The Sandwich-Structured PVA/PA/PVA Tri-Layer Nanofiltration Membrane with High Performance for Desalination and Pollutant Removal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Membrane Preparation
2.2.1. Preparation of PVA Interlayer
2.2.2. Preparation of PA/PVA Membrane
2.2.3. Preparation of PVA/PA/PVA Membrane
2.2.4. Preparation of Control TFC Membrane
2.3. Characterization of Membrane Physicochemical Properties
2.4. Membrane Performance Testing
2.4.1. Permeability and Rejection Performance of the Membranes
2.4.2. Antifouling Performance
2.4.3. Chlorine Resistance Test
3. Results and Discussion
3.1. Surface Chemistry
3.2. Morphologies
3.3. Hydrophilicity
3.4. Permeability and Salt Rejection
3.5. Dye Removal by the Membranes
3.6. Antifouling Properties
3.7. Chlorine Resistance
3.8. Comparison with Other Studies
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AFM | atomic force microscopy |
ATR-FTIR | attenuated total reflection Fourier-transform infrared |
BaCl2 | barium chloride |
BSA | bovine serum albumin |
BTC | 1,2,3,4-cyclobutane tetracarboxylic acid chloride |
C | carbon |
CA | contact angle |
CNC | cellulose nanocrystal |
COFs | covalent organic frameworks |
-COOH | carboxyl |
CR | Congo red |
EBT | Eriochrome black T |
FDR | flux decline ratio |
FRR | flux recovery ratio |
GA | glutaraldehyde |
GO | graphene oxide |
H2SO4 | sulfuric acid |
IP | interfacial polymerization |
LBL | layer-by-layer |
LMH/bar | L·m−2·h−1·bar−1 |
mm-BTEC | 3,3′,5,5′-biphenyl tetra acyl chloride |
MF | microfiltration |
MgCl2 | magnesium chloride |
MgSO4 | magnesium sulfate |
N | nitrogen |
NaCl | sodium chloride |
NaClO | sodium hypochlorite |
Na2SO4 | anhydrous sodium sulfate |
N-C=O | isocyanate |
NF | nanofiltration |
NR | neutral red |
O | oxygen |
PA | polyamide |
PDA | polydopamine |
PES | polyether sulfone |
PIP | piperazine |
PS | polysulfone |
PVA | polyvinyl alcohol |
R | rejection |
Rh B | Rhodamine B |
SA | sodium alginate |
SDS | sodium dodecyl sulfate |
SEM | scanning electron microscopy |
TEOA | triethanolamine |
TFC | thin-film composite |
TMA | trimellitic anhydride |
TMC | trimesoyl chloride |
VB | Victoria Blue B |
XPS | X-ray photoelectron spectroscopy |
References
- Goh, P.S.; Ismail, A.F. A review on inorganic membranes for desalination and wastewater treatment. Desalination 2018, 434, 60–80. [Google Scholar] [CrossRef]
- Angelakis, A.N.; Tchobanoglous, G.; Capodaglio, A.G.; Tzanakakis, V.A. The Importance of Nonconventional Water Resources under Water Scarcity. Water 2024, 16, 1015. [Google Scholar] [CrossRef]
- Liu, J.G.; Yang, H.; Gosling, S.N.; Kummu, M.; Flörke, M.; Pfister, S.; Hanasaki, N.; Wada, Y.; Zhang, X.X.; Zheng, C.M.; et al. Water scarcity assessments in the past, present, and future. Earths Future 2017, 5, 545–559. [Google Scholar] [CrossRef]
- Xing, S.; Du, S.; Huang, Y.; Qi, X.; Sui, M. Advances in High-Performance Nanofiltration Membranes Facilitated by Two-Dimensional Materials. Water 2024, 16, 988. [Google Scholar] [CrossRef]
- Lively, R.P.; Sholl, D.S. From water to organics in membrane separations. Nat. Mater. 2017, 16, 276–279. [Google Scholar] [CrossRef]
