Viewed by 726
Abstract
Correlations between conditions of the polyaniline (PANI) interlayer formation on the surface of a polysulfone (PSF) porous membrane substrate and the structure and performance of thin-film composite (TFC) membranes for nanofiltration with a polyamide (PA) selective layer prepared via interfacial polymerization (IP) were [...] Read more.
Correlations between conditions of the polyaniline (PANI) interlayer formation on the surface of a polysulfone (PSF) porous membrane substrate and the structure and performance of thin-film composite (TFC) membranes for nanofiltration with a polyamide (PA) selective layer prepared via interfacial polymerization (IP) were studied. It was shown that application of the PANI layer significantly enhanced hydrophilicity (the water contact angle decreased from 55 ± 2° down to 26–49 ± 2°), decreased pore size and porosity, and increased the surface roughness of the selective layer surface of porous PSF/PANI membrane substrates due to the formation of bigger PANI globules, which affect the formation of the PA layer of TFC membranes via IP. It was shown that the application of the PANI intermediate layer yielded the formation of a thinner PA selective layer, a decline in surface roughness, and an increase in hydrophilicity (the water contact angle declined from 28 to <10°) and crosslinking degree of the selective layer of TFC NF membranes. The developed approach allows us to enhance the water permeation up to 45–64 L·m−2·h−1 at ΔP = 0.5 MPa and improve membrane selectivity (rejection coefficient of MgSO4—>99.99%; LiCl—5–25%; sulfadimetoxine—80–95%) and also ensure enhanced long-term operational stability of TFC nanofiltration membranes with a PANI interlayer. Moreover, Mg2+/Li+ separation factor values were found to increase to 37 and 58 for PANI-modified membranes compared to 9 and 8 for the reference NF-PSF membranes. Full article
Show Figures

Graphical abstract

23 pages, 6561 KiB  
Article
Thin-Film Composite Polyamide Membranes Modified with HKUST-1 for Water Treatment: Characterization and Nanofiltration Performance
by Roman Dubovenko, Mariia Dmitrenko, Anna Mikulan, Margarita Puzikova, Ilnur Dzhakashov, Nadezhda Rakovskaya, Anna Kuzminova, Olga Mikhailovskaya, Rongxin Su and Anastasia Penkova
Polymers 2025, 17(9), 1137; https://doi.org/10.3390/polym17091137 - 22 Apr 2025
Viewed by 883
Abstract
The development of sustainable nanofiltration membranes requires alternatives to petroleum-derived polymer substrates. This study demonstrates the successful use of an eco-friendly cellulose acetate/cellulose nitrate (CA/CN) blend substrate for fabricating high-performance modified thin-film composite (mTFC) membranes. A dense, non-porous polyamide (PA) selective layer was [...] Read more.
The development of sustainable nanofiltration membranes requires alternatives to petroleum-derived polymer substrates. This study demonstrates the successful use of an eco-friendly cellulose acetate/cellulose nitrate (CA/CN) blend substrate for fabricating high-performance modified thin-film composite (mTFC) membranes. A dense, non-porous polyamide (PA) selective layer was formed via the interfacial polymerization method and modified with 0.05–0.1 wt.% HKUST-1 (Cu3BTC2, MOF-199). Characterization by FTIR, XPS, SEM, AFM, and contact angle measurements confirmed the CA/CN substrate’s suitability for TFC membrane fabrication. HKUST-1 incorporation created a distinctive ridge-and-valley morphology while significantly altering PA layer hydrophilicity and roughness. The mTFC membrane performance could be fine-tuned by the controlled incorporation of HKUST-1; incorporation through the aqueous phase slowed down the formation of the PA layer and significantly reduced its thickness, while the addition through the organic phase resulted in the formation of a denser layer due to HKUST-1 agglomeration. Thus, either enhanced permeability (123 LMH bar−1 with 0.05 wt.% aqueous-phase incorporation) or rejection (>89% dye removal with 0.05 wt.% organic-phase incorporation) were achieved. Both mTFC membranes also exhibited improved heavy metal ion rejection (>91.7%), confirming their industrial potential. Higher HKUST-1 loading (0.1 wt.%) caused MOF agglomeration, reducing performance. This approach establishes a sustainable fabrication route for tunable TFC membranes targeting specific separation tasks. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

