Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (81)

Search Parameters:
Keywords = Sr-Nd-Pb-Hf isotopes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 32586 KiB  
Article
Magmatic Evolution at the Saindak Cu-Au Deposit: Implications for the Formation of Giant Porphyry Deposits
by Jun Hong, Yasir Shaheen Khalil, Asad Ali Narejo, Xiaoyong Yang, Tahseenullah Khan, Zhihua Wang, Huan Tang, Haidi Zhang, Bo Yang and Wenyuan Li
Minerals 2025, 15(8), 768; https://doi.org/10.3390/min15080768 - 22 Jul 2025
Viewed by 1236
Abstract
The Chagai porphyry copper belt is a major component of the Tethyan metallogenic domain, which spans approximately 300 km and hosts several giant porphyry copper deposits. The tectonic setting, whether subduction-related or post-collisional, and the deep dynamic processes governing the formation of these [...] Read more.
The Chagai porphyry copper belt is a major component of the Tethyan metallogenic domain, which spans approximately 300 km and hosts several giant porphyry copper deposits. The tectonic setting, whether subduction-related or post-collisional, and the deep dynamic processes governing the formation of these giant deposits remain poorly understood. Mafic microgranular enclaves (MMEs), mafic dikes, and multiple porphyries have been documented in the Saindak mining area. This work examines both the ore-rich and non-ore intrusions in the Saindak porphyry Cu-Au deposit, using methods like molybdenite Re-Os dating, U-Pb zircon ages, Hf isotopes, and bulk-rock geochemical data. Geochronological results indicate that ore-fertile and barren porphyries yield ages of 22.15 ± 0.22 Ma and 22.21 ± 0.33 Ma, respectively. Both MMEs and mafic dikes have zircons with nearly identical 206Pb/238U weighted mean ages (21.21 ± 0.18 Ma and 21.21 ± 0.16 Ma, respectively), corresponding to the age of the host rock. Geochemical and Sr–Nd–Hf isotopic evidence indicates that the Saindak adakites were generated by the subduction of the Arabian oceanic lithosphere under the Eurasian plate, rather than through continental collision. The adakites were mainly formed by the partial melting of a metasomatized mantle wedge, induced by fluids from the dehydrating subducting slab, with minor input from subducted sediments and later crust–mantle interactions during magma ascent. We conclude that shallow subduction of the Arabian plate during the Oligocene–Miocene may have increased the flow of subducted fluids into the sub-arc mantle source of the Chagai arc. This process may have facilitated the widespread deposition of porphyry copper and copper–gold mineralization in the region. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

30 pages, 11512 KiB  
Article
Petrogenesis of Late Jurassic–Early Cretaceous Granitoids in the Central Great Xing’ an Range, NE China
by Cheng Qian, Lu Lu, Yan Wang, Junyu Fu, Xiaoping Yang, Yujin Zhang and Sizhe Ni
Minerals 2025, 15(7), 693; https://doi.org/10.3390/min15070693 - 28 Jun 2025
Viewed by 324
Abstract
The Great Xing’ an Range is located in the eastern part of the Xing’ an-Mongolian Orogenic Belt, which is an important component of the Central Asian Orogenic Belt. To determine the emplacement age and petrogenesis of the granitoids in the Gegenmiao and Taonan [...] Read more.
The Great Xing’ an Range is located in the eastern part of the Xing’ an-Mongolian Orogenic Belt, which is an important component of the Central Asian Orogenic Belt. To determine the emplacement age and petrogenesis of the granitoids in the Gegenmiao and Taonan areas of the central Great Xing’an Range, and to investigate its tectonic setting, petrographic studies, zircon U-Pb geochronology, whole-rock Sr-Nd isotopic analysis, zircon Hf isotopic analysis, and detailed geochemical investigations of this intrusion were carried out. The results indicate the following, in relation to the granitoids in the study areas: (1) The zircon U-Pb dating of the granitic rocks in the study areas yields ages ranging from 141.4 ± 2.0 Ma to 158.7 ± 1.9 Ma, indicating their formation during the Late Jurassic to Early Cretaceous; (2) the geochemical characteristics indicate that these rocks belong to the calc-alkaline series and peraluminous, classified as highly fractionated I-type granites with adakite features; (3) the Sr-Nd isotopic data show that the εNd(t) values of Gegenmiao granitic rocks are 2.8 and 2.1, while those of Taonan granitic rocks range from −1.5 to 0.7; (4) the Zircon εHf(t) values of the granitic rocks from Gegenmiao and Taonan vary from 2.11 to 6.48 and 0.90 to 8.25, respectively. They are interpreted to have formed through partial melting of thickened lower crustal material during the Meso-Neoproterozoic. The Gegenmiao and Taonan granitic rocks were formed in a transitional environment from post-orogenic compression to extension, which is closely associated with the Mongolia–Okhotsk tectonic system. Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