- Li, J.; See, K.F.; Chi, J. Water resources and water pollution emissions in China’s industrial sector: A green-biased technological progress analysis. J. Clean. Prod. 2019, 229, 1412–1426. [Google Scholar] [CrossRef]
- Meng, W. System engineering for water pollution control at the watershed level in China. Front. Environ. Sci. Eng. China 2009, 3, 443–452. [Google Scholar] [CrossRef]
- Ogbozige, F.J.; Toko, M.A. Adsorption Isotherms and Kinetics of Lead and Cadmium Ions: Comparative Studies Using Modified Melon (Citrullus colocynthis) Husk. Iran. J. Energy Environ. 2020, 11, 157–162. [Google Scholar]
- Alazaiza, M.Y.D.; Albahnasawi, A.; Ali, G.A.M.; Bashir, M.J.K.; Nassani, D.E.; Al Maskari, T.; Amr, S.S.A.; Abujazar, M.S.S. Application of Natural Coagulants for Pharmaceutical Removal from Water and Wastewater: A Review. Water 2022, 14, 140. [Google Scholar] [CrossRef]
- Kundua, P.; Mishra, I.M. Treatment and reclamation of hydrocarbon-bearing oily wastewater as a hazardous pollutant by different processes and technologies: A state-of-the-art review. Rev. Chem. Eng. 2019, 35, 73–108. [Google Scholar] [CrossRef]
- Panagopoulos, A.; Haralambous, K.J.; Loizidou, M. Desalination brine disposal methods and treatment technologies—A review. Sci. Total Environ. 2019, 693, 133545. [Google Scholar] [CrossRef]
- Adetunji, A.I.; Olaniran, A.O. Production and potential biotechnological applications of microbial surfactants: An overview. Saudi J. Biol. Sci. 2021, 28, 669–679. [Google Scholar] [CrossRef]
- Nishat, A.; Yusuf, M.; Qadir, A.; Ezaier, Y.; Vambol, V.; Khan, M.I.; Ben Moussa, S.; Kamyab, H.; Sehgal, S.S.; Prakash, C.; et al. Wastewater treatment: A short assessment on available techniques. Alex. Eng. J. 2023, 76, 505–516. [Google Scholar] [CrossRef]
- Guo, H.; Li, X.H.; Yang, W.L.; Yao, Z.K.; Mei, Y.; Peng, L.E.; Yang, Z.; Shao, S.L.; Tang, C.Y. Nanofiltration for drinking water treatment: A review. Front. Chem. Sci. Eng. 2022, 16, 681–698. [Google Scholar] [CrossRef]
- Joseph, T.M.; Al-Hazmi, H.E.; Sniatala, B.; Esmaeili, A.; Habibzadeh, S. Nanoparticles and nanofiltration for wastewater treatment: From polluted to fresh water. Environ. Res. 2023, 238, 117114. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.Y.; Zhao, X.R.; Gao, S.S.; Wang, X.Y.; Zhang, R.J. Progress in Research and Application of Nanofiltration (NF) Technology for Brackish Water Treatment. Membranes 2021, 11, 662. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.R.; Bu, X.D.; Dong, X.; Wang, Y.J.; Chen, Z.Q. Nanofiltration combined with membrane capacitive deionization for efficient classification and recovery salts from simulated coal chemical industrial wastewater. Sep. Purif. Technol. 2023, 322, 124156. [Google Scholar] [CrossRef]
- Fonseka, C.; Ryu, S.; Devaisy, S.; Kandasamy, J.; McLod, L.; Ratnaweera, H.; Vigneswaran, S. Application of Low-Pressure Nanofiltration Membranes NF90 and NTR-729HF for Treating Diverse Wastewater Streams for Irrigation Use. Water 2024, 16, 1971. [Google Scholar] [CrossRef]