13 pages, 3927 KiB  
Article
Effects of Latent Solvent Content on Tuning the Nanofiltration Performance of Nanofibrous Composite Membranes
by Xu-Dong Cao, Yu-Xuan Shao, Qian Wang, Tian-Dan Lu and Jing Zhong
Membranes 2025, 15(4), 118; https://doi.org/10.3390/membranes15040118 - 8 Apr 2025
Viewed by 557
Abstract
This study aims to optimize the application of electrospun nanofibrous substrates in thin-film composite (TFC) nanofiltration (NF) membranes for enhanced liquid separation efficiency by employing a method of effective welding between fibers using latent solvents. Polyacrylonitrile (PAN) nanofiber substrates were fabricated via electrospinning, [...] Read more.
This study aims to optimize the application of electrospun nanofibrous substrates in thin-film composite (TFC) nanofiltration (NF) membranes for enhanced liquid separation efficiency by employing a method of effective welding between fibers using latent solvents. Polyacrylonitrile (PAN) nanofiber substrates were fabricated via electrospinning, and a dense polyamide selective layer was formed on their surface through interfacial polymerization (IP). The investigation focused on the effects of different solvent systems, particularly the role of dimethyl sulfoxide (DMSO) as a latent solvent, on the nanostructure and final membrane performance. The results indicate that increasing the DMSO content can enhance the greenness of the fabrication process, the substrate hydrophilicity, and the mechanical strength, while also influencing the thickness and morphology of the polyamide layer. At a DMSO rate of 30%, the composite membrane achieves optimal pure water permeability and high rejection rates; when the DMSO content exceeds 40%, structural inhomogeneity in the substrate membrane leads to an increase in defects, significantly deteriorating membrane performance. These findings provide theoretical insights and technical guidance for the application of electrospinning technology in designing efficient and stable NF membranes. Full article
(This article belongs to the Section Membrane Fabrication and Characterization)
Show Figures

Figure 1

16 pages, 6337 KiB  
Article
Preparation of Crown Ether-Containing Polyamide Membranes via Interfacial Polymerization and Their Desalination Performance
by Liqing Xing, Liping Lin, Jiaxin Guo, Xinping He and Chunhai Yi
Membranes 2025, 15(3), 77; https://doi.org/10.3390/membranes15030077 - 3 Mar 2025
Viewed by 1140
Abstract
The large-scale application of aromatic polyamide (PA) thin-film composite (TFC) membranes for reverse osmosis has provided an effective way to address worldwide water scarcity. However, the water permeability and salt rejection capabilities of the PA membrane remain limited. In this work, cyclic micropores [...] Read more.
The large-scale application of aromatic polyamide (PA) thin-film composite (TFC) membranes for reverse osmosis has provided an effective way to address worldwide water scarcity. However, the water permeability and salt rejection capabilities of the PA membrane remain limited. In this work, cyclic micropores based on crown ether were introduced into the PA layer using a layer-by-layer interfacial polymerization (LbL-IP) method. After interfacial polymerization between m-phenylenediamine (MPD) and trimesoyl chloride (TMC), the di(aminobenzo)-18-crown-6 (DAB18C6) solution in methanol was poured on the membrane to react with the residual TMC. The cyclic micropores of DAB18C6 provided the membrane with rapid water transport channels and improved ion rejection due to its hydrophilicity and size sieving effect. The membranes were characterized by FTIR, XPS, SEM, and AFM. Compared to unmodified membranes, the water contact angle decreased from 54.1° to 31.6° indicating better hydrophilicity. Moreover, the crown ether-modified membrane exhibited both higher permeability and enhanced rejection performance. The permeability of the crown ether-modified membrane was more than ten times higher than unmodified membranes with a rejection above 95% for Na2SO4, MgSO4, MgCl2, and NaCl solution. These results highlight the potential of this straightforward surface grafting strategy and the modified membranes for advanced water treatment technologies, particularly in addressing seawater desalination challenges. Full article
(This article belongs to the Section Membrane Fabrication and Characterization)
Show Figures