25 pages, 5462 KiB  
Article
Late Carboniferous Slab Rollback in the Southern Altaids: Evidence from a Slab-Derived Adakitic Granodiorite in the South Tianshan
by Nijiati Abuduxun, Wenjiao Xiao, Wanghu Zhang, He Yang, Abidan Alimujiang, Peng Huang and Jingmin Gan
Minerals 2025, 15(7), 674; https://doi.org/10.3390/min15070674 - 24 Jun 2025
Viewed by 361
Abstract
The South Tianshan records the latest accretionary and collisional events in the southwestern Altaids, but the internal subduction-related processes are controversial. This study provides an integrative analysis of a newly identified Late Carboniferous adakitic granodiorite from the South Tianshan, incorporating geochronological, zircon U-Pb [...] Read more.
The South Tianshan records the latest accretionary and collisional events in the southwestern Altaids, but the internal subduction-related processes are controversial. This study provides an integrative analysis of a newly identified Late Carboniferous adakitic granodiorite from the South Tianshan, incorporating geochronological, zircon U-Pb and Lu-Hf isotopic, whole-rock geochemical, and Sr-Nd isotopic data. Zircon U-Pb analysis indicates that the granite was emplaced at 310 ± 2.5 Ma. Based on major element compositions, the granodiorite belongs to medium-K calc-alkaline weakly peraluminous series (A/CNK = 0.95–1.09). The samples exhibit typical high-silica adakitic affinity, as evidenced by the elevated contents of SiO2 (67.75–69.27 wt.%), Al2O3 (15.29–15.90 wt.%), Sr (479–530 ppm), and Ba (860–910 ppm); low concentrations of Yb (0.43–0.47 ppm) and Y (7.12–7.44 ppm); high Sr/Y ratios (67–72); and slight Eu anomalies (δEu = 0.89–1.03). The sodium-rich composition (K2O/Na2O = 0.48–0.71) is comparable to adakitic rocks from slab-derived melts. Elevated concentrations of Ni (22.12–24.25 ppm), Cr (33.20–37.86 ppm), Co (6.32–6.75 ppm), and V (30.33–32.48 ppm), along with high Mg# values (55–57), suggest melt–mantle interaction during magma ascent. The slightly enriched isotopic signatures, characterized by higher initial 87Sr/86Sr ratios (0.706086–0.706205) and lower εNd(t) (−3.09 to –2.47) and εHf(t) (−3.11 to +7.66) values, point to notable sedimentary contributions, potentially through source contamination and/or shallow-level crustal contamination. By integrating the new results with previously published data, we consider that the adakitic granodiorite was generated by partial melting of the subducted oceanic crust, triggered by asthenospheric upwelling associated with the southward rollback of the north-dipping South Tianshan oceanic lithosphere. Our data provide new insights into Late Carboniferous retreating subduction along the southern active margin of the Yili-Central Tianshan and the accretionary architecture of the southern Altaids. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

25 pages, 9142 KiB  
Article
Petrogenesis and Tectonic Significance of Middle Jurassic Mafic–Ultramafic Cumulate Rocks in Weiyuanpu, Northern Liaoning, China: Insights from Zircon Geochronology and Isotope Geochemistry
by Yifan Zhang, Xu Ma, Jiafu Chen, Yuqi Liu, Yi Zhang and Yongwei Ma
Minerals 2025, 15(6), 651; https://doi.org/10.3390/min15060651 - 17 Jun 2025
Viewed by 422
Abstract
The tectonic evolution of the Paleo-Pacific Ocean and the destruction mechanism of the North China Craton (NCC) are still controversial. In this study, we conducted zircon U-Pb dating, whole-rock geochemistry, and Sr-Nd-Hf isotope analyses on the Weiyuanpu mafic–ultramafic intrusions in the eastern segment [...] Read more.
The tectonic evolution of the Paleo-Pacific Ocean and the destruction mechanism of the North China Craton (NCC) are still controversial. In this study, we conducted zircon U-Pb dating, whole-rock geochemistry, and Sr-Nd-Hf isotope analyses on the Weiyuanpu mafic–ultramafic intrusions in the eastern segment of the northern margin of the NCC to discuss their petrogenesis and tectonic implications. The Weiyuanpu mafic–ultramafic intrusions consist of troctolite, hornblendite, hornblende gabbro, gabbro, and minor diorite, anorthosite, characterized by cumulate structure. The main crystallization sequence of minerals is olivine → pyroxene → magnetite → hornblende. The zircon U-Pb ages of hornblendite, hornblende grabbro, and diorite are ~170Ma. Geochemical characteristics exhibit low-K tholeiitic to calc-alkaline series, enriched in light rare-earth elements (LREE) and significant large-ion lithophile elements (LILE), and depleted in high-field-strength elements (HFSE). Sr-Nd isotopic compositions are ISr = 0.7043–0.7055, εNd(t) = −0.7 to +0.9, and zircon εHf (t) values range from +3.4 to +8.7. These results suggest that the source region was a phlogopite-bearing garnet lherzolite mantle metasomatized by subduction fluids. The study reveals that the northeastern margin of the NCC was in a back-arc extensional setting due to the subduction of the Paleo-Pacific Ocean during the Middle Jurassic, which caused lithosphere thinning and mantle melting in this region. Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