- Zhang, Z.; Kang, G.D.; Yu, H.J.; Jin, Y.; Cao, Y.M. Fabrication of a highly permeable composite nanofiltration membrane via interfacial polymerization by adding a novel acyl chloride monomer with an anhydride group. J. Membr. Sci. 2019, 570, 403–409. [Google Scholar] [CrossRef]
- Lü, Z.H.; Hu, F.; Li, H.Y.; Zhang, X.R.; Yu, S.C.; Liu, M.H.; Gao, C.J. Composite nanofiltration membrane with asymmetric selective separation layer for enhanced separation efficiency to anionic dye aqueous solution. J. Hazard. Mater. 2019, 368, 436–443. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Wang, W.; Qian, X.M.; Wang, H.B.; Guo, C.S.; Li, N.; Xu, Z.W.; Teng, K.Y.; Wang, Z. Positive charged PEI-TMC composite nanofiltration membrane for separation of Li and Mg from brine with high Mg/Li ratio. Desalination 2019, 449, 57–68. [Google Scholar] [CrossRef]
- Hu, D.; Ren, X.M.; Fu, H.Y.; Wang, Y.; Feng, X.D.; Li, H.H. Constructing highly rough skin layer of thin film (nano)composite polyamide membranes to enhance separation performance: A review. J. Appl. Polym. Sci. 2022, 139, 52692. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Zhang, H.H.; Wang, L.; Wang, J.; Wang, X.D.; Hao, J.J. Probing the construction mechanism of polyamide membranes regulated by interfacial polymerization from the novel micro- and macro- perspectives: A review. Desalination 2024, 578, 117422. [Google Scholar] [CrossRef]
- Yang, L.; She, Q.; Wan, M.P.; Wang, R.; Chang, V.W.C.; Tang, C.Y. Removal of haloacetic acids from swimming pool water by reverse osmosis and nanofiltration. Water Res. 2017, 116, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.Q.; Wu, M.Y.; Wu, H.; Liu, Y.A.; You, X.D.; Zhang, R.N.; Su, Y.L.; Yang, H.; Shen, J.L.; Jiang, Z.Y. Covalent organic framework-modulated interfacial polymerization for ultrathin desalination membranes. J. Mater. Chem. A 2019, 7, 25641–25649. [Google Scholar] [CrossRef]
- Kolangare, I.M.; Isloor, A.M.; Inamuddin; Asiri, A.M.; Ismail, A.F. Improved desalination by polyamide membranes containing hydrophilic glutamine and glycine. Environ. Chem. Lett. 2018, 17, 1053–1059. [Google Scholar] [CrossRef]
- Yuan, B.B.; Jiang, C.; Li, P.F.; Sun, H.H.; Li, P.; Yuan, T.; Sun, H.X.; Niu, Q.J. Ultrathin Polyamide Membrane with Decreased Porosity Designed for Outstanding Water-Softening Performance and Superior Antifouling Properties. ACS Appl. Mater. Interfaces 2018, 10, 43057–43067. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhang, S.B.; Zhang, X.S. Preparation and characterization of poly(piperazineamide) composite nanofiltration membrane by interfacial polymerization of 3,3′,5,5′-biphenyl tetraacyl chloride and piperazine. J. Membr. Sci. 2009, 335, 133–139. [Google Scholar] [CrossRef]
- Huang, B.-Q.; Tang, Y.-J.; Zeng, Z.-X.; Xue, S.-M.; Ji, C.-H.; Xu, Z.-L. High-Performance Zwitterionic Nanofiltration Membranes Fabricated via Microwave-Assisted Grafting of Betaine. ACS Appl. Mater. Interfaces 2020, 12, 35523–35531. [Google Scholar] [CrossRef]