Figure 1

19 pages, 3256 KiB  
Article
High-Performance PET-TM/PTFE-like Composite Membranes for Efficient Salt Rejection via Air Gap Membrane Distillation
by Veronica Satulu, Liubov I. Kravets, Oleg L. Orelovich, Bogdana Mitu and Gheorghe Dinescu
Polymers 2025, 17(3), 290; https://doi.org/10.3390/polym17030290 - 23 Jan 2025
Cited by 1 | Viewed by 1063
Abstract
The global water scarcity crisis requires urgent action to improve wastewater treatment and develop sustainable water resources. This study focuses on producing Thin Film Composite (TFC) membranes based on polyethylene terephthalate track membranes (PET-TM) coated with polytetrafluorethylene-like material (PTFE), named PET-TM/PTFE-like, designed to [...] Read more.
The global water scarcity crisis requires urgent action to improve wastewater treatment and develop sustainable water resources. This study focuses on producing Thin Film Composite (TFC) membranes based on polyethylene terephthalate track membranes (PET-TM) coated with polytetrafluorethylene-like material (PTFE), named PET-TM/PTFE-like, designed to purify saline water using Air Gap Membrane Distillation (AGMD) technique. The research emphasizes the optimization of these membranes’ chemical composition and surface characteristics by plasma that enhances their hydrophobicity and overall operational efficiency. A systematic investigation was conducted to clarify the relationship between water flux and salt rejection, enabling the customization of membrane properties for better performance. It was shown that salt rejection exceeding 99% is obtained for all the investigated PET-TM/PTFE-like membranes, with values up to 99.63% for the PET-TM(250 nm)/PTFE-like(200 nm) system and condensate flows as high as 1325 g/m2h for the PET-TM(450 nm)/PTFE-like(200 nm) system. This comprehensive analysis identified the most effective TFC configurations for AGMD applications, providing a promising pathway to advance desalination techniques and wastewater treatment solutions. Full article
(This article belongs to the Special Issue Plasma Processing of Polymers, 2nd Edition)
Show Figures

Graphical abstract

42 pages, 3563 KiB  
Review
A Review of Sulfate Removal from Water Using Polymeric Membranes
by Jamal Al Mehrate, Sadek Shaban and Amr Henni
Membranes 2025, 15(1), 17; https://doi.org/10.3390/membranes15010017 - 9 Jan 2025
Cited by 1 | Viewed by 2913
Abstract
Access to clean and reliable water has become a critical concern due to the global water crisis. High sulfate levels in drinking water raise health concerns for humans and animals and can cause serious corrosion in industrial systems. Sulfated waters represent a major [...] Read more.
Access to clean and reliable water has become a critical concern due to the global water crisis. High sulfate levels in drinking water raise health concerns for humans and animals and can cause serious corrosion in industrial systems. Sulfated waters represent a major challenge on the Canadian prairies, leading to many cattle deaths. While reverse osmosis (RO) membranes effectively remove sulfates, they are costly due to high-pressure requirements. Nanofiltration (NF) membranes present a more affordable alternative, outperforming traditional methods like adsorption, desalination, and ion exchange. Developing low-pressure ultrafiltration (UF) and microfiltration (MF) membranes could also reduce costs. This review explores advancements in polymeric materials and membrane technology to enhance sulfate removal, focusing on methods used to reduce fouling and improve permeate flux. Techniques discussed include phase inversion (PI), thin-film composite (TFC), and thin-film nanocomposite (TFN) membranes. The review also highlights recent fabrication methods for pristine and nanomaterial-enhanced membranes, acknowledging both benefits and limitations. Continued innovations in polymer-based membranes are expected to drive further performance and cost-efficiency improvements. This review found that studies in the literature dealt mainly with sulfate concentrations below 2000 mg/L, indicating a need to address higher concentrations in future studies. Full article
(This article belongs to the Special Issue Membrane Separation and Water Treatment: Modeling and Application)
Show Figures