17 pages, 7133 KiB  
Article
Subduction Dynamics of the Paleo-Pacific Plate: New Constraints from Quartz Diorites in the Fudong Region
by Jijie Song, Yidan Zhu and Xiangzhong Chen
Minerals 2025, 15(6), 562; https://doi.org/10.3390/min15060562 - 25 May 2025
Viewed by 339
Abstract
The Yanbian area of Jilin Province is situated in the eastern segment of the southern margin of the Xing-Meng Orogenic Belt, representing a region that has been superimposed and reworked by the Paleo-Asian Ocean and Circum-Pacific tectonic event. To determine the emplacement age [...] Read more.
The Yanbian area of Jilin Province is situated in the eastern segment of the southern margin of the Xing-Meng Orogenic Belt, representing a region that has been superimposed and reworked by the Paleo-Asian Ocean and Circum-Pacific tectonic event. To determine the emplacement age and petrogenesis of the quartz diorite in the Fudong area of Yanbian, Jilin Province, and to investigate its tectonic setting, petrographic studies, zircon U-Pb geochronology, whole-rock Sr-Nd isotopic analysis, zircon Hf isotopic analysis, and detailed geochemical investigations of this intrusion were carried out. The results indicate that the Fudong quartz diorite has: (1) A weighted mean zircon U-Pb age of 186 ± 1.7 Ma, corresponding to the Late Early Jurassic; (2) geochemically high concentrations of Sr (average: 1146 ppm) and Ba (average: 1213 ppm), and enrichment of light rare earth elements (LREE), along with notably high Th/Yb and Rb/Y ratios; (3) geochemically, the quartz diorite is enriched in large-ion lithophile elements (LILEs; e.g., Ba, K) and light rare earth elements (LREEs), while being depleted in high-field-strength elements (HFSEs; e.g., Ta, Ti). These features are consistent with magma formed in a subduction-related setting. In summary, the Fudong quartz diorite formed within an active continental margin tectonic environment associated with the subduction of the Paleo-Pacific Plate. Its primary magma likely originated from an enriched lithospheric mantle that had been metasomatized by fluids released from the subducted slab. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Graphical abstract

23 pages, 15341 KiB  
Article
Petrogenesis of Middle Jurassic Syenite-Granite Suites and Early Cretaceous Granites with Associated Enclaves in Southwestern Zhejiang, SE China: Implications for Subduction-Related Tectonic Evolution Beneath Northeastern Cathaysia Block
by Yu Wang, Haoyuan Lan, Chong Jin and Yuhuang Zhang
Minerals 2025, 15(5), 474; https://doi.org/10.3390/min15050474 - 30 Apr 2025
Viewed by 458
Abstract
Late Mesozoic magmatism in Southeast China extensively reworked the Cathaysia Block’s crust, linked to the Paleo-Pacific Plate subduction beneath East Asia. The northeastern Cathaysia Block, largely covered by Cretaceous volcanic-sedimentary basins, has limited Jurassic exposure to Early Cretaceous intrusions, which provides critical insights [...] Read more.
Late Mesozoic magmatism in Southeast China extensively reworked the Cathaysia Block’s crust, linked to the Paleo-Pacific Plate subduction beneath East Asia. The northeastern Cathaysia Block, largely covered by Cretaceous volcanic-sedimentary basins, has limited Jurassic exposure to Early Cretaceous intrusions, which provides critical insights into deep crust-mantle processes. In this study, we present zircon U-Pb geochronology and Hf isotope, whole-rock geochemistry, and Sr-Nd isotopes of the Middle Jurassic syenite-granite suites and Early Cretaceous granites with enclaves in the Qingyuan area (SW Zhejiang Province) to constrain their petrogenesis and tectonic significance. Middle Jurassic syenites and alkali-feldspar granites (169–167 Ma) exhibit calc-alkaline to shoshonitic affinities and weakly peraluminous compositions. Early Cretaceous granites (134 Ma) and their enclaves (136 Ma) are high-K calc-alkaline and weakly peraluminous to metaluminous. All samples show LILE and LREE enrichment, HFSE depletion, and negative Eu and Sr anomalies, with only syenites displaying negative Ce anomalies. We suggest that the Middle Jurassic syenites originated from the partial melting of an enriched lithospheric mantle influenced by subduction-related metasomatism. Alkali-feldspar granites derived from partial melting of the basement of the Cathaysia Block. Early Cretaceous granites formed by partial melting of lower crustal mafic rocks, with enclaves representing earlier crystallization products, which were then mechanically mixed with granites. We propose the NE Cathaysia Block underwent significant reworking from the Middle Jurassic to the Early Cretaceous. Middle Jurassic syenites formed in a compressional setting linked to Paleo-Pacific Plate subduction, while Early Cretaceous magmatism reflects lithospheric extension and crust-mantle interaction triggered by slab rollback. Full article
Show Figures