- Zhang, Q.F.; Zhang, Z.A.; Dai, L.; Wang, H.; Li, S.H.; Zhang, S.B. Novel insights into the interplay between support and active layer in the thin film composite polyamide membranes. J. Membr. Sci. 2017, 537, 372–383. [Google Scholar] [CrossRef]
- Lim, Y.J.; Goh, K.L.; Lai, G.S.; Zhao, Y.L.; Torres, J.; Wang, R. Unraveling the role of support membrane chemistry and pore properties on the formation of thin-film composite polyamide membranes. J. Membr. Sci. 2021, 640, 119805. [Google Scholar] [CrossRef]
- Gu, J.E.; Lee, J.S.; Park, S.H.; Kim, I.T.; Chan, E.P.; Kwon, Y.N.; Lee, J.H. Tailoring interlayer structure of molecular layer-by-layer assembled polyamide membranes for high separation performance. Appl. Surf. Sci. 2015, 356, 659–667. [Google Scholar] [CrossRef]
- Fang, Y.-X.; Lin, Y.-F.; Xu, Z.-L.; Dai, J.-Y.; Pandaya, D. Polyamide infiltration phenomenon on microfiltration support reduced by covalent organic frameworks net for faster desalination. Desalination 2023, 568, 117031. [Google Scholar] [CrossRef]
- Bai, L.; Ding, J.; Wang, H.; Ren, N.; Li, G.; Liang, H. High-performance nanofiltration membranes with a sandwiched layer and a surface layer for desalination and environmental pollutant removal. Sci. Total Environ. 2020, 743, 140766. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, S.; Ren, D.; Li, H.; Lv, X.; Han, L.; Su, B. Fabrication of ultra-smooth thin-film composite nanofiltration membrane with enhanced selectivity and permeability on interlayer of hybrid polyvinyl alcohol and graphene oxide. Sep. Purif. Technol. 2021, 268, 118649. [Google Scholar] [CrossRef]
- Zhu, X.; Cheng, X.; Luo, X.; Liu, Y.; Xu, D.; Tang, X.; Gan, Z.; Yang, L.; Li, G.; Liang, H. Ultrathin Thin-Film Composite Polyamide Membranes Constructed on Hydrophilic Poly(vinyl alcohol) Decorated Support Toward Enhanced Nanofiltration Performance. Environ. Sci. Technol. 2020, 54, 6365–6374. [Google Scholar] [CrossRef] [PubMed]
- Januario, E.F.D.; Vidovix, T.B.; Calsavara, M.A.; Bergamasco, R.; Vieira, A.M.S. Membrane surface functionalization by the deposition of polyvinyl alcohol and graphene oxide for dyes removal and treatment of a simulated wastewater. Chem. Eng. Process 2022, 170, 108725. [Google Scholar] [CrossRef]
- Cai, W.; Wang, M.; Yang, G.Q.; Zhang, Z.; Wang, Y.; Li, J. Study of the Dissolution and Diffusion of Propane, Propylene and Nitrogen in Polydimethylsiloxane Membranes with Molecular Dynamics Simulation and Monte Carlo Simulation. Separations 2022, 9, 116. [Google Scholar] [CrossRef]
- Guo, M.; Wang, S.; Gu, K.; Song, X.; Zhou, Y.; Gao, C. Gradient cross-linked structure: Towards superior PVA nanofiltration membrane performance. J. Membr. Sci. 2019, 569, 83–90. [Google Scholar] [CrossRef]
- Wu, H.; Wang, L.; Xu, W.; Xu, Z.; Zhang, G. Preparation of a CAB−GO/PES Mixed Matrix Ultrafiltration Membrane and Its Antifouling Performance. Membranes 2023, 13, 241. [Google Scholar] [CrossRef] [PubMed]
- Hassani, A.H.; Mirzayee, R.; Nasseri, S.; Borghei, M.; Gholami, M.; Torbifar, B. Nanofiltration process on dye removal from simulated textile wastewater. Int. J. Environ. Sci. Technol. 2008, 5, 401–408. [Google Scholar] [CrossRef]