Figure 1

17 pages, 11367 KiB  
Article
A PDA@ZIF-8-Incorporated PMIA TFN-FO Membrane for Seawater Desalination: Improving Water Flux and Anti-Fouling Performance
by Yu Ma, Rui Jia, Zhen-Liang Xu, Aida Aibulatova, Xiao-Gang Jin, Yin-Xin Fang, Ming-Xiao Zhang and Sun-Jie Xu
Membranes 2024, 14(12), 272; https://doi.org/10.3390/membranes14120272 - 16 Dec 2024
Cited by 2 | Viewed by 1439
Abstract
Forward osmosis (FO) technology, known for its minimal energy requirements, excellent resistance to fouling, and significant commercial potential, shows enormous promise in the development of sustainable technologies, especially with regard to seawater desalination and wastewater. In this study, we improved the performance of [...] Read more.
Forward osmosis (FO) technology, known for its minimal energy requirements, excellent resistance to fouling, and significant commercial potential, shows enormous promise in the development of sustainable technologies, especially with regard to seawater desalination and wastewater. In this study, we improved the performance of the FO membrane in terms of its mechanical strength and hydrophilic properties. Generally, the water flux (Jw) of polyisophenylbenzamide (PMIA) thin-film composite (TFC)-FO membranes is still inadequate for industrial applications. Here, hydrophilic polydopamine (PDA)@ zeolitic imidazolate frameworks-8 (ZIF-8) nanomaterials and their integration into PMIA membranes using the interfacial polymerization (IP) method were investigated. The impact of PDA@ZIF-8 on membrane performance in both pressure-retarded osmosis (PRO) and forward osmosis (FO) modes was analyzed. The durability and fouling resistance of these membranes were evaluated over the long term. When the amount of ZIF-8@PDA incorporated in the membrane reached 0.05 wt% in the aqueous phase in the IP reaction, the Jw values for the PRO mode and FO mode were 12.09 LMH and 11.10 LMH, respectively. The reverse salt flux (Js)/Jw values for both modes decreased from 0.75 and 0.80 to 0.33 and 0.35, respectively. At the same time, the PRO and FO modes’ properties were stable in a 15 h test. The incorporation of PDA@ZIF-8 facilitated the formation of water channels within the nanoparticle pores. Furthermore, the Js/Jw ratio decreased significantly, and the FO membranes containing PDA@ZIF-8 exhibited high flux recovery rates and superior resistance to membrane fouling. Therefore, PDA@ZIF-8-modified FO membranes have the potential for use in industrial applications in seawater desalination. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