Figure 1

30 pages, 15713 KiB  
Article
Magma Mixing Origin for the Menyuan Granodioritic Pluton in the North Qilian Orogenic Belt, China
by Shugang Xia, Yu Qi, Shengyao Yu, Xiaocong Jiang, Xiangyu Gao, Yue Wang, Chuanzhi Li, Qian Wang, Lintao Wang and Yinbiao Peng
Minerals 2025, 15(4), 391; https://doi.org/10.3390/min15040391 - 8 Apr 2025
Viewed by 625
Abstract
Magma mixing or mingling is not just a geological phenomenon that widely occurs in granitoid magmatism, but a complex dynamic process that influences the formation of mafic microgranular enclaves (MMEs) and the diversity of granitic rocks. Herein, we carried out a comprehensive study [...] Read more.
Magma mixing or mingling is not just a geological phenomenon that widely occurs in granitoid magmatism, but a complex dynamic process that influences the formation of mafic microgranular enclaves (MMEs) and the diversity of granitic rocks. Herein, we carried out a comprehensive study that encompassed the petrology, mineral chemistry, zircon U-Pb ages, Lu-Hf isotopes, whole-rock elements, and Sr-Nd isotope compositions of the Menyuan Granodioritic Pluton in the northern margin of the Qilian Block, to elucidate the petrogenesis and physical and chemical processes occurring during magma mixing. The Menyuan Granodioritic Pluton is mainly composed of granodiorites accompanied by numerous mafic microgranular enclaves (MMEs) and is intruded by minor gabbro dikes. LA-ICP-MS zircon U-Pb dating reveals that these rocks possess a similar crystallization age of ca. 456 Ma. The Menyuan host granodiorites, characterized as metaluminous to weakly peraluminous, belong to subduction-related I-type calc-alkaline granites. The MMEs and gabbroic dikes have relatively low SiO2 contents and high Mg# values, probably reflecting a mantle-derived origin. They are enriched in large ion lithophile elements (LILEs) and light, rare earth elements (LREEs) but are depleted in high field strength elements (HFSEs), indicating continental arc-like geochemical affinities. The host granodiorites yield relatively enriched whole-rock Sr-Nd and zircon Hf isotopic compositions (87Sr/86Sri = 0.7072–0.7158; εNd(t) = −9.21 to −4.23; εHf(t) = −8.8 to −1.2), implying a derivation from the anatexis of the ancient mafic lower continental crust beneath the Qilian Block. The MMEs have similar initial Sr isotopes but distinct whole-rock Nd and zircon Hf isotopic compositions compared with the host granodiorites (87Sr/86Sri = 0.7078–0.7089; εNd(t) = −3.88 to −1.68; εHf(t) = −0.1 to +4.1). Field observation, microtextural and mineral chemical evidence, geochemical characteristics, and whole-rock Nd and zircon Hf isotopic differences between the host granodiorites and MMEs suggest insufficient magma mixing of lithospheric mantle mafic magma and lower continental crust felsic melt. In combination with evidence from regional geology, we propose that the anatexis of the ancient mafic lower continental crust and subsequent magma mixing formed in an active continental arc setting, which was triggered by the subducted slab rollback and mantle upwelling during the southward subduction of the Qilian Proto-Tethys Ocean during the Middle-Late Ordovician. Full article
(This article belongs to the Special Issue Tectonic Evolution of the Tethys Ocean in the Qinghai–Tibet Plateau)
Show Figures