- Fang, X.F.; Wei, S.H.; Liu, S.; Li, R.; Zhang, Z.Y.; Liu, Y.B.; Zhang, X.R.; Lou, M.M.; Chen, G.; Li, F. Metal-Coordinated Nanofiltration Membranes Constructed on Metal Ions Blended Support toward Enhanced Dye/Salt Separation and Antifouling Performances. Membranes 2022, 12, 340. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Jiao, Z.W.; Bi, R.; Zhang, R.N.; You, X.D.; Wang, F.; Zhou, L.J.; Su, Y.L.; Jiang, Z.Y. Chlorine-resistant polyester thin film composite nanofiltration membranes prepared with β-cyclodextrin. J. Membr. Sci. 2019, 584, 282–289. [Google Scholar] [CrossRef]
- Huang, L.W.; Zheng, K.; Jin, Y.T.; Zhou, S.Q. Chlorine-Resistant Loose Nanofiltration Membranes Fabricated via Interfacial Polymerization Using Sulfone Group-Containing Amine Monomer for Dye/Salt Separation. Water 2023, 15, 1456. [Google Scholar] [CrossRef]
- Tang, C.Y.Y.; Kwon, Y.N.; Leckie, J.O. Probing the nano- and micro-scales of reverse osmosis membranes—A comprehensive characterization of physiochemical properties of uncoated and coated membranes by XPS, TEM, ATR-FTIR, and streaming potential measurements. J. Membr. Sci. 2007, 287, 146–156. [Google Scholar] [CrossRef]
- Zhai, Z.; Zhao, N.; Liu, J.H.; Dong, W.J.; Li, P.; Sun, H.X.; Niu, A.O. Advanced nanofiltration membrane fabricated on the porous organic cage tailored support for water purification application. Sep. Purif. Technol. 2020, 230, 115845. [Google Scholar] [CrossRef]
- Zhu, X.W.; Xu, D.L.; Gan, Z.D.; Luo, X.S.; Tang, X.B.; Cheng, X.X.; Bai, L.M.; Li, G.B.; Liang, H. Improving chlorine resistance and separation performance of thin-film composite nanofiltration membranes with in-situ grafted melamine. Desalination 2020, 489, 114539. [Google Scholar] [CrossRef]
- Zhu, X.; Yang, Z.; Gan, Z.; Cheng, X.; Tang, X.; Luo, X.; Xu, D.; Li, G.; Liang, H. Toward tailoring nanofiltration performance of thin-film composite membranes: Novel insights into the role of poly(vinyl alcohol) coating positions. J. Membr. Sci. 2020, 614, 118526. [Google Scholar] [CrossRef]
- Liu, C.; Guo, Y.; Zhou, Y.; Yang, B.; Xiao, K.; Zhao, H.-Z. High-hydrophilic and antifouling reverse osmosis membrane prepared based an unconventional radiation method for pharmaceutical plant effluent treatment. Sep. Purif. Technol. 2022, 280, 119838. [Google Scholar] [CrossRef]
- Qin, Y.T.; Zhu, Z.H.; Kang, G.D.; Yu, H.; Cao, Y.M. Plasticizer-assisted interfacial polymerization for fabricating advanced reverse osmosis membranes. J. Membr. Sci. 2021, 619, 118788. [Google Scholar] [CrossRef]
- Thummar, U.G.; Saxena, M.; Ray, S.; Singh, P.S. Solvent-resistant polyvinyl alcohol nanofilm with nanopores for high-flux degumming. J. Membr. Sci. 2022, 650, 120430. [Google Scholar] [CrossRef]
- Zhang, X.; Dong, Y.; Wang, Q.; Yu, H.; Gao, C.; Xue, L. Structures and performance of alcohol activated thin film composite polyamide (TFC-PA) nanofiltration (NF) membranes prepared with and without Co(II) modulation. Desalination 2023, 548, 116242. [Google Scholar] [CrossRef]