25 pages, 6110 KiB  
Article
High-Performance Porous Supports Based on Hydroxyl-Terminated Polysulfone and CO2/CO-Selective Composite Membranes
by Dmitry Matveev, Tatyana Anokhina, Alisa Raeva, Ilya Borisov, Evgenia Grushevenko, Svetlana Khashirova, Alexey Volkov, Stepan Bazhenov, Vladimir Volkov and Anton Maksimov
Polymers 2024, 16(24), 3453; https://doi.org/10.3390/polym16243453 - 10 Dec 2024
Viewed by 1155
Abstract
The scope of this work was to develop a thin-film composite (TFC) membrane for the separation of CO2/CO mixtures, which are relevant for many processes of gas processing and gasification of carbon-based feedstock. Special attention was given to the development of [...] Read more.
The scope of this work was to develop a thin-film composite (TFC) membrane for the separation of CO2/CO mixtures, which are relevant for many processes of gas processing and gasification of carbon-based feedstock. Special attention was given to the development of highly permeable porous polysulfone (PSF) supports (more than 26,000 GPU for CO2) since both the selective and support layers contribute significantly to the overall performance of the TFC membrane. The PSF porous support is widely used in commercial and lab-scale TFC membranes, and its porous structure and other exploitation parameters are set during the non-solvent-induced phase separation (NIPS) process. Since the casting solution properties (e.g., viscosity) and the interactions in a three-component system (polymer, solvent, and non-solvent) play noticeable roles in the NIPS process, polysulfone samples in a wide range of molecular weights (Mw = 76,000–122,000 g·mol−1) with terminal hydroxyl groups were synthesized for the first time. Commercial PSF with predominantly terminal chlorine groups (Ultrason® S 6010) was used as a reference. The PSF samples were characterized by NMR, DSC, and TGA methods, and the Hansen solubility parameters were calculated. It was found that increasing the ratio of terminal –OH over –Cl groups improved the “solubility” of PSF in N-methyl-2-pyrrolidone (NMP) and water. A direct dependence of the gas permeance of porous supports on the coagulation rate of the casting solution was identified for the first time. It was shown that the use of synthesized PSF (Mw = 76,000 g·mol−1, Mw/Mn = 3.0, (–OH):(–Cl) ratio of 4.7:1) enabled a porous support with a CO2 permeance of 26,700 GPU to be obtained, while the support formed from a commercial PSF Ultrason® S 6010 (Mw = 68,000 g·mol−1, Mw/Mn = 1.7, (–OH):(–Cl) ratio of 1:1.9) under the same conditions demonstrated 4300 GPU. The siloxane-based materials were used for the selective layer since the thin films based on rubbery polymers do not undergo the same accelerating physical aging as glassy polymers. Two types of materials were screened for the selective layer: synthesized polymethyltrifluoroethylacrylate siloxane-polydecylmethylsiloxane (50F3) copolymer, and polydimethylsiloxane (PDMS). 50F3 siloxane was studied for gas separation applications for the first time. It was shown that the permeance of composite membranes based on high-performance porous supports from the PSF samples synthesized was 3.5 times higher than that from similar composite membranes based on supports from a commercial Ultrason® S 6010 PSF with a permeance value of 4300 GPU for CO2. It was found that the enhanced gas permeance of composite membranes based on the highly permeable porous PSF supports developed was observed for both 50F3 polysiloxane and commercial PDMS. At the same time, the CO2/CO selectivity of the composite membranes with a 50F3-selective layer (9.1–9.3) is 1.5 times higher than that of composite membranes with a PDMS-selective layer. This makes the F-containing 50F3 polysiloxane a promising polymer for CO2/CO separation. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

35 pages, 6121 KiB  
Article
Reverse Osmosis Membrane Engineering: Multidirectional Analysis Using Bibliometric, Machine Learning, Data, and Text Mining Approaches
by Ersin Aytaç, Noman Khalid Khanzada, Yazan Ibrahim, Mohamed Khayet and Nidal Hilal
Membranes 2024, 14(12), 259; https://doi.org/10.3390/membranes14120259 - 6 Dec 2024
Cited by 4 | Viewed by 3627
Abstract
Membrane engineering is a complex field involving the development of the most suitable membrane process for specific purposes and dealing with the design and operation of membrane technologies. This study analyzed 1424 articles on reverse osmosis (RO) membrane engineering from the Scopus database [...] Read more.
Membrane engineering is a complex field involving the development of the most suitable membrane process for specific purposes and dealing with the design and operation of membrane technologies. This study analyzed 1424 articles on reverse osmosis (RO) membrane engineering from the Scopus database to provide guidance for future studies. The results show that since the first article was published in 1964, the domain has gained popularity, especially since 2009. Thin-film composite (TFC) polymeric material has been the primary focus of RO membrane experts, with 550 articles published on this topic. The use of nanomaterials and polymers in membrane engineering is also high, with 821 articles. Common problems such as fouling, biofouling, and scaling have been the center of work dedication, with 324 articles published on these issues. Wang J. is the leader in the number of published articles (73), while Gao C. is the leader in other metrics. Journal of Membrane Science is the most preferred source for the publication of RO membrane engineering and related technologies. Author social networks analysis shows that there are five core clusters, and the dominant cluster have 4 researchers. The analysis of sentiment, subjectivity, and emotion indicates that abstracts are positively perceived, objectively written, and emotionally neutral. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