Figure 1

21 pages, 6656 KiB  
Article
A Geochemical and Sr–Nd–Hf–O Isotopic Study of the Early Silurian Shandan Adakites in the Longshoushan Area: Implications for the Collisional Setting of the Proto–Tethyan North Qilian Orogen, Northwest China
by Zhihan Bai, Yang Yang, Xijun Liu, Pengde Liu, Gang Chen, Xiao Liu, Rongguo Hu, Hao Tian, Yande Liu, Wenmin Huang and Yao Xiao
Minerals 2025, 15(4), 352; https://doi.org/10.3390/min15040352 - 27 Mar 2025
Viewed by 447
Abstract
The North Qilian Orogen experienced a series of late Neoproterozoic to early Paleozoic tectonic events, including the opening and closure of the Proto-Tethyan Qilian Ocean, as well as post-subduction processes. This study investigated the Shandan adakites in the Longshoushan area of the North [...] Read more.
The North Qilian Orogen experienced a series of late Neoproterozoic to early Paleozoic tectonic events, including the opening and closure of the Proto-Tethyan Qilian Ocean, as well as post-subduction processes. This study investigated the Shandan adakites in the Longshoushan area of the North Qilian Orogen, focusing on zircon U–Pb geochronology, whole-rock geochemistry, and Sr–Nd–Hf–O isotopic compositions. The Shandan adakites yield ages of ca. 446–440 Ma, suggesting they crystallized during the collision between the Alxa and Qilian blocks following the closure of the Proto-Tethyan North Qilian Ocean. High Sr/Y (40.9–117) ratios and enrichments in light rare earth elements indicate that the Shandan adakites were formed by partial melting of thickened magnesian lower crust. They have relatively rich εNd (t) (−7.66 to −6.32), εHf(t) (3.30 to −12.4), and δ18O (5.34‰–7.52‰). Zircon Hf–O and whole-rock Sr–Nd isotopes confirm significant contributions from the ancient crust and mantle-derived melts, suggesting complex crust–mantle interactions in their magma sources. We propose that the Shandan adakites formed during the (early) post-collisional stage of orogenesis. Based on regional geological evidence and previous studies, we suggest the Alxa and Central Qilian blocks collided during ca. 446–440 Ma, leading to the thickening of the lower crust. After ca. 440 Ma, the tectonic setting of the Northern Qilian Orogen transitioned from a collisional to a post-collisional stage. Full article
(This article belongs to the Special Issue Tectonic Evolution of the Tethys Ocean in the Qinghai–Tibet Plateau)
Show Figures

Figure 1

22 pages, 7341 KiB  
Article
S-Type Granites from the Guomang-Co Area in Central Tibet: A Response to Early Paleozoic Andean-Type Orogeny Along the Northern Margin of East Gondwana
by Yuhe Zhang, Ming Wang, Changsheng Yu and Zhenglong Li
Minerals 2025, 15(3), 284; https://doi.org/10.3390/min15030284 - 11 Mar 2025
Viewed by 686
Abstract
The Proto-Tethys Ocean existed between Gondwana and Laurussia during the late Neoproterozoic to Early Paleozoic. As part of the northern margin of East Gondwana, the Lhasa terrane records subduction-related processes of the Proto-Tethys Ocean. This study analyzes mylonitized granites from the Guomang-Co area [...] Read more.
The Proto-Tethys Ocean existed between Gondwana and Laurussia during the late Neoproterozoic to Early Paleozoic. As part of the northern margin of East Gondwana, the Lhasa terrane records subduction-related processes of the Proto-Tethys Ocean. This study analyzes mylonitized granites from the Guomang-Co area in the central Lhasa terrane, focusing on their major and trace elements, U-Pb age values, and Sr-Nd-Pb-Hf isotopes. Geochemical and isotopic data consistently indicate S-type affinity derived from Paleoproterozoic metasedimentary sources, and likely formed in a syn-collisional setting. Combined with previous studies, the granites are interpreted as products of the Early Paleozoic Andean-type orogeny along the northern margin of East Gondwana, which indicate southward subduction of the Proto-Tethys Ocean during the Cambrian–Ordovician. Full article
(This article belongs to the Special Issue Tectonic Evolution of the Tethys Ocean in the Qinghai–Tibet Plateau)
Show Figures