- Zhao, X.T.; Sun, J.S.; Cheng, X.H.; Qiu, Q.Q.; Ma, G.M.; Jiang, C.Y.; Pan, J.F. Colloidal 2D Covalent Organic Framework-Tailored Nanofiltration Membranes for Precise Molecular Sieving. ACS Appl. Mater. Interfaces 2023, 15, 53924–53934. [Google Scholar] [CrossRef]
- Ren, Y.L.; Zhu, J.Y.; Cong, S.Z.; Wang, J.; Van der Bruggen, B.; Liu, J.D.; Zhang, Y.T. High flux thin film nanocomposite membranes based on porous organic polymers for nanofiltration. J. Membr. Sci. 2019, 585, 19–28. [Google Scholar] [CrossRef]
- Guo, L.H.; Zhu, Y.Z.; Hou, L.A.; Dong, D.Y.; Wang, A.Q.; Yang, Y. Enhancing the desalination performance of polyamide nanofiltration membranes via in-situ incorporation of zwitterionic nanohydrogel. Desalination 2023, 549, 116355. [Google Scholar] [CrossRef]
- Zhu, B.; Shao, R.; Li, N.; Guo, C.; Liu, P.; Shi, J.; Min, C.; Liu, S.; Qian, X.; Wang, L.; et al. Narrowing the pore size distribution of polyamide nanofiltration membranes via dragging piperazines to enhance ion selectivity. J. Membr. Sci. 2023, 667, 121187. [Google Scholar] [CrossRef]
- Han, Y.; Xu, Z.; Gao, C. Ultrathin Graphene Nanofiltration Membrane for Water Purification. Adv. Funct. Mater. 2013, 23, 3693–3700. [Google Scholar] [CrossRef]
- Wang, T.; He, X.P.; Li, Y.; Li, J.D. Novel poly(piperazine-amide) (PA) nanofiltration membrane based poly(-phenylene isophthalamide) (PMIA) hollow fiber substrate for treatment of dye solutions. Chem. Eng. J. 2018, 351, 1013–1026. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, H.; Yu, M.; Wang, Y.; Gao, T.; Yang, F. Conductive thin film nanocomposite forward osmosis membrane (TFN-FO) blended with carbon nanoparticles for membrane fouling control. Sci. Total Environ. 2019, 697, 134050. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Guo, H.; Tang, C.Y.Y. The upper bound of thin-film composite (TFC) polyamide membranes for desalination. J. Membr. Sci. 2019, 590, 117297. [Google Scholar] [CrossRef]
- Lingaya, A.C.; Gallardo, M.R.; Huang, S.H.; Li, C.L.; Caparanga, A.R.; Lee, K.R. Advanced sulfonated polyester nanofiltration membranes for superior dye separation, desalination, and chlorine resistance. J. Membr. Sci. 2024, 706, 122982. [Google Scholar] [CrossRef]
- Song, Q.Q.; Lin, Y.Q.; Zhou, S.Y.; Istirokhatun, T.; Wang, Z.; Shen, Q.; Mai, Z.H.; Guan, K.C.; Matsuyama, H. Highly permeable nanofilms with asymmetric multilayered structure engineered via amine-decorated interlayered interfacial polymerization. J. Membr. Sci. 2023, 670, 121377. [Google Scholar] [CrossRef]
- Sun, R.; Lv, Y.; Zhang, X.; Zhao, J.; Qian, Z.Y.; Lan, Q.Q.; Wang, Z.Y.; He, F.; Liu, T.X. Silicification-interlayered nanofiber substrates regulated crumpled ultrathin polyamide nanofilms for highly enhanced nanofiltration. J. Membr. Sci. 2023, 672, 121476. [Google Scholar] [CrossRef]
- Dai, B.L.; Hu, Y.J.; Ding, Y.D.; Shen, L.G.; Li, R.J.; Zhao, D.L.; Jiao, Y.; Xu, Y.C.; Lin, H.J. Innovative construction of nano-wrinkled polyamide membranes using covalent organic framework nanoflowers for efficient desalination and antibiotic removal. Desalination 2024, 570, 117083. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, N.; Zhang, J.J.; Qin, Y.Y.; Wang, S.; Tang, C.Y.; Wang, Z.N. Hydrogel-regulated interfacial polymerization: A gateway to effective nanostructure tuning of polyamide nanofiltration membranes. Desalination 2023, 556, 116593. [Google Scholar] [CrossRef]