22 pages, 4197 KiB  
Review
Material Aspects of Thin-Film Composite Membranes for CO2/N2 Separation: Metal–Organic Frameworks vs. Graphene Oxides vs. Ionic Liquids
by Na Yeong Oh, So Youn Lee, Jiwon Lee, Hyo Jun Min, Seyed Saeid Hosseini, Rajkumar Patel and Jong Hak Kim
Polymers 2024, 16(21), 2998; https://doi.org/10.3390/polym16212998 - 25 Oct 2024
Cited by 1 | Viewed by 2408
Abstract
Thin-film composite (TFC) membranes containing various fillers and additives present an effective alternative to conventional dense polymer membranes, which often suffer from low permeance (flux) and the permeability–selectivity tradeoff. Alongside the development and utilization of numerous new polymers over the past few decades, [...] Read more.
Thin-film composite (TFC) membranes containing various fillers and additives present an effective alternative to conventional dense polymer membranes, which often suffer from low permeance (flux) and the permeability–selectivity tradeoff. Alongside the development and utilization of numerous new polymers over the past few decades, diverse additives such as metal–organic frameworks (MOFs), graphene oxides (GOs), and ionic liquids (ILs) have been integrated into the polymer matrix to enhance performance. However, achieving desirable interfacial compatibility between these additives and the host polymer matrix, particularly in TFC structures, remains a significant challenge. This review discusses recent advancements in TFC membranes for CO2/N2 separation, focusing on material structure, polymer–additive interaction, interface and separation properties. Specifically, we examine membranes operating under dry conditions to clearly assess the impact of additives on membrane properties and performance. Additionally, we provide a perspective on future research directions for designing high-performance membrane materials. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

17 pages, 1696 KiB  
Article
Comparative Study of Polymer of Intrinsic Microporosity-Derivative Polymers in Pervaporation and Water Vapor Permeance Applications
by Esra Caliskan, Sergey Shishatskiy and Volkan Filiz
Polymers 2024, 16(20), 2932; https://doi.org/10.3390/polym16202932 - 18 Oct 2024
Viewed by 1986
Abstract
This study assesses the gas and water vapor permeance of PIM-derivative thin-film composite (TFC) membranes using pervaporation and “pressure increase” methods, and provides a comparative view of “time lag” measurements of thick films obtained from our previous work. In this study, TFC membranes [...] Read more.
This study assesses the gas and water vapor permeance of PIM-derivative thin-film composite (TFC) membranes using pervaporation and “pressure increase” methods, and provides a comparative view of “time lag” measurements of thick films obtained from our previous work. In this study, TFC membranes were prepared using PIM-1 and homopolymers that were modified with different side groups to explore their effects on gas and water vapor transport. Rigid and bulky aliphatic groups were used to increase the polymer’s free volume and were evaluated for their impact on both gas and water transport. Aromatic side groups were specifically employed to assess water affinity. The permeance of CO2, H2, CH4 and water vapor through these membranes was analyzed using the ‘pressure increase’ method to determine the modifications’ influence on transport efficiency and interaction with water molecules. Over a 20 h period, the aging and the permeance of the TFC membranes were analyzed using this method. In parallel, pervaporation experiments were conducted on samples taken independently from the same membrane roll to assess water flux, with particular attention paid to the liquid form on the feed side. The significantly higher water vapor transport rates observed in pervaporation experiments compared to those using the “pressure increase” method underline the efficiency of pervaporation. This efficiency suggests that membranes designed for pervaporation can serve as effective alternatives to conventional porous membranes used in distillation applications. Additionally, incorporating “time lag” results from a pioneering study into the comparison revealed that the trends observed in “time lag” and pervaporation results exhibited similar trends, whereas “pressure increase” data showed a different development. This discrepancy is attributed to the state of the polymer, which varies significantly depending on the operating conditions. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