Figure 1

28 pages, 9029 KiB  
Article
Petrogenesis, Geochemistry, and Geological Significance of the Kongco Granitic Porphyry Dykes in the Northern Part of the Central Lhasa Microblock, Tibet
by Anping Xiang, Hong Liu, Wenxin Fan, Qing Zhou, Hong Wang and Kaizhi Li
Minerals 2025, 15(3), 283; https://doi.org/10.3390/min15030283 - 11 Mar 2025
Viewed by 780
Abstract
The Kongco area of Nima in the northern part of the Lhasa terrane has a suite of alkaline granitic porphyry dykes associated with Early Cretaceous granites and accompanied by Cu/Mo mineralization. LA-ICP-MS 206Pb/238U zircon geochronology performed on the dykes produced [...] Read more.
The Kongco area of Nima in the northern part of the Lhasa terrane has a suite of alkaline granitic porphyry dykes associated with Early Cretaceous granites and accompanied by Cu/Mo mineralization. LA-ICP-MS 206Pb/238U zircon geochronology performed on the dykes produced an age of 104.15 ± 0.94 Ma (MSWD = 0.98), indicating the Early Cretaceous emplacement of the dykes. The dykes exhibit high silica (SiO2 = 76.22~77.90 wt.%), high potassium (K2O = 4.97~6.21 wt.%), high alkalinity (K2O + Na2O = 8.07~8.98 wt.%), low calcium (CaO = 0.24~0.83 wt.%), low magnesium (MgO = 0.06~0.20 wt.%), and moderate aluminum content (Al2O3 = 11.93~12.45 wt.%). The Rieterman index (σ) ranges from 1.93 to 2.34. A/NK (molar ratio Al2O3/(Na2O + K2O)) and A/CNK (molar ratio Al2O3/(CaO + Na2O + K2O)) values of the dykes range from 1.06 to 1.18 and 0.98 to 1.09, respectively. The dykes are relatively enriched in Rb, Th, U, K, Ta, Ce, Nd, Zr, Hf, Sm, Y, Yb, and Lu, and they show a noticeable relative depletion in Ba, Nb, Sr, P, Eu, and Ti, as well as an average differentiation index (DI) of 96.42. The dykes also exhibit high FeOT/MgO ratios (3.60~10.41), Ga/Al ratios (2.22 × 10−4~3.01 × 10−4), Y/Nb ratios (1.75~2.40), and Rb/Nb ratios (8.36~20.76). Additionally, they have high whole-rock Zr saturation temperatures (884~914 °C), a pronounced Eu negative anomaly (δEu = 0.04~0.23), and a rightward-sloping “V-shaped” rare earth element pattern. These characteristics suggest that the granitic porphyry dykes can be classified as A2-type granites formed in a post-collisional tectonic environment and that they are weakly peraluminous, high-potassium, and Calc-alkaline basaltic rocks. Positive εHf(t) values = 0.43~3.63 and a relatively young Hf crustal model age (TDM2 = 826~1005 Ma, 87Sr/86Sr ratios = 0.7043~0.7064, and εNd(t) = −8.60~−2.95 all indicate lower crust and mantle mixing. The lower crust and mantle mixing model is also supported by (206Pb/204Pb)t = 18.627~18.788, (207Pb/204Pb)t = 15.707~15.719, (208Pb/204Pb)t = 39.038~39.110). Together, the Hf, Sr and Pb isotopic ratios indicate that the Kongco granitic porphyry dykes where derived from juvenile crust formed by the addition of mantle material to the lower crust. From this, we infer that the Kongco granitic porphyry dykes are related to a partial melting of the lower crust induced by subduction slab break-off and asthenospheric upwelling during the collision between the Qiangtang and Lhasa terranes and that they experienced significant fractional crystallization dominated by potassium feldspar and amphibole. These dykes are also accompanied by significant copper mineralization (five samples, copper content 0.2%), suggesting a close relationship between the magmatism associated with these dykes and regional metallogenesis, indicating a high potential for mineral exploration. Full article
(This article belongs to the Special Issue Using Mineral Chemistry to Characterize Ore-Forming Processes)
Show Figures

Figure 1

22 pages, 28128 KiB  
Article
Mafic Intrusions in the Cuona Area, Eastern Tethyan Himalaya: Early Kerguelen Mantle Plume Activity and East Gondwana Rifting
by Chunxi Shan, Zhiqiang Kang, Feng Yang, Chengyou Ma, Zedong Qiao, Zonghao Liu, Jizhong Mu, Lingling Wu and Lu Zhou
Minerals 2025, 15(3), 281; https://doi.org/10.3390/min15030281 - 10 Mar 2025
Viewed by 568
Abstract
The widespread occurrence of Mesozoic ocean island basalt (OIB)-like igneous rocks in the Southern Tibetan Himalayan Belt provides important constraints on the rifting of East Gondwana. This study undertook a petrological, geochronological, and geochemical investigation of mafic intrusive rocks in the Cuona area [...] Read more.
The widespread occurrence of Mesozoic ocean island basalt (OIB)-like igneous rocks in the Southern Tibetan Himalayan Belt provides important constraints on the rifting of East Gondwana. This study undertook a petrological, geochronological, and geochemical investigation of mafic intrusive rocks in the Cuona area of the eastern Tethyan Himalayan Belt. The mafic intrusions have OIB-type geochemical signatures, including diabase porphyrite, gabbro, and diabase. Zircon U–Pb dating indicates that the diabase porphyrite formed at 135.0 ± 1.6 Ma. The diabase porphyrite and gabbro are enriched in high-field-strength elements (Nb and Ti) and large-ion lithophile elements (Sr and Pb) and experienced negligible lithospheric mantle or crustal contamination. The diabase is enriched in large-ion lithophile elements (LILEs, e.g., La and Ce) and depleted in high-field-strength elements (HFSEs, e.g., Ru, Zr and Ti). In general, the mafic intrusions exhibit significant light REE enrichment and heavy REE depletion and have no Eu anomalies. Whole-rock neodymium (εNd(t) = 1.55) and zircon Hf (εHf(t) = 0.60–3.73) isotopic compositions indicate derivation of the magma from enriched type I mantle. We propose that the diabase porphyrite and diabase formed in a continental margin rift setting, influenced by the Kerguelen mantle plume, and represent magmatism related to the breakup of East Gondwana. However, the gabbro formed in a relatively stable continental intraplate environment, likely derived from deep magmatic processes associated with the Kerguelen mantle plume. Our results provide new constraints on the early activity of the Kerguelen mantle plume and offer insights into the breakup and tectonic evolution of East Gondwana. Full article
(This article belongs to the Special Issue Tectonic Evolution of the Tethys Ocean in the Qinghai–Tibet Plateau)
Show Figures