- Xiao, L.Q.; Bai, J.; Lai, W.; Jiao, Y.; Wu, Q.; Liu, H.Y.; Zhang, Y.Z.; Shan, L.L.; Luo, S.J. Zwitterionic liquid hydrogel sustained-release strategy for high-performance nanofiltration membrane. Sep. Purif. Technol. 2022, 303, 122272. [Google Scholar] [CrossRef]
- Fu, J.W.; Xu, H.; Lin, T.; Wang, A.; Wang, A.Q.; Yao, C.; Chen, W.H.; Ding, M.M.; Geng, C.X.; Gao, L. Tailoring the crumpled structures of a polyamide membrane with a heterostructural MXene-TiO2 interlayer for high water permeability. Desalination 2023, 549, 116352. [Google Scholar] [CrossRef]
Membrane | Rq (nm) | Ra (nm) |
---|---|---|
PS | 4.5 ± 0.1 | 3.5 ± 0.4 |
PVA-0.20 | 14.5 ± 0.3 | 11.3 ± 0.1 |
PA/PVA-0.20 | 24.2 ± 0.4 | 16.5 ± 0.2 |
PVA-0.20/PA/PVA-0.20 | 11.2 ± 0.2 | 8.8 ± 0.3 |
Flux (LMH/bar) | Na2SO4 Rejection (%) | NaCl Rejection (%) | |
---|---|---|---|
TFC | 5.62 ± 0.96 | 97.47 ± 1.89 | 48.17 ± 2.78 |
PVA-0.20/PA/PVA-0.20 | 22.05 ± 1.05 | 96.57 ± 2.57 | 19.58 ± 0.58 |
Control TFC | PVA-0.20/PA/PVA-0.20 | |||
---|---|---|---|---|
Flux (LMH/bar) | Rejection (%) | Flux (LMH/bar) | Rejection (%) | |
NR | 5.48 ± 0.18 | 88.50 ± 0.11 | 21.83 ± 0.21 | 84.03 ± 0.13 |
Rh B | 5.26 ±0.25 | 98.10 ± 0.13 | 21.64 ± 0.31 | 97.91 ± 0.22 |
VB | 4.99 ± 0.14 | 99.93 ± 0.05 | 20.25 ± 0.24 | 99.92 ± 0.05 |
EBT | 5.37 ± 0.31 | 98.90 ± 0.11 | 20.5 ± 0.16 | 98.61 ± 0.34 |
CR | 5.01 ± 0.23 | 99.94 ± 0.03 | 20.23 ± 0.41 | 99.93 ± 0.03 |
Dye | MW (g/mol) | Charge |
---|---|---|
NR | 288.8 | Positive |
Rh B | 479.0 | Positive |
VB | 506.1 | Positive |
EBT | 461.4 | Negative |
CR | 696.7 | Negative |
Feed Solution | Control TFC | PVA-0.20/PA/PVA-0.20 | ||
---|---|---|---|---|
FDR (%) | FRR (%) | FDR (%) | FRR (%) | |
BSA | 18.33 ± 0.31 | 94.01 ± 0.27 | 4.32 ± 0.11 | 98.82 ± 0.09 |
SA | 24.43 ± 0.26 | 91.57 ± 0.19 | 9.13 ± 0.16 | 97.07 ± 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, W.; Wang, Y.; Li, Y.; Ye, H.; Xiao, F.; Wang, L.; Gai, H. The Sandwich-Structured PVA/PA/PVA Tri-Layer Nanofiltration Membrane with High Performance for Desalination and Pollutant Removal. Water 2024, 16, 2752. https://doi.org/10.3390/w16192752
Cai W, Wang Y, Li Y, Ye H, Xiao F, Wang L, Gai H. The Sandwich-Structured PVA/PA/PVA Tri-Layer Nanofiltration Membrane with High Performance for Desalination and Pollutant Removal. Water. 2024; 16(19):2752. https://doi.org/10.3390/w16192752
Chicago/Turabian StyleCai, Weibin, Yuzhe Wang, Yuannan Li, Hong Ye, Fuyuan Xiao, Lei Wang, and Hengjun Gai. 2024. "The Sandwich-Structured PVA/PA/PVA Tri-Layer Nanofiltration Membrane with High Performance for Desalination and Pollutant Removal" Water 16, no. 19: 2752. https://doi.org/10.3390/w16192752
APA StyleCai, W., Wang, Y., Li, Y., Ye, H., Xiao, F., Wang, L., & Gai, H. (2024). The Sandwich-Structured PVA/PA/PVA Tri-Layer Nanofiltration Membrane with High Performance for Desalination and Pollutant Removal. Water, 16(19), 2752. https://doi.org/10.3390/w16192752