16 pages, 5548 KiB  
Article
Improved Flux Performance in Brackish Water Reverse Osmosis Membranes by Modification with ZnO Nanoparticles and Interphase Polymerization
by Jesús Álvarez-Sánchez, Germán Eduardo Dévora-Isiordia, Claudia Muro, Yedidia Villegas-Peralta, Reyna Guadalupe Sánchez-Duarte, Patricia Guadalupe Torres-Valenzuela and Sergio Pérez-Sicairos
Membranes 2024, 14(10), 207; https://doi.org/10.3390/membranes14100207 - 27 Sep 2024
Cited by 1 | Viewed by 1416
Abstract
With each passing year, water scarcity in the world is increasing, drying up rivers, lakes, and dams. Reverse osmosis technology is a very viable alternative which helps to reduce water shortages. One of the challenges is to make the process more efficient, and [...] Read more.
With each passing year, water scarcity in the world is increasing, drying up rivers, lakes, and dams. Reverse osmosis technology is a very viable alternative which helps to reduce water shortages. One of the challenges is to make the process more efficient, and this can be achieved by improving the capacity by adapting membranes with nanomaterials in order to increase the permeate flux without exceeding the limits established in the process. In this research, brackish water membranes (BW30) were modified with ZnO nanoparticles by interphase polymerization. The modified membranes and BW30 (unmodified) were characterized by FTIR, AFM, contact angle, and micrometer. The membranes were tested in a cross-flow apparatus using 9000 ppm brackish water, and their permeate flux, salt rejection, and concentration polarization were determined. The salt rejection for the 10 mg ZnO NP membrane was 97.13 and 97.77% at 20 and 30 Hz, respectively, sufficient to generate drinking water. It obtained the best permeate flux of 12.2% compared to the BW30 membrane with 122.63 L m−2 h−1 at 6.24 MPa and 30 Hz, under these conditions, and the concentration polarization increased. Full article
(This article belongs to the Special Issue Membrane Processes for Water Recovery in Food Processing Industries)
Show Figures

Figure 1

19 pages, 9463 KiB  
Article
The Sandwich-Structured PVA/PA/PVA Tri-Layer Nanofiltration Membrane with High Performance for Desalination and Pollutant Removal
by Weibin Cai, Yuzhe Wang, Yuannan Li, Hong Ye, Fuyuan Xiao, Lei Wang and Hengjun Gai
Water 2024, 16(19), 2752; https://doi.org/10.3390/w16192752 - 27 Sep 2024
Cited by 2 | Viewed by 1330
Abstract
Nanofiltration (NF) has become a widely used technology in water treatment due to its environmental friendliness, energy efficiency, cost-effectiveness, and operational simplicity. However, polyamide (PA) NF membranes still face challenges, including low permeate flux, limited resistance to organic pollutants, and inadequate resilience to [...] Read more.
Nanofiltration (NF) has become a widely used technology in water treatment due to its environmental friendliness, energy efficiency, cost-effectiveness, and operational simplicity. However, polyamide (PA) NF membranes still face challenges, including low permeate flux, limited resistance to organic pollutants, and inadequate resilience to residual chlorine. To address these issues, this study developed a thin-film composite (TFC) NF membrane featuring a separation layer of sandwich structure. Initially, a single separation layer of polyvinyl alcohol (PVA) NF membrane was prepared, followed by the fabrication of a PA layer on its surface, and ultimately, a second PVA layer was constructed on the PA layer. The experimental results show that the PVA/PA/PVA sandwich structure TFC exhibits high permeability to pure water and robust resistance to both pollution and residual chlorine. The PVA-0.20/PA/PVA-0.20 TFC, prepared with a 0.20%w/v PVA solution, achieved a pure water flux of up to 22.05 L m−2 h−1 bar−1 (LMH/bar), which was 2.92 times higher than that of the control TFC membrane. Additionally, it demonstrated a salt rejection rate exceeding 96% for Na2SO4 and over 99% for Congo Red (CR) and Victoria Blue B (VB). In comparison with the control TFC membrane, the PVA-0.20/PA/PVA-0.20 membrane exhibited significantly enhanced resistance to pollution. Following immersion in a 1000 ppm NaClO solution for 4 h, the rejection rate of the control TFC membrane decreased markedly and that of the PVA-0.20/PA/PVA-0.20 membrane decreased marginally, indicating excellent resistance to residual chlorine. Due to the robust overall performance of the PVA/PA/PVA membrane, it holds potential advantages for application in treating reclaimed water or slightly polluted water. Full article
Show Figures

Figure 1

Back to TopTop