Figure 1

30 pages, 32058 KiB  
Article
Geochronology, Petrogenesis, and Geological Significance of the Longchahe Granite, Gejiu Sn Polymetallic Ore District, SW China
by Rong Yang, Yongqing Chen and Ian M. Coulson
Geosciences 2025, 15(2), 71; https://doi.org/10.3390/geosciences15020071 - 18 Feb 2025
Viewed by 589
Abstract
Longchahe porphyritic granite is the largest pluton within the western Gejiu complex, a series of mainly intermediate to felsic alkali intrusions in southwestern China. Our research indicates that the pluton intruded during the Late Cretaceous (82–84 Ma). The pluton is primarily a medium- [...] Read more.
Longchahe porphyritic granite is the largest pluton within the western Gejiu complex, a series of mainly intermediate to felsic alkali intrusions in southwestern China. Our research indicates that the pluton intruded during the Late Cretaceous (82–84 Ma). The pluton is primarily a medium- to coarse-grained porphyritic granite, which shows weakly peraluminous (A/CNK = 0.92–1.82, with an average of 1.09) and alkali (shoshonitic) characteristics, exhibiting an affinity with highly differentiated I-type granite. The porphyritic granite is enriched in K and Rb, but depleted in Ba, P, and Ti, and displays significant enrichment of light rare earth elements with minor negative Eu anomalies (Eu/Eu* = 0.46–0.66). It has elevated (87Sr/86Sr)i ratios (0.71243–0.71301), negative εNd(t) values (−8.42–−6.46), and a broad range of εHf(t) values (−13.80–9.17). These geochemical characteristics indicate that the formation of Longchahe granite involved both crust–mantle assimilation and strong crystal fractionation. Additionally, the pluton demonstrates a significant enrichment of W. A factor analysis study suggests that the formation of granites is associated with F1 (Nb–Ta–Th–LREE–HREE–[W]), whilst F2 represents Sn–Pb–U–[Zn] polymetallic mineralisation in western Gejiu. Further, a score diagram indicates that the granites exhibit a high abundance of ore-forming elements, with potential for Pb and Zn mineralisation. Our study favours that the Longchahe granites likely formed within a continental arc–tectonic setting, related to subduction and subsequent rotation processes experienced by the Paleo-Pacific plate. Full article
(This article belongs to the Section Geochemistry)
Show Figures

Figure 1

18 pages, 11461 KiB  
Article
Identification and Geological Significance of Late Cambrian OIB-Type Volcanic Rocks in the Nailenggeledaban Area, Northern Yili Block
by Da Xu, Ming Cao, Meng Wang, Youxin Chen, Shaowei Zhao, Shengqiang Zhu, Tai Wen and Zhi’an Bao
Minerals 2025, 15(1), 7; https://doi.org/10.3390/min15010007 - 25 Dec 2024
Viewed by 834
Abstract
Paleozoic igneous rocks exposed in the northern Yili Block are thought to have resulted from the subduction of the North Tianshan oceanic crust. However, the exact timing of the transition of the northern margin of the Yili Block from a passive to an [...] Read more.
Paleozoic igneous rocks exposed in the northern Yili Block are thought to have resulted from the subduction of the North Tianshan oceanic crust. However, the exact timing of the transition of the northern margin of the Yili Block from a passive to an active continental margin remains unknown. In this paper, the petrological and geochemical features, zircon U-Pb chronology, Lu-Hf isotopes, and Sr-Nd isotopes of volcanic rocks in the Nailenggeledaban area on the northern margin of the Yili Block were studied. Zircon U-Pb dating results show that the crystallization ages of the volcanic rocks in the Nailenggeledaban area on the northern margin of the Yili Block are 491 ± 2 Ma and 500 ± 2 Ma, suggesting they were formed during the Late Cambrian. Geochemical features show that the volcanic rocks are alkaline basalts with rare earth and trace element distribution patterns similar to OIB, although they exhibit some degree of Zr and Hf depletion. The εHf(t) values of alkaline basalts in the Nailenggeledaban area at the northern Yili Block range from −3.48 to −1.00, with a TDM1 age of 1152 to 1263 Ma. The εNd(t) values range from −3.53 to −0.96, with a TDM1 age of 1471 to 2162 Ma. Combined with geochemical data, the alkaline basalt magma in the Nailenggeledaban area on the northern margin of the Yili Block may be derived from the Mesoproterozoic enriched lithospheric mantle. The composition of the mantle source area is potentially garnet lherzolite, and the magma appears to have been either unaffected or only minimally contaminated by crustal materials during the ascending process. On the basis of the research results of the Early Paleozoic tectonic evolution in the northern margin of the Yili Block, this paper proposes that the volcanic rocks in the Nailenggeledaban area, located on the northern margin of the Yili Block, were formed in a back-arc extensional environment resulting from the subduction of the North Tianshan Ocean (or Junggar Ocean) beneath the northern margin of the Yili Block during the Late Cambrian. Full article
(This article belongs to the Special Issue Geochronology and Geochemistry of Alkaline Rocks)
Show Figures

Figure 1

21 pages, 20991 KiB  
Article
Petrogenesis of Diorite-Porphyrite in the Southern Xintai Area of the Mid-Western Shandong Peninsula, North China Craton: Insights from Geochronology, Mineralogy, Geochemistry, and Sr-Nd-Hf Isotopes
by Lijie Jin, Jilin Wang, Pinrui Qin, Chunjia Li, Shuang Xu, Zhixin Han, Wei Wang, Wei Liu, Zisheng Wang, Jilei Gao and Fangfang Li
Minerals 2024, 14(12), 1220; https://doi.org/10.3390/min14121220 - 29 Nov 2024
Viewed by 892
Abstract
The Early Cretaceous intermediate intrusive rocks have important significance in understanding the crust–mantle interaction, iron mineralization, and tectonic evolution in the western Shandong Peninsula. In this study, we present new zircon U–Pb ages, and Hf isotope, whole-rock geochemistry, Sr–Nd isotopes, and the mineral [...] Read more.
The Early Cretaceous intermediate intrusive rocks have important significance in understanding the crust–mantle interaction, iron mineralization, and tectonic evolution in the western Shandong Peninsula. In this study, we present new zircon U–Pb ages, and Hf isotope, whole-rock geochemistry, Sr–Nd isotopes, and the mineral chemistry of the diorite-porphyrite in the southern Xintai area, mid-western Shandong Peninsula. The diorite-porphyrite formed at ca. 125 Ma. They have intermediate SiO2 (59.57–62.29 wt.%) and MgO (2.78–3.58 wt.%) contents, high Mg# values (53–56), high Sr (589–939 ppm) and low Y (9.2–10.8 ppm) contents, and high Sr/Y ratios (54–94), showing adakitic affinity. The diorite-porphyrite exhibits lower zircon εHf(t) values (−30.1 to 7.5) and whole-rock εNd(t) values (−3.5 to −6.0), with (87Sr/86Sr)i ratios of 0.70514–0.70567. We suggest that the diorite-porphyrite was derived from the partial melting of the local delamination of lower continental crust and then by the interaction with the enriched lithospheric mantle. The genesis of diorite-porphyrite may be related to the rollback process of the Paleo-Pacific slab in the Early Cretaceous. This geodynamic process induced the melting of the enriched lithospheric mantle, subducted oceanic crust, and local delamination of lower continental crust, which produced different types of adakitic magmatism in the western Shandong Peninsula. Full article
Show Figures

Figure 1

34 pages, 11964 KiB  
Article
Formation and Tectonic Evolution of Ophiolites in the Sabah Area (Borneo, SE Asia)
by Zhiwen Tian, Youfeng Gao, Pujun Wang and Huafeng Tang
Minerals 2024, 14(11), 1078; https://doi.org/10.3390/min14111078 - 25 Oct 2024
Viewed by 3096
Abstract
Zircon U-Pb dating, rock geochemistry, Sr-Nd-Pb, and zircon Hf isotope analyses were conducted on the ultrabasic and basic rocks of ophiolites in the Sabah area (Borneo, SE Asia). The zircon U-Pb ages of ultrabasic and basic rocks range from 248 to 244 Ma, [...] Read more.
Zircon U-Pb dating, rock geochemistry, Sr-Nd-Pb, and zircon Hf isotope analyses were conducted on the ultrabasic and basic rocks of ophiolites in the Sabah area (Borneo, SE Asia). The zircon U-Pb ages of ultrabasic and basic rocks range from 248 to 244 Ma, indicating that the ophiolites already existed in the early Triassic. The rare earth elements of basic rocks in Central Sabah show N-MORB-type characteristics and E-MORB-type characteristics in the northwest and southeast. The εNd(t) values of basic rocks range from 3.66 to 8.73, and the εHf(t) values of zircon in ultrabasic rocks are between −10.2 and −6.1. Trace element analysis shows that the magmatic source was influenced by melts and fluids from the subducting plate of the Paleo-Tethys Ocean. The tectonic evolution of the Sabah area can be traced back to the Early Triassic. At that time, the fast subduction of the Paleo-Tethys Ocean plate and the retreating of the Paleo-Pacific plate resulted in the upwelling of mantle material in relatively small extensional settings, leading to the formation of the ophiolites. From the Jurassic to the Early Cretaceous, the Paleo-Pacific plate was intensely subducted, and the ophiolite intrusion in the Sabah area moved to the continental crust of South China or the Sundaland margin as fore-arc ophiolites. From the Late Cretaceous to the Miocene, with the expansion of the Proto-South China Sea and South China Sea oceanic crust, the ophiolites in the Sabah area drifted southward with microplate fragments and sutured with East Borneo. Full article
Show Figures

Figure 1

Back to TopTop